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Epidemic extinction paths in complex networks
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We study the extinction of long-lived epidemics on finite complex networks induced by intrinsic noise. Applying
analytical techniques to the stochastic susceptible-infected-susceptible model, we predict the distribution of large
fluctuations, the most probable or optimal path through a network that leads to a disease-free state from an
endemic state, and the average extinction time in general configurations. Our predictions agree with Monte Carlo
simulations on several networks, including synthetic weighted and degree-distributed networks with degree
correlations, and an empirical high school contact network. In addition, our approach quantifies characteristic
scaling patterns for the optimal path and distribution of large fluctuations, both near and away from the epidemic
threshold, in networks with heterogeneous eigenvector centrality and degree distributions.
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I. INTRODUCTION

Understanding the dynamics of infectious processes in
complex networks is an important problem, both in terms of
generalizing concepts in statistical mechanics and applying
them to public health [1–5]. A primary question in infectious
disease modeling is how to control an outbreak, with the ulti-
mate goal of reducing the number of individuals able to spread
infection to zero. This process, by which an epidemic is extin-
guished, is called extinction or disease fade-out [6–10]. To un-
derstand and possibly achieve extinction, mathematical models
can be useful, where extinction can be naturally captured in
terms of a dynamical transition from an endemic state (e.g.,
fluctuating equilibrium or cycle) to a disease-free state [11].

Although it is known that random fluctuations are the cause
of extinction in finite populations, the process of extinction
does not happen in the deterministic systems analyzed in the
vast majority of works on endemic dynamics in networks—
where contacts between infectious and susceptible individuals
are typically assumed to be well above an epidemic threshold
or bifurcation point [1,9,12]. Consequently network-control
prescriptions often reduce to bringing systems below a bifur-
cation point [7,13,14]. One may ask, is targeting subthreshold
regions as a control method necessary or even optimal? In
actuality the spread of disease is a highly stochastic process
in terms of both the natural randomness inherent in contact
processes and fluctuations due to time-varying and uncertain
environments [9,15]. These stochastic effects make extinction
inevitable, even above threshold, in finite networks and should
be reflected in epidemic controls [16,17]. In fact, recent work
has shown that optimal control of networks with noisy dy-
namics leverages randomness and a network’s natural, noise-
induced pathway between distinct states [2,18]. Continuing
in this line of thinking, we seek a prescription for computing
epidemic extinction pathways through complex networks.

Such issues have received much attention in well-mixed
and spatially homogeneous models [15–17,19–21]. It has
been demonstrated in many works that noise and a system’s
dynamics can couple in such a way as to induce a large
fluctuation—effectively driving a system from one state to
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another [22]. If the fluctuation is a rare event in the weak
noise limit, then the process is captured by a path that is a
maximum in probability, or optimal path (OP), where all others
are exponentially less likely to occur. The formalism borrows
from analytical mechanics, describing the OP as a least-action
trajectory in some effectively classical system, and allows one
to predict the dynamical extinction pathway and the average
time needed to realize it [23,24]. Some recent works have
made progress in understanding extinction in networks, (e.g.,
deriving bounds for average extinction times), but do not make
use of the path-based formalism outlined here [25–30].

The following layout of the paper describes epidemic
extinction through complex networks with intrinsic (demo-
graphic) noise in terms of large fluctuations and rare-event
theory. Section II constructs the formalism: combining a
mean-field approximation for endemic dynamics on networks
with a Wentzel-Kramers-Brillouin (WKB) technique that
allows for an analytical description of the distribution of
large fluctuations and the OP. The limiting form of the OP is
discussed near the epidemic threshold in Sec. II, and away from
threshold in Sec. III A. Section III addresses how to compute
the OP, extinction time, and their dependencies in certain cases,
including in networks with large spectral gaps (Sec. III A) and
degree distributions (Sec. III B). Throughout, predictions are
compared to real and synthetic network simulations.

II. LARGE FLUCTUATIONS, MEAN FIELD, AND WKB
APPROXIMATION

In order to predict epidemic extinction in general contact
networks it is necessary to consider an arbitrary weighted
adjacency matrix, A, where each element, Aij , represents the
strength of a link, or contact, from node i to node j , in a
graph with N nodes. Given this representation, a network’s
epidemic dynamics, assuming a simple susceptible-infectious-
susceptible Markov process (SIS), is captured by the states
and transitions of its nodes; i.e., node i is either “infected,”
denoted νi = 1, or “susceptible,” νi = 0. Furthermore, node
i changes its state νi : 0 → 1 with probability per unit time
β(1 − νi)

∑
j Aij νj , and νi : 1 → 0 with probability per unit

time ανi , where β and α are known as the infection and
recovery rates, respectively [1,2,5,31]. Since the elements
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of A are proportional to probabilities, A is assumed to be
non-negative. It is important to note that there is inherent noise
in the SIS model defined, which arises from the underlying
stochastic reactions [32].

In order to analyze the stochastic dynamics, it is useful to
consider an ensemble consisting of C identical networks with
the same A, but independent realizations of the stochastic dy-
namics [33]. Each node can be specified by a graph position i,
and ensemble number c, with state νi,c ∈ {0,1}. In this way, the
number of infected nodes in the ensemble with graph position
i is Ii = ∑

c νi,c, with corresponding transitions and rates:
Ii → Ii + 1 with rate R+

i (I) ≡ β
∑

c(1 − νi,c)
∑

j Aij νj,c =
β

∑
j Aij

∑
c(1 − νi,c)νj,c, and Ii → Ii − 1 with rate R−

i (I) ≡
αIi . To simplify our analysis, it is useful to make a mean-field
approximation and replace νi,c by the ensemble average,
Ii/C: R+

i (I) ≈ β
∑

j Aij Ij (1 − Ii/C), so that the transition
rates depend explicitly on I = 〈I1,I2, . . . ,IN 〉 alone. This ap-
proximation neglects correlations between neighboring graph
positions [1,34–36]. Ultimately, we are interested in the limit
of large C, so that xi ≡ Ii/C gives a continuous fraction of
infected nodes, or density, in graph position i. In this way, the
large ensemble allows us to consider continuous densities even
in discrete networks with unique graph positions.

Given the stochastic reactions and rates R+
i and R−

i , the
ensemble dynamics is described by a probability distribution,
P (I,t), satisfying a master equation:

∂P

∂t
(I,t) =

∑
i

R+
i (I − 1i)P (I − 1i ,t) − R+

i (I)P (I,t)

+R−
i (I + 1i)P (I + 1i ,t) − R−

i (I)P (I,t), (1)

where 1i = 〈0 1,0 2, . . . ,1 i ,0 i+1, . . .〉. Because extinctions in
large networks (N � 1) with long-lived epidemics are rare
events with small probabilities, we are interested in the tails
of P (I,t), where I corresponds to a large deviation from
the average behavior, and is accompanied by an exponential
reduction in probability.

This intuition suggests looking for solutions of Eq. (1) with
an exponential, or WKB form, P (I,t) = ae−CS(x,t) [11,23].
The WKB solution for the ensemble distribution can be viewed
as a product of independent and identical distributions for each
realization in the ensemble. Hence, we can approximate the
probability distribution of states for a single realization, ρ(ν,t),
by

ρ(ν,t) ∼= ρ(x,t) = be−S(x,t). (2)

Predictions from Eq. (2) [when combined with Eqs. (5)–(7)
below] are in good agreement with simulations on an empirical
high school (HS) network [37], shown in red in Fig. 1.

We can find the leading contribution to P (I,t) by substi-
tuting the WKB ansatz into Eq. (1), expanding in powers
of the small parameter 1/C, e.g., S(x ± 1i/C) ≈ S(x) ±
(1/C)∂S/∂xi , and neglecting terms of O(1/C) or smaller,
where C � 1. This approximation converts the master equa-
tion into a Hamilton-Jacobi equation (HJE):

∂S/∂t + H (x,∂S/∂x) = 0, (3)

where S and H are called the action and Hamiltonian,
respectively. The latter is a function of the infection density

FIG. 1. Histogram of a single stochastic realization of the SIS
model on a high school contact network. The probability (blue) is
shown vs the average infection weighted by eigenvector centrality: ηi

for node i. Predictions for a single realization from Eq. (2) are shown
in red. Network details are given in Sec. III.

at graph position i, xi , and its conjugate momentum, pi =
∂S/∂xi :

H (x,p) =
∑

i

[
β(1 − xi)(e

pi − 1)
∑

j

Aij xj

+αxi(e
−pi − 1)

]
. (4)

Just as in analytical mechanics, a convenient approach for
solving the HJE is to solve Hamilton’s equations of motion,
ẋi = ∂H/∂pi and ṗi = −∂H/∂xi :

ẋi = β̃(1 − xi)e
pi

∑
j

Aij xj − xie
−pi , (5)

ṗi = β̃
∑

j

Aij xj (epi − 1) − Aji(1 − xj )(epj − 1) − e−pi + 1,

(6)

expressed in terms of the ratio β̃ ≡ β/α, and the time, τ ≡ αt .
Crucially, solutions of the HJE extremize S, when expressed
as the integral

S(x,t) =
∫ x

x(t=t0)
p · dx −

∫ t

t0

H (x,p)dt ′, (7)

where x(t) and p(t) are determined from Eqs. (5)
and (6) [23]. Because S is minimized, the probability
of the corresponding trajectory is maximized—a consequence
of the WKB approximation. Therefore, all that is needed to
find the most probable path to extinction (OP) and ρ(x,t)
[Eqs. (2) and (7)] is the appropriate solution of Eqs. (5) and (6).
Such solutions can be computed from boundary conditions, as
detailed in Sec. III.

From inspection of Fig. 1 we notice that ρ(x,t) is a
maximum at the endemic equilibrium (x = x∗), implying
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FIG. 2. Prehistory heat maps of the final N events that ended in extinction in 400 realizations of the SIS model on several fixed networks.
The stochastic trajectories were projected into the fraction of infected nodes with high (b) and low (b′) eigenvector centrality. Predicted paths
are shown in blue for comparison [from the endemic state (∗) to extinction (◦)], and contrasted with the path into the endemic state, pi ≡ 0
(green). (a) WBA network: β̃λ = 1.88, ηb � 0.050, and 0.014 � ηb′ � 0.018 (see Sec. III A). (b) HS network: β̃λ = 1.34, ηb � 0.052, and
0.0111 � ηb′ � 0.021. (c) Positively correlated bimodal network (PC): β̃λ = 2.8, w = 0.23, N = 500, k1 = 5, and k2 = 50 (where k1 and k2

are degrees and w is a degree-correlation parameter explained in Secs. III B and Appendix B). (d) Negatively correlated bimodal network (NC):
β̃λ = 1.9, w = −0.26, and N = 400; high and low centralities imply k � 40 and k � 10, respectively, for (c) and (d). Note: a position on the
heat map with color “5” means that five times as many of the total 400N events crossed the position as compared to a position with a color “1.”

∂S/∂x = 0 and a boundary condition: ẋ = 0, ṗ = 0, x = x∗,
and p = 0. Second, at the extinct state (x = 0) the distribution
has negative slope, ∂S/∂x < 0. Furthermore, ρ(x,t) is approxi-
mately time independent, or quasistationary [10,11,23]. Hence
in the WKB ansatz, we have ∂S/∂t = H = 0 ∀t . Therefore the
final boundary condition is ẋ = 0, ṗ = 0, x = 0, and p = p∗
[11,19,22]. OPs computed with Eqs. (5) and (6) and the stated
boundary conditions are compared with stochastic trajectories
ending in extinction for several networks in Fig. 2.

Two important details should be pointed out. Since the
distribution is time independent, and therefore “zero energy,”
S(x) is simply the line integral of the momentum along
the OP, from Eq. (7). Also, the p ≡ 0 solution of Eqs. (5)
and (6) gives the familiar quenched mean-field equations
for the SIS model on complex networks. Therefore, the
WKB approach generalizes mean-field results to include large
fluctuations.

In general, by studying Eqs. (5) and (6) we can learn
how a network’s infection density is coupled to its large
fluctuations—together generating the most likely transition
sequence through a network leading to extinction. In addition
to the distribution of large fluctuations, Eq. (2), an important
observable from the above formalism is the geometry of the OP,
e.g., specifying the shape of infection density in the different
graph positions as a network makes its way from a large
epidemic to extinction. Examples are shown in Figs. 2 and 5.
Another important observable is the average extinction time
for a given network, 〈T 〉, which is expected to take the form

〈T 〉 = B(β̃,A)eS(x=0)/α, (8)

from the assumption that absorption into the extinct state
has a rate, or inverse time, proportional to the probability
[6,11,15,22]. For sufficiently large S, the exponential contri-
bution dominates, and therefore 〈T 〉 ∼ eS(0) (as demonstrated
in Fig. 3 for several networks [38]). We note that beyond a
theoretical interest, the framework presented can be augmented
with control strategies designed to minimize the action, Eq. (7),
thus producing exponential and optimal reductions in the
lifetime of epidemics on networks [2].

Near threshold behavior

Since the OPs are in a high 2N -dimensional space, they
must be found by numerically solving the two-point boundary
value problem in general, given Eqs. (5) and (6). However,
analytic properties can be derived in certain limiting cases,
which are useful for guiding intuition and for initializing
algorithms (see Sec. III A). An important case discussed in
this section is for β̃ just above the epidemic threshold, or
transcritical bifurcation, β̃c ≡ 1/λ(1)—where λ(1) is the largest
eigenvalue of A [1,34,35]. At this point the endemic and extinct
state meet, below which no long-lived epidemic occurs.

In order to describe the path when β̃ � β̃c, it is useful
to assume that β̃ = (1 + δ)/λ(1), with δ � 1, and first find
the equilibria as functions of δ. Substituting the series x∗

i =

FIG. 3. Log of the average extinction times vs actions,
Eq. (7), for several networks: WBA(◦); HS(�); PC (�); NC (�);
CM network with N = 1000 and a degree distribution, g(k) =
k−2.5/

∑500
k′=20 k′−2.5 (♦). Average times are taken from at least 400

stochastic realizations of the SIS dynamics on a single fixed network,
and are shown with symbols. Dashed lines show the expected scaling
ln〈T 〉 ∼ S(0) + const.
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∑
n δnxi,n and p = 0 into dx/dτ = 0, and collecting powers

of δ to O(δ2) gives

λ(1)xi,1 =
∑

j

Aij xj,1, (9)

λ(1)xi,2 =
∑

j

Aij [xj,2 + (1 − xi,1)xj,1]. (10)

Furthermore, by decomposing Eqs. (9) and (10) into the
eigenbasis of A, xi,n = ∑N

m=1 G(m)
n η

(m)
i , where η(m) is the mth

right eigenvector of A with eigenvalue λ(m), and taking the
inner product,

∑
i ζixi , of Eqs. (9) and (10) with the left

eigenvector, ζ (1), we find x∗ to O(δ). A similar procedures
gives p∗ when x = 0:

x∗
i = δη

(1)
i

/ ∑
j

ζ
(1)
j η

(1)
j

2 + O(δ2), (11)

p∗
i = −δζ

(1)
i

/∑
j

η
(1)
j ζ

(1)
j

2 + O(δ2) (12)

(assuming the normalization
∑

i ζ
(1)
i η

(1)
i = 1). Examining

Eqs. (11) and (12), we see that x∗
i and p∗

i are proportional to the
principal right and left eigenvectors of A (called centralities),
respectively. In particular, if η(1) and ζ (1) contain relatively few
nodes that are significantly large compared to most others, we
expect the infection density and fluctuations to be localized
around these nodes [35].

Further insight on the effects of topology near threshold can
be gained by considering the action along the path, Eq. (7).
To this end, it is useful to introduce a length parameter, a ∈
[0,1], so that we can express the coordinates as xi(a) ≈ x∗

i (1 −
a) and pi(a) ≈ p∗

i a, where the linear form is the simplest
satisfying the boundary conditions to O(δ) (see Fig. 5 insets).
Integrating over the path gives the action near bifurcation,
S(a) = ∑

i

∫ a

0 pi(a′)da′(dxi/da′):

S[x(a)] = δ2(a − a2/2)∑
j ζ

(1)
j η

(1)
j

2 ∑
l η

(1)
l ζ

(1)
l

2 + O(δ3). (13)

We note that Eq. (13) is interesting, since the known
expression for the complete graph is generalized by a topo-
logical factor that depends on the moments of the centrality
distribution. Typically, as the distribution becomes broad,
the topological factor in Eq. (13) is reduced, such that the
action differs significantly from the limiting case, ηi = ζi =
1/

√
N ⇒ S = Nδ2(a − a2/2) [11]. This is intuitive, since for

heterogeneous networks infection is most prevalent around
a comparatively small number of nodes, which must recover
without reinfection in order for extinction to occur. The effects
of heterogeneous eigenvector centrality are explored in more
detail in Sec. III.

III. SPECIAL SOLUTIONS

In general, the OP is of interest away from threshold.
However, since the OP is a heteroclinic connection of Eqs. (5)
and (6), in practice it must be constructed numerically, e.g.,
through shooting, quasinewton methods, etc. For example,
the paths shown in Fig. 2 were found from an iterative
action minimizing method (IAMM) [39]. In the IAMM, OPs

are generated from a least-squares algorithm that minimizes
the residuals between Eqs. (5) and (6) and finite-difference
approximations. The boundary conditions specified in Sec. II
are used to close the differencing. Often the small δ limit,
Eqs. (11) and (12), can be used as an initial guess. However,
the dimension for the minimization is 2Nd where d is the
number of discrete points in the differencing and N is the
size of the network, which is prohibitively large for large
N . Therefore, in practice it is necessary to coarse grain the
network in some way. Two such approaches are discussed in
the following sections for networks with large spectral gaps
(Sec. III A) and specified degree distributions (Sec. III B).

A. Large spectral gaps

In general, A can be usefully expanded in terms of its
eigenvalues and eigenvectors: Aij = ∑N

n=1 λ(n)η
(n)
i ζ

(n)
j . Of

particular interest, for strongly connected graphs, η1 and ζ 1

are positive and unique, and λ(1) is equal to the spectral
radius, by the Perron-Frobenius theorem. Moreover, in many
strongly connected networks of interest, it is the case that
λ(1) � λ(n), with large spectral gaps, and therefore, Aij ≈
λ(1)η

(1)
i ζ

(1)
j . In such cases, A can be coarse grained along a

single dimension as demonstrated below.
Given a large spectral gap, a simple coarse graining is

to bin η(1), assuming a number of bins, B, and a distri-
bution, fb, for the number of nodes in a given bin, b.
In the following, we assume that A is symmetric, so that
η(n) = ζ (n). In this case, nodes can be ordered according to
increasing centrality. Once ordered, the binning procedure is
the following: starting with the lowest centrality node, the
first bin is filled with nodes of sequentially higher centrality
until the number of nodes equals Nf1; then, the second bin
is filled, etc. Once all nodes are binned, the dimension of
Eqs. (5) and (6) can be reduced by replacing η

(1)
l , xl , and

pl with their bin averages ∀l ∈ b: ηb ≡ ∑
l∈b η

(1)
l /(Nfb), xb ≡∑

l∈b xl/(Nfb), pb ≡ ∑
l∈b pl/(Nfb). This gives the following

approximations to Eqs. (5) and (6) with reduced dimension 2B:

ẋb = β̃λ(1)ηb(1 − xb)epb

∑
b′

Nfb′ηb′xb′ − xbe
−pb , (14)

ṗb = β̃λ(1)ηb

∑
b′

Nfb′ηb′ [xb′ (epb − 1) − (1 − xb′ )(epb′ − 1)]

− e−pb + 1. (15)

A final requirement is needed to ensure that the binned and
original system have the same bifurcation point. We choose to
renormalize ηb so that

∑B
b=1 η2

bfbN = ∑N
i=1 η2

i = 1.
The above procedure was applied to three networks (consid-

ered in Figs. 2 and 3), where the bin distribution was assumed
to be uniform for simplicity, fb = 1/B; B was chosen large
enough so that the binned centralities closely matched the
original (as in Fig. 4), but not so large to preclude using
200–1000 discretization points along the OP in the IAMM. The
first network in Fig. 2(a) is a weighted Barabási-Albert (WBA)
graph with N = 500 and initial degree for each node, m = 7
[40]. Every link was given a random weight, independently
drawn from a uniform distribution over the range [0,10] after
the network was generated from the standard Barabási-Albert
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FIG. 4. Example binnings of (a) HS and (b) WBA networks
(Sec. III A). Eigenvector centralities (blue) are shown for all nodes
and compared with the average centrality in each bin (red). (a) 30
bins. (b) 55 bins.

algorithm (λ(1) = 122,λ(2) = 58.6). The second network in
Fig. 2(b) is a high-resolution American high school contact
network with 788 individuals and links representing close
proximity interactions during the course of a day (measured
using wireless motes [37]). Weights associated with links
correspond to contact durations (λ(1) = 6715,λ(2) = 4882).
Binning results for the WBA and HS networks are shown in
Fig. 4 with B = 55 and 30, respectively. The third network was
generated from a configuration model (CM), with N = 1000
and a degree distribution, g(k) = k−2.5/

∑500
k′=20 k′−2.5,

where k is the number of links for a given node
(λ(1) = 80.9,λ(2) = 16.3) [41]; B = 55 for the CM network’s
OP computation. A related method for computing OPs
through networks with specified degree distributions is
discussed in Sec. III B, and was applied to the networks in
Figs. 2(c) and 2(d).

Scaling with broad centrality distribution

As β̃ is increased above β̃c, infection increases across the
network. In particular, infection density can become high
even at low centrality nodes. In this case the path to extinction
through a network is more complex as its global dynamical
structure becomes apparent. Example optimal paths for a
WBA network when β̃ � β̃c are shown in Fig. 5. We can
see that a multistep structure is visible in the relative change
of infection density at different graph positions, which can
be compared with the insets (β̃ � 1/λ(1)) [2]. Though the

FIG. 5. OP away from threshold (β̃λ = 7) for WBA network
projected into the (a) densities of infected nodes and (b) conjugate
momenta for the lowest centrality bin (b = 1) vs higher centrality
bins (Sec. III A). Path projections become increasingly dark as the
bin number increases: b = 10,15, . . . ,55 (increasing eigenvector
centrality), where B = 55. Insets show OPs for comparison when
β̃λ = 1.02.

FIG. 6. Scaling of dynamical eigenmodes for nodes in a WBA
network relative to the maximum centrality value (subscript max).
(a) Solutions of Eqs. (20) and (21). (b) Solutions of Eqs. (18) and
(19). Upper and lower dashed lines represent the predicted scaling
near and away from threshold. Solid lines become increasingly light
in color as β̃λ increases: β̃λ = 1.05,1.25,2.0,2.85,and 3.35.

path has a more complicated form away from threshold,
some characteristic scalings can be captured in this region of
parameter space for networks with heterogeneous eigenvector
centralities (e.g., fb ∼ η

−γ

b ) and where the large spectral
gap approximation holds. Our approach in this section is to
study the unstable and stable linear modes of (x,p) near the
endemic and extinct states, respectively, for such networks.
These modes approximate the OP (a heteroclinic connection)
near the equilibria, and are useful for describing how large
fluctuations depend on centrality [42].

With this end in mind, we consider the dynamics of
(xi,pi) = (x∗

i + εo
i ,μ

o
i ) and (εin

i ,p∗
i + μin

i ), for small ε and μ,
given Aij ≈ λ(1)η

(1)
i η

(1)
j (below, we drop the superscript 1 in

η and λ for convenience). Similar to Sec. II, when β̃ � β̃c, it
is straightforward to show that εo

i ,ε
in
i ,μo

i , and μin
i are simply

proportional to ηi . Figure 6 shows centrality scalings for
the principal linear eigenmodes of Eqs. (5) and (6) near the
equilibria. The upper dashed lines demonstrate the predicted
scaling εin

i /εin
j ∼ ηi/ηj ∼ μo

i /μ
o
j for a WBA network where

the dark blue and red curves correspond to β̃ increasingly
close to threshold (εo

i and μin
i scale identically in this region).

However, as β̃ is increased, shown in light blue and red, we
can see that the scaling changes significantly [2].

In order to understand the change in scaling as β̃ is
increased, we first consider the equilibria x∗

i and p∗
i . Given

the large spectral gap assumption, we find a simple form for
each that is dependent on two parameters, X and P :

x∗
i = Xβ̃ληi/(1 + Xβ̃ληi), (16)

p∗
i = − ln[1 + β̃ληi(N〈η〉 − P )], (17)

satisfying X = ∑
j ηjx

∗
j and P = ∑

j ηj e
p∗

j , where 〈η〉 is
the average eigenvector centrality [33]. In particular, by
assuming that infection densities are high in the endemic
state at most graph positions, i.e., β̃ληiN〈η〉 � 1, then X ≈
N〈η〉 − 1/[β̃λ〈η〉] and P ≈ 1/[β̃λ〈η〉]. Substituting these
approximations into the linearized Eqs. (5) and (6) allows us to
determine the dependence of the eigenmodes, (εo

i (t),μo
i (t)) =

etσ o

(εo
i ,μ

o
i ) and (εin

i (t),μin
i (t)) = etσ in

(εin
i ,μin

i ), on ηi near the
equilibria.

Since infection densities are high near the endemic state
away from threshold, we expect the most well connected nodes
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to be quickly reinfected after recovery, as compared to nodes
that are less well connected. Therefore, we expect the OP out
of the endemic state to correspond with an initial decrease in
infection at low centrality positions. The scaling for this initial
step is determined by the eigensolution of the linearized Eq. (6)
at (x∗

i ,0):

1 =
∑

j

β̃λη2
j (1 − x∗

j )/
[
1 + β̃ληjX − σo

]
, (18)

μo
i = β̃ληi

∑
j

ηjμ
o
j (1 − x∗

j )/
[
1 + β̃ληiX − σo

]
. (19)

In particular, σo is positive and grows from zero with β̃ >

β̃c [43]. When β̃ληiN〈η〉 � 1 and fb ∼ η
−γ

b for large η,
the summation in Eq. (18) ∼ ∫

η−γ+1dη/(η − const), and
converges in the limit of large maximum centrality, ηmax,
when γ > 2. This implies that σo does not depend sensitively
on ηmax in this region and therefore we can consider the
limit of large centrality in Eq. (19). By inspecting μo

i for
large ηi, we see that it tends to a constant, i.e., μo

i /μ
o
j ∼ 1

(since the sum over j is i independent) in good agreement
with numerical solutions of Eqs. (18) and (19) away from
threshold—shown in Fig. 6(b) (light red). Interestingly, μo

i

becomes largest for small ηi (light red) and increases quickly
to a constant for large ηi . Since the momenta are nearly equal
across nodes in the network, the action’s derivatives with
respect to infection density are nearly equal across nodes.
A similar procedure gives the scaling εo

i /ε
o
j ∼ ηj/ηi , which is

found by expanding the linearized Eq. (5) in 1/β̃ληiN〈η〉, e.g.,
x∗

i ≈ 1 − 1/β̃ληiN〈η〉 (Appendix A). Therefore, the infection
density at a given node decreases inversely proportional to its
eigenvector centrality, i.e., the reciprocal scaling of the OP
near threshold.

Following the same approach, the scaling of the OP near
the extinct state is determined by the eigensolution of the
linearized Eq. (5) at (0,p∗

i ):

1 =
∑

j

β̃λη2
j e

p∗
j /[σ in + e−p∗

j ], (20)

εin
i = β̃ληie

p∗
i

∑
j

ηj ε
in
j /[σ in + e−p∗

i ]. (21)

In particular, σ in is negative, decreases from zero with
β̃ > β̃c, and is similarly insensitive to large ηmax. Hence,
taking the limit of large ηi , given e−p∗

i ≈ 1 + βληiN〈η〉[1 −
1/βληiN〈η〉], implies εin

i /εin
j ∼ ηj/ηi in Eq. (21)—as found

near the endemic state and shown in Fig. 6(b) (light blue).
However, in contrast to the behavior near x∗

i , we find that μin
i

increases with ηi , for small ηi , before reaching a constant,
μin

i /μin
j ∼ 1 (see details in Appendix A and Fig. 9). The

scalings near the extinct state imply that the last segment of the
OP is coincident with a final recovery of residual infections at
low-centrality nodes, while the momentum is largest at high
centralities.

Putting the scalings near the equilibria together, we can
infer that infection density decreases rapidly in high-centrality
nodes at a boundary layer between the endemic and extinct
states—since we have shown that their change is small
compared to low-centrality nodes near the equilibria [2,44].
This can be seen in Fig. 5(a), where projections of the OP into

high and low centralities, on the x and y axes, respectively,
show a characteristic pattern in which segments with large
horizontal slope occur between two segments with large
vertical slope.

B. Degree distributions

In addition to understanding the OP for a given network
defined by A, it is useful to understand the qualitative structure
of paths and actions for networks with similar statistical
properties [1,2,4]. A popular approach is to consider networks
with a specified distribution for the fraction of nodes with k

links, g(k) (where k is called the degree), which is the focus of
this section. Often, additional information is stipulated, such
as a degree-correlation function—typically in the form of a
specified probability that a link starting from a node with
degree k leads to a node with degree k′, o(k′|k) [31,45,46].
OPs for networks with such properties can be found by
approximating A given these distributions, and substituting
into Eqs. (5) and (6).

As is customary, we replace Aij by its expectation value in
the ensemble of simple networks with g(k) and o(k′|k), which
is called the annealed network approximation. In particular,
Aij is approximated by the probability that nodes i and j are
connected, Aij ≈ o(kj |ki)ki/Ng(kj ), or the probability that
node i is connected to any node with degree kj along a single
link, multiplied by the number of possible links, and divided
by the number of nodes with degree kj [1,2,4]. Note that
for link consistency, Aij = Aji , the distributions must satisfy
the constraint ko(k′|k)g(k) = k′o(k|k′)g(k′) [46]. With this
substitution for Aij into Eqs. (5) and (6), Hamilton’s equations
depend on the density of infection for nodes with the same
degree k, xk , and their momentum, pk:

ẋk = β̃k(1 − xk)epk

∑
k′

o(k′|k)xk′ − xke
−pk , (22)

ṗk = β̃k
∑

j

o(k′|k)[xk′(epk − 1) − (1 − xk′)(epk′ − 1)]

− e−pk + 1. (23)

Notably, Eqs. (22) and (23) reduce to the heterogeneous
mean-field dynamics for networks when pk ≡ 0; pk �= 0 en-
tails extinction in degree-correlated topologies with dimension
of (x,p) equal to twice the number of degree classes. The anal-
ysis and results for degree-distributed networks are analogous
to Secs. II–III A. For example, for degree-distributed networks
the familiar proportionality of the action on the number of
nodes in A is found from Eq. (7) [23]:

S(x) = N
∑

k

g(k)
∫ xk

x∗
k

pk(xk′)dx ′
k. (24)

Moreover, with the substitution of the largest eigenvalue, λ,
and the corresponding right eigenvector, vk , of ko(k′|k) in
Eq. (13) [46], we find the action at the extinct state for degree-
correlated networks near the epidemic threshold:

S(0) = 1

2
Nδ2 〈v2〉3

〈v3〉2
+ O(δ3), (25)

where 〈vn〉 = ∑
k g(k)vn

k .
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FIG. 7. Relative actions at the extinct state vs degree-
distribution exponent for truncated power-law networks: g(k,γ ) =
k−γ /

∑400
k′=20 k′−γ . (◦) β̃λ = 1 + δ,δ � 1; (�) β̃λ = 1.1; (♦) β̃λ =

1.5; (�) β̃λ = 2.0. A bin width of 0.015 was used to coarse grain
kg(k)/〈k〉 (Sec. III B).

Extinction paths and times for two example networks
are shown in Figs. 2 and 3 [2,47]. The networks have a
bimodal degree distribution with positive (PC) and negative
(NC) degree correlations [Figs. 2(c) and 2(d), respectively],
where positive implies an increased probability relative to an
uncorrelated network for nodes with similar degree to share
an edge. Correlated bimodal networks can be constructed
in a straightforward manner as detailed in Appendix B.
Figures 2(c) and 2(d) show OPs for example parameters
computed from Eqs. (22) and (23), and projected into the
densities of infected low- and high-degree nodes. Qualitatively,
we can see that OP projections into infection densities are
significantly closer to lines with unit slope (which is the case
for uncorrelated networks with small variance in k) in the NC
case (d) than for the PC case (c).

The change in the OP’s shape with correlations suggests
a reduction or enhancement of the effects of network het-
erogeneity with negative or positive correlations. For positive
correlation, infection is more prevalent around high-degree
nodes. This is reflected in the principal eigenvectors of ko(k′|k)
for the two examples, where the low-degree component is 5.4
times greater in the NC (parameters in Fig. 2). In fact the
topological factor, 〈v2〉3/〈v3〉2, is 2.2 times greater for the NC.
Therefore we expect the probabilities for large fluctuations
to be smaller by the same power and extinction times to be
larger by the same power, given the same N and distance to
bifurcation, δ = β̃λ − 1 � 0. Equivalently, if comparing fixed
extinction time, the PC must be taken to larger β̃λ and/or
N . This is demonstrated in Fig. 3, where the largest times
shown for the bimodal networks correspond to β̃λ = 1.9 and
N = 400 for the NC, and β̃λ = 2.8 and N = 500 for the PC.

The above example raises an interesting question of how
fluctuations and extinction times vary with statistical proper-
ties in a network, such as degree heterogeneity, which can be
anticipated from the network action. A more realistic class
of heterogenous networks has power-law degree distributions,
g(k) ∼ k−γ , where the level of degree heterogeneity grows
with decreasing γ . Figure 7 shows the predicted actions at
the extinct state as a function of γ for truncated and un-
correlated, o(k|k′) = kg(k)/〈k〉, power-law distributions with
several fixed distances to threshold. Interestingly, for such

networks we can see that actions vary as much as 60% when
(β̃λ = 2), with broader g(k) resulting in significantly smaller
actions, and therefore exponentially larger probabilities of
large fluctuations and exponentially smaller extinction times.

The action curves were found by solving Eqs. (22) and (23)
with the boundary conditions specified in Sec. II, and com-
puting Eq. (24). In addition to computation, the lower black
curve in Fig. 7 gives the analytic scaling near threshold, found
from Eq. (25), by substituting the eigenvector for uncorrelated
random networks, vk = k ⇒ S = Nδ2〈k2〉3/〈k3〉2 [2,46]. For
the computed curves, it was useful to reduce the dimension
for the IAMM by binning the distribution o(k|k′) = kg(k)/〈k〉
with a similar procedure as Sec. III A. Our approach was
to select a small bin width for kg(k)/〈k〉 (e.g., 0.015), and
sequentially add increasing degree classes to a bin, starting
with the smallest k and first bin, until the sum of kg(k)/〈k〉
over k in a given bin equaled or exceeded the bin width. Then,
the next bin was filled with the same bin width, etc. In the final
step, degrees in Eqs. (22) and (23) were replaced by their bin’s
average and o(k′|k) by the sum over kg(k)/〈k〉 in each bin [2].

System-size scaling for modest N

Another interesting feature of extinction times in power-law
networks concerns their scaling with system size when there
is no truncation in g(k). It is known for degree-homogeneous
networks, such as simple-complete or Erdős-Rényi graphs, that
the action scales linearly with the system size [11,48]. Below
we show that near threshold for modest N , a range of scalings
are possible depending on the exponent, γ . As indicated above,
the action near threshold depends on a topological factor that
is a function of the moments of g(k), which can depend on N .

Here we continue to use the annealed network approxima-
tion, though for very large N this is known to break down
for random networks with unbounded degree as localization
effects become important [35]. Therefore, we restrict ourselves
to N and minimum degree, kmin, such that λ ≈ 〈k2〉/〈k〉. When
γ > 4, 〈k3〉 is finite for power-law networks, i.e., independent
of N for large N , and thus S ∼ N near threshold, β̃ � 〈k〉/〈k2〉
[31,45]—though higher-order terms may be N dependent
for δ � 1, we expect them to grow more slowly than N

[36]. On the other hand, if γ < 4, 〈k3〉 is a function of
the maximum degree, kmax, which follows a simple scaling,
kmax ∼ kminN

1/[γ−1], for a finite network [49]. The customary
approach is to approximate the statistical moments of g(k)
given kmax, allowing one to find the scaling of S with N . For ex-
ample, when kmin � 1, the discrete sum, 〈k3〉 = ∑

k g(k)k3 ≈
C̃

∫ kmax

kmin
k3−γ dk. Introducing γ = 3 + α with α ∈ (0,1), we get

〈k3〉 ≈ C̃k1−α
min N [1−α]/[2+α]/[1 − α], where C̃ = k2+α

min [2 + α]
[from normalization of g(k)]. Computing the moments of g(k)
in this way gives the action at the extinct state to O(δ2) from
Eq. (24):

S(0) = δ2

2

(1 − α)2(2 + α)

α3
N1−2[1−α]/[2+α]. (26)

The above suggests that in the heterogeneous mean-field
approximation the O(δ2) contribution to the action can
increase sublinearly in N for γ ∈ (3,4) near threshold [30]
as suggested in Fig. 8. However for very large networks,
and no truncation in kmax, λ ∼ max{√kmax,〈k2〉/〈k〉} � 1,
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FIG. 8. System-size scaling of the average log of the average
extinction times for CM networks with degree distribution g(k,γ ) =
k−γ /

∑∞
k′=30 k′−γ : γ = 4.5 (◦), γ = 3.7 (♦), and γ = 3.4, (�), with

β̃〈k2〉/〈k〉 = 1.18, 1.20, and 1.25, respectively [36]. Dashed lines
show the predicted scalings from Eq. (26). Average times, 〈T 〉, were
computed from at least 50 simulations for each network, and ln〈T 〉
was averaged over 20 different networks. Networks were selected so
that kmax was within 10% of kminN

1/[γ−1]. Error bars represent the
standard deviation of ln〈T 〉.

and the analysis presented is no longer valid, including the
expansion in δ. Moreover, there is some evidence for multiple
epidemic thresholds in networks with unbounded kmax as
N → ∞ [50]. Since such issues are not yet fully resolved, we
leave the description of extinction in very large networks with
unbounded degree distributions, and the crossover between
localized and delocalized extinction, for future study.

IV. CONCLUSION

This paper dealt with the extinction of long-lived endemic
states above epidemic thresholds on static finite networks with
infection dynamics given by the stochastic SIS model. The
optimal path to extinction, the distribution of large fluctuations,
and the average extinction time were computed by combining
mean-field and WKB-approximation techniques. The path-
based formalism presented enabled us to predict extinction
in general networked populations, and extract several of its
intriguing signatures in complex topologies, including the
multistep scaling of the OP in networks with heterogeneous
eigenvector centrality, as well as an increase in the probability
of large fluctuations with increased topological heterogeneity.
Although theoretical in nature, the generality of our approach
allowed us to consider several applications, including weighted
empirical and degree-correlated topologies.

Though the results show good agreement with Monte Carlo
simulations in both real and synthetic networks, improved
accuracy can be achieved in a straightforward manner by
following our synthesized prescription, namely, using as an
ansatz in a network’s master equation the exponential function
of an action (typically requiring some accurate mean-field
approximation), and taking a large system-size limit. The
result is a Hamilton-Jacobi equation that generates a dynamical
system with twice the dimension of the mean field. The OP
can be found by solving the two-point boundary value problem
of Hamilton’s equations of motion beginning at an endemic

state and ending at an extinct state, which define OP end
points. Thus the theory changes the stochastic analysis of large
fluctuations in networks to a mechanical analog. Furthermore,
our approach can be more generally applied to other questions
concerning noise and network dynamics, such as epidemic
extinction in adaptive networks, switching in social networks,
network inference in the presence of large fluctuations, and
optimal control of networks with fluctuating dynamics [2,18].
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APPENDIX A

As described in Sec. III A, εo
i and μin

i satisfy the linearized
Eqs. (5) and (6). When β̃ληiN〈η〉 � 1, the approximate linear
systems are

∑
j

ηj ε
o
j

N〈η〉 ≈ εo
i {σo + 1 + β̃ληiN〈η〉[1 − 1/(β̃λN〈η〉2)]}

−μo
i [2 − 1/(β̃λN〈η〉2) − 1/(β̃ληiN〈η〉)],

(A1)

{−1 + (σ in − 1)/[β̃ληiN〈η〉]}μin
i +

∑
j

ηjμ
in
j

N〈η〉
1

β̃ληjN〈η〉

≈ +
∑

j

ηj ε
in
j

N〈η〉 [−2 + 1/(β̃ληiN〈η〉) + 1/(β̃ληjN〈η〉)].

(A2)

FIG. 9. Scaling of momentum near the extinct state for nodes in
a WBA network relative to the maximum centrality value (subscript
max), corresponding to the dynamical mode Eq. (21). Upper and
lower dashed lines represent the predicted scaling near and away
from threshold. Solid lines become increasingly light in color as β̃λ

increases: β̃λ = 1.05,1.25,2.0,2.85,and 3.35.
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Since the sums in Eqs. (A1) and (A2) are independent of i, the
limit of large β̃ληiN〈η〉 gives εo

i /ε
o
j ∼ ηj/ηi and μin

i /μin
j ∼ 1.

The latter can be seen in Fig. 9. However, as β̃ � β̃c the
continuous spectra, σo

i and σ in
i , for large N of the linearized

Eqs. (5) and (6) become relevant: εin
i ,μo

i ∼ δ(η − ηi), and

σ in
i = β̃ληi

2ep∗
i − e−p∗

i , (A3)

σo
i = 1 + β̃ληi

[ ∑
j

ηjx
∗
j − ηi(1 − xi)

]
. (A4)

This occurs as the denominators of Eqs. (18) and (20)
approach zero, and the single-mode analysis of Sec. III A
is invalid. As a consequence, for very large β̃, the rel-
evant modes directing the OP to extinction near the
equilibria are extremely localized around low-centrality
nodes.

APPENDIX B

Correlated bimodal networks can be constructed as follows.
We assume that a fraction, p, of the network has high
degree near k2 while the remaining nodes have low degree
near k1. To build such networks, high-degree nodes are
connected to each other with probability k2

2/[N〈k〉] + w,
where w measures the assortativity above the uncorrelated
construction and 〈k〉 = [k1(1 − p) + k2p]. On the other hand,
high- and low-degree nodes are connected with probabil-
ity k1k2/[N〈k〉] − w, and low-degree nodes are connected
with probability k2

1/[N〈k〉] + w′—where w′ is determined
from the link-consistency constraint. In this way the de-
gree distribution has two peaks centered around k1 and
k2 as N → ∞, and Eqs. (22) and (23) can be used to
capture the OP and average extinction times assuming
two degree classes with o(k2|k2) = w + k2p/〈k〉, o(k1|k2) =
−w + k1(1 − p)/〈k〉, o(k1|k1) = −w′ + k1(1 − p)/〈k〉, and
o(k2|k1) = −w′ + k2p/〈k〉 [51].

[1] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A.
Vespignani, Rev. Mod. Phys. 87, 925 (2015).

[2] J. Hindes and I. B. Schwartz, Phys. Rev. Lett. 117, 028302
(2016).

[3] R. M. Anderson and R. M. May, Infectious Diseases of Humans
(Oxford University, New York, 1991).

[4] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes,
Rev. Mod. Phys. 80, 1275 (2008).

[5] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamical
Processes on Complex Networks (Cambridge University, New
York, 2008).

[6] C. R. Doering, K. V. Sargsyan, and L. M. Sander, Multiscale
Model. Simul. 3, 283 (2005).

[7] M. I. Dykman, I. B. Schwartz, and A. S. Landsman, Phys. Rev.
Lett. 101, 078101 (2008).

[8] A. Kamenev and B. Meerson, Phys. Rev. E 77, 061107 (2008).
[9] O. Ovaskainen and B. Meerson, Trends Ecol. Evol. 25, 643

(2010).
[10] M. Assaf and B. Meerson, arXiv:1612.01470v2 [cond-mat.stat-

mech] (2016).
[11] M. Assaf and B. Meerson, Phys. Rev. E 81, 021116 (2010).
[12] I. Nåsell, Extnction and Quasi-Stationarity in the Stochastic

Logistic SIS Model (Springer, New York, 2011).
[13] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. d’Onofrio, P.

Manfredi, M. Perc, N. Perra, M. Salathé, and D. Zhao,
Phys. Rep. 664, 1 (2016).

[14] K. Drakopoulos, A. Ozdaglar, and J. N. Tsitsiklis, IEEE Trans.
Netw. Sci. Eng. 1, 67 (2014).

[15] A. Kamenev, B. Meerson, and B. Shklovskii, Phys. Rev. Lett.
101, 268103 (2008).

[16] I. B. Schwartz, E. Forgoston, S. Bianco, and L. B. Shaw, J. R.
Soc. Interface 8, 1699 (2011).

[17] L. Billings, L. Mier-y Teran Romero, B. S. Lindley, and I. B.
Schwartz, PLoS One 8, e70211 (2013).

[18] D. K. Wells, W. L. Kath, and A. E. Motter, Phys. Rev. X 5,
031036 (2015).

[19] M. Khasin and M. I. Dykman, Phys. Rev. Lett. 103, 068101
(2009).

[20] V. Elgart and A. Kamenev, Phys. Rev. E 70, 041106 (2004).

[21] B. Meerson and P. V. Sasorov, Phys. Rev. E 84, 030101(R)
(2011).

[22] I. B. Schwartz, L. Billings, M. Dykman, and A. Landsman,
J. Stat. Mech.: Theory Exp. (2009) P01005.

[23] M. I. Dykman, E. Mori, J. Ross, and P. M. Hunt, J. Chem. Phys.
100, 5735 (1994).

[24] M. I. Friedlin and A. D. Wentzell, Random Perturbations of
Dynamical Systems, 2nd ed. (Springer-Verlag, New York, 1998).

[25] S. Chatterjee and R. Durrett, Ann. Probab. 37, 2332 (2009).
[26] T. Mountford, D. Valesin, and Q. Yao, Electron. J. Probab. 18,

103 (2013).
[27] R. van de Bovenkamp and P. Van Mieghem, Phys. Rev. E 92,

032806 (2015).
[28] M. A. Muñoz, R. Juhász, C. Castellano, and G. Ódor, Phys. Rev.

Lett. 105, 128701 (2010).
[29] C. Buono, F. Vazquez, P. A. Macri, and L. A. Braunstein, Phys.

Rev. E 88, 022813 (2013).
[30] M. Assaf and M. Mobilia, Phys. Rev. Lett. 109, 188701 (2012).
[31] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
[32] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[33] G. Barlev, T. M. Antonsen, and E. Ott, Chaos 21, 025103

(2011).
[34] A. S. Mata and S. C. Ferreira, Europhys. Lett. 103, 48003 (2013).
[35] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J. F. F.

Mendes, Phys. Rev. Lett. 109, 128702 (2012).
[36] Techniques that include correlations can be used to significantly

improve accuracy, but at the cost of higher dimensionality [34].
[37] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman,

and J. H. Jones, Proc. Natl. Acad. Sci. USA 107, 22020 (2010).
[38] The deviation from the expected scaling is likely due to the

prefactor dependence (B), the binning approximation (Sec. III),
and the inaccuracy of the mean-field assumption, particularly in
the estimate for β̃c [36].

[39] B. S. Lindley and I. B. Schwartz, Physica D (Amsterdam) 255,
22 (2013).

[40] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[41] M. E. J. Newman, Networks: An Introduction (Oxford Univer-

sity, New York, 2010).

052317-9

https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/PhysRevLett.117.028302
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1103/RevModPhys.80.1275
https://doi.org/10.1137/030602800
https://doi.org/10.1137/030602800
https://doi.org/10.1137/030602800
https://doi.org/10.1137/030602800
https://doi.org/10.1103/PhysRevLett.101.078101
https://doi.org/10.1103/PhysRevLett.101.078101
https://doi.org/10.1103/PhysRevLett.101.078101
https://doi.org/10.1103/PhysRevLett.101.078101
https://doi.org/10.1103/PhysRevE.77.061107
https://doi.org/10.1103/PhysRevE.77.061107
https://doi.org/10.1103/PhysRevE.77.061107
https://doi.org/10.1103/PhysRevE.77.061107
https://doi.org/10.1016/j.tree.2010.07.009
https://doi.org/10.1016/j.tree.2010.07.009
https://doi.org/10.1016/j.tree.2010.07.009
https://doi.org/10.1016/j.tree.2010.07.009
http://arxiv.org/abs/arXiv:1612.01470v2
https://doi.org/10.1103/PhysRevE.81.021116
https://doi.org/10.1103/PhysRevE.81.021116
https://doi.org/10.1103/PhysRevE.81.021116
https://doi.org/10.1103/PhysRevE.81.021116
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1016/j.physrep.2016.10.006
https://doi.org/10.1109/TNSE.2015.2393291
https://doi.org/10.1109/TNSE.2015.2393291
https://doi.org/10.1109/TNSE.2015.2393291
https://doi.org/10.1109/TNSE.2015.2393291
https://doi.org/10.1103/PhysRevLett.101.268103
https://doi.org/10.1103/PhysRevLett.101.268103
https://doi.org/10.1103/PhysRevLett.101.268103
https://doi.org/10.1103/PhysRevLett.101.268103
https://doi.org/10.1098/rsif.2011.0159
https://doi.org/10.1098/rsif.2011.0159
https://doi.org/10.1098/rsif.2011.0159
https://doi.org/10.1098/rsif.2011.0159
https://doi.org/10.1371/journal.pone.0070211
https://doi.org/10.1371/journal.pone.0070211
https://doi.org/10.1371/journal.pone.0070211
https://doi.org/10.1371/journal.pone.0070211
https://doi.org/10.1103/PhysRevX.5.031036
https://doi.org/10.1103/PhysRevX.5.031036
https://doi.org/10.1103/PhysRevX.5.031036
https://doi.org/10.1103/PhysRevX.5.031036
https://doi.org/10.1103/PhysRevLett.103.068101
https://doi.org/10.1103/PhysRevLett.103.068101
https://doi.org/10.1103/PhysRevLett.103.068101
https://doi.org/10.1103/PhysRevLett.103.068101
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/10.1103/PhysRevE.70.041106
https://doi.org/10.1103/PhysRevE.84.030101
https://doi.org/10.1103/PhysRevE.84.030101
https://doi.org/10.1103/PhysRevE.84.030101
https://doi.org/10.1103/PhysRevE.84.030101
https://doi.org/10.1088/1742-5468/2009/01/P01005
https://doi.org/10.1088/1742-5468/2009/01/P01005
https://doi.org/10.1088/1742-5468/2009/01/P01005
https://doi.org/10.1063/1.467139
https://doi.org/10.1063/1.467139
https://doi.org/10.1063/1.467139
https://doi.org/10.1063/1.467139
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/09-AOP471
https://doi.org/10.1214/EJP.v18-2512
https://doi.org/10.1214/EJP.v18-2512
https://doi.org/10.1214/EJP.v18-2512
https://doi.org/10.1214/EJP.v18-2512
https://doi.org/10.1103/PhysRevE.92.032806
https://doi.org/10.1103/PhysRevE.92.032806
https://doi.org/10.1103/PhysRevE.92.032806
https://doi.org/10.1103/PhysRevE.92.032806
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevE.88.022813
https://doi.org/10.1103/PhysRevE.88.022813
https://doi.org/10.1103/PhysRevE.88.022813
https://doi.org/10.1103/PhysRevE.88.022813
https://doi.org/10.1103/PhysRevLett.109.188701
https://doi.org/10.1103/PhysRevLett.109.188701
https://doi.org/10.1103/PhysRevLett.109.188701
https://doi.org/10.1103/PhysRevLett.109.188701
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1063/1.3596711
https://doi.org/10.1063/1.3596711
https://doi.org/10.1063/1.3596711
https://doi.org/10.1063/1.3596711
https://doi.org/10.1209/0295-5075/103/48003
https://doi.org/10.1209/0295-5075/103/48003
https://doi.org/10.1209/0295-5075/103/48003
https://doi.org/10.1209/0295-5075/103/48003
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1073/pnas.1009094108
https://doi.org/10.1016/j.physd.2013.04.001
https://doi.org/10.1016/j.physd.2013.04.001
https://doi.org/10.1016/j.physd.2013.04.001
https://doi.org/10.1016/j.physd.2013.04.001
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47


JASON HINDES AND IRA B. SCHWARTZ PHYSICAL REVIEW E 95, 052317 (2017)

[42] The usual stable and unstable modes of the endemic and
disease-free states, respectively (corresponding to p ≡ 0) are
not discussed in Sec. III A.

[43] As long as 1 + β̃ληjX − σ o > 0, and similarly for Eq. (20).
As β̃λ gets very large, these conditions can be violated and
the analysis presented in Sec. III A must be supplemented (see
Appendix A).

[44] Given the monotonic dynamics of the path, an upper bound for
the scaling near the boundary layer is dxi/dxj ∼ ηi/ηj [2].

[45] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65, 036104
(2002).

[46] M. Boguñá and R. Pastor-Satorras, Phys. Rev. E 66, 047104
(2002).

[47] J. Hindes, K. Szwaykowska, and I. B. Schwartz, Phys. Rev. E
94, 032306 (2016).

[48] B. S. Lindley, L. B. Shaw, and I. B. Schwartz, Europhys. Lett.
108, 58008 (2014).

[49] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev.
Lett. 85, 4626 (2000).

[50] A. S. Mata and S. C. Ferreira, Phys. Rev. E 91, 012816 (2015).
[51] Due to the relatively small network sizes in Figs. 2 and 3, the

mean degrees for high- and low-degree nodes in the bimodal
networks (Appendix B) differ from the assumed values of 50 and
5. This introduces a quantitative error, which can be reduced by
replacing k1 and k2 in predictions by the measured mean degrees
for the two node types.

052317-10

https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1103/PhysRevE.65.036104
https://doi.org/10.1103/PhysRevE.66.047104
https://doi.org/10.1103/PhysRevE.66.047104
https://doi.org/10.1103/PhysRevE.66.047104
https://doi.org/10.1103/PhysRevE.66.047104
https://doi.org/10.1103/PhysRevE.94.032306
https://doi.org/10.1103/PhysRevE.94.032306
https://doi.org/10.1103/PhysRevE.94.032306
https://doi.org/10.1103/PhysRevE.94.032306
https://doi.org/10.1209/0295-5075/108/58008
https://doi.org/10.1209/0295-5075/108/58008
https://doi.org/10.1209/0295-5075/108/58008
https://doi.org/10.1209/0295-5075/108/58008
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1103/PhysRevE.91.012816
https://doi.org/10.1103/PhysRevE.91.012816
https://doi.org/10.1103/PhysRevE.91.012816
https://doi.org/10.1103/PhysRevE.91.012816



