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Minimum spanning tree filtering of correlations for varying time scales and size of fluctuations
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Based on a recently proposed q-dependent detrended cross-correlation coefficient, ρq [J. Kwapień, P.
Oświęcimka, and S. Drożdż, Phys. Rev. E 92, 052815 (2015)], we generalize the concept of the minimum
spanning tree (MST) by introducing a family of q-dependent minimum spanning trees (qMSTs) that are selective
to cross-correlations between different fluctuation amplitudes and different time scales of multivariate data. They
inherit this ability directly from the coefficients ρq , which are processed here to construct a distance matrix being
the input to the MST-constructing Kruskal’s algorithm. The conventional MST with detrending corresponds in
this context to q = 2. In order to illustrate their performance, we apply the qMSTs to sample empirical data
from the American stock market and discuss the results. We show that the qMST graphs can complement ρq in
disentangling “hidden” correlations that cannot be observed in the MST graphs based on ρDCCA, and therefore,
they can be useful in many areas where the multivariate cross-correlations are of interest. As an example, we apply
this method to empirical data from the stock market and show that by constructing the qMSTs for a spectrum of
q values we obtain more information about the correlation structure of the data than by using q = 2 only. More
specifically, we show that two sets of signals that differ from each other statistically can give comparable trees
for q = 2, while only by using the trees for q �= 2 do we become able to distinguish between these sets. We also
show that a family of qMSTs for a range of q expresses the diversity of correlations in a manner resembling
the multifractal analysis, where one computes a spectrum of the generalized fractal dimensions, the generalized
Hurst exponents, or the multifractal singularity spectra: the more diverse the correlations are, the more variable
the tree topology is for different q’s. As regards the correlation structure of the stock market, our analysis exhibits
that the stocks belonging to the same or similar industrial sectors are correlated via the fluctuations of moderate
amplitudes, while the largest fluctuations often happen to synchronize in those stocks that do not necessarily
belong to the same industry.
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I. INTRODUCTION

A minimum spanning tree (MST) is a subgraph of a
weighted network that minimizes the sum of the edge lengths
while spanning the network and not containing any cycles. It is
often used in optimization and in multivariate data analysis to
visualize the key properties of a network representation of the
data if the corresponding complete network cannot be shown
in a transparent way. Many examples of MST applications
can be found in the literature (see, e.g., [1–5]), but they are
particularly common in econophysics [3,6–31]. Frequently, a
network analysis is used to describe a correlation structure
among a number of observables measured simultaneously.
Such observables are represented by nodes, and correlations
by the weighted edges. These weights can be expressed by
any correlation measure, for example, the Pearson coefficient
or mutual information. An MST can then be built by using
Kruskal’s [32] or Prim’s [33] algorithm provided the weights
have been transformed into Euclidean distances.

One of the key problems that arises while dealing with
empirical data is how to overcome nonstationarity. Standard
correlation measures, like the ones already mentioned, are
highly prone to instability caused by large fluctuations of the
data [34] and therefore results obtained with such measures are
not fully reliable. Inevitably, the same weakness is inherited
by networks built on top of those measures. However, as
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the nonstationarities are typically associated with trends,
simultaneous detrending on different scales can produce
stationary data. The detrended fluctuation analysis (DFA) is
the most frequently used method in this context [35]. Its
outcome, a fluctuation function, plays the role of variance
for nonstationary signals. Analogously, the role of covariance
is played by the outcome of the detrended cross-correlation
analysis (DCCA) [36]. Based on both methods, the so-called
detrended cross-correlation coefficient ρDCCA was introduced,
which is a counterpart of the Pearson correlation coefficient
[37]. It can be used in the case of nonstationary data to quantify
the strength of cross-correlations between detrended signals at
a given time scale [37–42].

In statistical analysis, variance and covariance are not
able to provide a complete description of the probability
distribution function for a given data set and the whole family
of statistical moments is necessary to accomplish this. The
Pearson correlation coefficient is not sensitive to any nonlinear
dependences among data. In the same manner, DFA and DCCA
are used to detect power-law auto- and cross-correlations and
the related fractal properties of signals, but it is impossible
to use them to detect nonlinear structures, which are more
complex than monofractals. Therefore, the detrended cross-
correlation coefficient ρDCCA also has a limited power as
regards the detection of higher-order statistics than a simple
detrended covariance. In order to make it more potent, recently
we have proposed its generalization, called the q-dependent
detrended cross-correlation coefficient ρq (q ∈ R) [43]. Its
main purpose is to identify cross-correlations selectively
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with respect to the fluctuation amplitudes by amplifying the
correlated fluctuations of a particular size, while suppressing
those of other sizes. The ρq coefficient is based on the
multiscale generalizations of DFA and DCCA, i.e., multifractal
detrended fluctuation analysis (MFDFA) [44] and multifractal
detrended cross-correlation analysis (MFCCA) [45]. Both
these methods are principally applied to quantify multifractal
structures in one or two signals, but their sensitivity to time
scales makes them useful to describe also signals that are not
fractal in general.

The analogy between the ρDCCA coefficient and the Pearson
coefficient can be exploited straightforwardly to construct
detrended minimum spanning trees [29]. Their main advantage
over standard MSTs is that they are more stable with respect
to time, being independent of the data nonstationarity. In
our present work we want to combine this property of the
detrended minimum spanning trees with the ability of ρq to
focus on fluctuations of a specific size. As a result, we obtain
a tool that is capable of quantifying the correlation structure
of multivariate nonstationary signals not only with respect to
time scale but also with respect to fluctuation size. As in the
case of ρDCCA, the signals under study may be arbitrary, as no
fractal properties are required.

Our paper is organized as follows. In Sec. II we provide
the necessary definitions, in Sec. III we describe the empirical
data and present results of the qMST analysis based on those
data, and in Sec. IV we collect the main conclusions.

II. METHODS

Let us start from a brief description of the MFCCA approach
[45]. Consider a pair of time series, x(i)i=1,...,T and y(i)i=1,...,T ,
divided into 2Ms boxes of length s (i.e., Ms boxes starting from
the opposite ends). In each box ν (ν = 0, . . . ,2Ms − 1), we
calculate the difference between the integrated signals and the
mth-order polynomials P (m) fitted to these signals:

Xν(s,i) =
i∑

j=1

x(νs + j ) − P
(m)
X,s,ν(j ), (1)

Yν(s,i) =
i∑

j=1

y(νs + j ) − P
(m)
Y,s,ν(j ), (2)

where m = 2 typically. The covariance and the variances of X

and Y in a box ν are defined as

f 2
XY (s,ν) = 1

s

s∑
i=1

Xν(s,i)Yν(s,i), (3)

f 2
ZZ(s,ν) = 1

s

s∑
i=1

Z2
ν (s,i). (4)

Here Z can be either X or Y . Now we define a family of the
fluctuation functions of order q [44,45]:

F
q

XY (s) = 1

2Ms

2Ms−1∑
ν=0

sgn
[
f 2

XY (s,ν)
]∣∣f 2

XY (s,ν)
∣∣q/2

, (5)

F
q

ZZ(s) = 1

2Ms

2Ms−1∑
ν=0

[
f 2

ZZ(s,ν)
]q/2

. (6)

The signum function enters the equation for F
q

XY (s) in order to
preserve the signs of the covariances f 2

XY (s,ν), which would
otherwise be lost in the moduli that are necessary to secure
real values of F

q

XY (s). The real parameter q plays the role of a
filter, by amplifying or suppressing the intrabox variances and
covariances in such a way that for q � 2 only the boxes (of
size s) with the highest fluctuations contribute substantially to
the sums, while for q � 2 only the boxes with the smallest
fluctuations do so. The special case of q = 2 allows us to
reduce the above formulas to the form

F 2
XY (s) = 1

2Ms

2Ms−1∑
ν=0

f 2
XY (s,ν), (7)

F 2
ZZ(s) = 1

2Ms

2Ms−1∑
ν=0

f 2
ZZ(s,ν), (8)

in which all the boxes contribute to the sums with the same
weights. The scale dependence of [Fq

XY (s)]
1/q

and [Fq

ZZ(s)]
1/q

can indicate a fractal character of the signals if it is power-law,
but here we allow for any form of this dependence.

The q-dependent detrended cross-correlation coefficient
ρq(s) is defined by means of the qth-order fluctuation functions
[43]:

ρq(s) = F
q

XY (s)√
F

q

XX(s)Fq

YY (s)
. (9)

For q = 2 Eq. (9) reduces to the definition of ρDCCA [37].
The filtering ability of ρq(s) manifests itself in such a way
that the more deviated from the value q = 2 the exponent q

is, the more extreme fluctuations in the corresponding boxes
contribute to the coefficient ρq(s). For q � 0, values of ρq fit
within the range

−1 � ρq � 1. (10)

As in the case of the Pearson and the ρDCCA coefficients, ρq = 1
indicates a perfect correlation, ρq = 0 indicates independent
signals, and ρq = −1 indicates a perfect anticorrelation.
However, for q < 0 the coefficient ρq is not bound and for
independent or weakly correlated signals it may happen that
|ρq | > 1. In this case, an inverted value of ρq is considered,
which maps the coefficient back into the [−1,1] interval [43].

In a multivariate analysis of N parallel signals, one has
to deal with N (N − 1)/2 different coefficients ρq for each
considered box size (time scale) s. It is thus convenient to put
them in a matrix of size N × N , which can be considered a
matrix defining an N -node weighted network. Similar to the
Pearson correlation coefficient, ρq is not a metric, because
it does not fulfill the triangle inequality. In the standard
procedure of MST construction, a matrix of the correlation
coefficients is transformed into a (metric) distance matrix
based on the formula dXY = √

2(1 − cXY ), where cXY is the
Pearson coefficient calculated for the signals X and Y [3].
However, an analogous transformation using ρq ,

d
(q)
XY =

√
2
(
1 − ρ

(XY )
q

)
, (11)

might not produce a metric in general.
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TABLE I. Number of exceptions from the triangle inequality
for 161 700 triples of the d

(q)
XY (s) distances calculated for the 100

uncorrelated time series of the ARFIMA process.

q

s −4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0

20 0 3 2626 0 27 0 0 0 0
200 0 2 1984 80 0 0 0 0 0
2000 0 49 2160 5162 0 0 0 0 0
20 000 52 252 1955 9089 0 0 0 0 0

In order to test numerically whether the triangle inequality
d

(q)
XY (s) + d

(q)
YZ(s) � d

(q)
XZ(s) is valid for any triple of the signals

X,Y,Z, we generate a set of N = 100 signals of length
T = 106, being the autoregressive fractional moving average
(ARFIMA) processes [46]. Next, for a given s and q we calcu-
late ρq for each pair of signals (4950 pairs total) and transform
its value into the distance d

(q)
XY . Then the inequality is tested for

all possible distance triples (161 700 total) and the exceptions
are counted. The same sequence of steps is repeated for
different values of q (−10 � q � 10). The results for sample
values of s and q are listed in Table I. For q � 1, the distances
always fulfill the inequality, which means that d (q)

XY behaves like
a metric. However, for q � 0 exceptions do occur, indicating
that the distance cannot be considered a metric. We also applied
the same test to randomized empirical data from a stock market
(logarithmic price fluctuations of the 100 largest American
companies, the same data set that is studied in Sec. III)
and found qualitatively similar results: no violation of the
triangle inequality for q � 1 and frequent violations for q � 0.
Therefore, our further analysis is restricted to positive q’s.
This, however, does not limit the robustness of our approach
as, in many empirical systems, the small fluctuations that are
selected by the negative values of q are associated with noise.

Now we are prepared to define a q-dependent MST by using
the q distance given by Eq. (11). qMST can be constructed by
applying Kruskal’s algorithm to d

(q)
XY . This algorithm consists

of two essential steps: (i) sorting the elements of a distance
matrix from the smallest to the largest and (ii) going from the
smallest distances and connecting not yet connected nodes to
the closest ones. After connecting all the nodes, the resulting
tree consists of N nodes and N − 1 weighted edges. It is
so optimized that the sum of all the distances d

(q)
XY is the

minimum possible. The qMSTs inherit the properties of ρq , so
by choosing a particular value of q, the related tree expresses
only those correlations that are present among the fluctuations
of a selected size: large ones for q � 2 and small ones for
q < 2. However, even though for q = 2 this procedure of
constructing the detrended MSTs gives the same weight to all
fluctuation amplitudes, one has to remember that even for this
value of q it differs substantially from the standard procedure,
which does not involve detrending.

III. qMSTs FOR EMPIRICAL DATA

In order to present an example of a qMST analysis, we
consider a set of time series representing logarithmic stock-

FIG. 1. A q-dependent minimum spanning tree example (s = 20,
q = 5.0). The symbol size is proportional to the market capitalization
of a stock on December 31, 1999, while different sectors are denoted
by different colors and different subsectors within the same sector
are denoted by shades of a particular color: technology (from light
red to dark brown), services (from light blue to dark blue), energy
(from light magenta to dark magenta), financial (from light green to
dark green and olive), consumer noncyclical (from cyan to turquoise),
basic materials (from yellow to greenish yellow), health care (orange
and light brown), consumer cyclical (violet), capital goods (seagreen),
utilities (violetred), and conglomerates (white). The edge thickness is
proportional to ρq (the thicker it is, the more correlated the stocks are).
For node captions see file Figure1.png in the Supplemental Material
[48].

price fluctuations (returns),

rX(t,�t)) = ln pX(t + �t) − ln pX(t), (12)

for the N = 100 largest American companies traded on the
New York Stock Exchange over the years 1998–1999 [47]. We
choose a sampling interval of �t = 1 min to obtain sufficiently
long time series (T = 203, 190). We calculate ρq(s) for all
possible pairs of stocks; a few time scales s—20, 60, and
390 min (a trading day), 1950 min (a trading week), and
7800 min (approx. a trading month); and a few values of q

from q = 1.0 to q = 6.0 (although we use only integer values,
arbitrary positive real values may also be used). Next, we derive
the metric distances d

(q)
XY (s) and apply Kruskal’s algorithm to

obtain a minimum spanning tree for each value of s and q (36
trees total).

Figure 1 displays the qMST for the shortest time scale s =
20 and for the sample exponent q = 5.0. Different industrial
sectors and subsectors are distinguished by different colors
and color shades, respectively, and the node symbols’ size is
proportional to the market capitalizaton of the corresponding
company. The higher is the calculated ρ(XY )

q , the thicker is
the edge connecting the nodes X and Y . One can see that
the tree topology is somewhere between a centralized and a
distributed network. There are hubs with a degree up to k = 9
and a number of peripheral nodes with k = 1, but the shortest
path length is rather high: L ≈ 7.9. The edge weights are also
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TABLE II. Thresholds τρ = ρ̄q + 2σρq
representing the ρq (s)

values above which we reject the null hypothesis of random
correlations.

q

s 1.0 2.0 3.0 4.0 5.0 6.0

20 0.0155 0.0114 0.0179 0.0235 0.0248 0.0255
60 0.0261 0.0184 0.0223 0.0296 0.0316 0.0309
390 0.0733 0.0507 0.0486 0.0607 0.0703 0.0740
1950 0.1493 0.1032 0.0841 0.0837 0.0905 0.0971
7800 0.3129 0.2183 0.1840 0.1842 0.1948 0.2029

rather low, with a number of edges denoted by lines as thin
as possible. Several industrial sectors are visible as clusters,
but a number of nodes are connected to nodes from different
sectors. This suggests that there is a significant randomness in
the distribution of the nodes across this tree. The question
follows immediately whether these effects are genuine or,
rather, statistically insignificant and pertinent to noise.

We therefore have to estimate the statistical significance
of the edge weights, at least approximately. Since our data
are strongly leptokurtic [49–52], we define the null hypothesis
stating that the ρq(s) values can fully be explained by the
cross-correlations between random processes with the same
probability density function (p.d.f.) as the empirical data under
study. To test the results against this hypothesis, we shuffle all
the time series 50 times and create 50 independent sets of
surrogate data. Then for each set we derive all possible values
of ρ(XY )

q (s) for the same choices of s and q as we did before
and identify the maximum values of ρq in each case. Next,
for a given s and q, we collect all the maximum coefficients
and calculate their mean ρ̄q and standard deviation σρ . Finally,
we assume Gaussianity of the p.d.f. and set a threshold at
τρ = ρ̄q + 2σρ . If for some X, Y we obtain ρ(XY )

q (s) � τρ , we
consider the null hypothesis to be rejected in this case and not
rejected otherwise. The specific thresholds for different values
of s and q arelisted in Table II.

The so-filtered qMST graphs for s = 20 are shown in Fig. 2
ordered by increasing q. Three observations can be drawn from
these pictures. First, the tree transforms itself from a highly
centralized structure (L ≈ 2.2) with a dominant hub (General
Electric) of degree k = 87 and a secondary hub (Cisco) with
k = 10 for q = 1.0 to a distributed, randomlike structure
(L ≈ 8.2) with a few regional hubs with k > 4: Yahoo!
(k = 5), Bank of New York (k = 6), Morgan Stanley (k = 5),
and Chase Manhattan (k = 8) for q = 6.0. This topologic
transition occurs gradually with increasing q. Filtering out
the insignificant edges has no effect at q = 1.0 as the tree
consists of all the 100 nodes, but the effect is striking at
q = 6.0, where the structure is disconnected, with only 50
nodes forming the main component (the main tree), while the
remaining nodes either form three smaller components, one
with n = 6 nodes and two with n = 2 nodes, or do not form
any connections (40 nodes). From the market perspective, a
centralized structure with high edge weights corresponds to a
global coupling among the stocks that causes the stock prices
to move collectively. Their evolution can thus be described
by a one-factor model. In a correlation matrix analysis this

FIG. 2. The q-dependent minimum spanning trees formed for
s = 20 and for a few values of q from 1.0 to 6.0 (from left to
right and from top to bottom). Trees have been filtered to remove
statistically insignificant edges (ρq < τρ) and nodes with degree
k = 0. (Differences in the sizes of the node symbols between
the trees are artifacts.) For node captions see file Figure2.png in
the Supplemental Material [48].

factor manifests itself as the distant largest eigenvalue and
it is often called the market factor. On the other hand, a
distributed topology with a few hubs of a small degree
and many disconnected nodes indicates that the market can
be decomposed into clusters often related to the industrial
sectors and that many stocks have independent dynamics. The
eigenvalue spectrum of a correlation matrix would show a few
nonrandom eigenvalues and a bulk of random ones in this case
[26,34,53–55].

The second observation is that, for the 20-min time scale,
the periods (the MFCCA boxes) characterized by fluctuations
of moderate amplitude are universally correlated among the
stocks, while the periods with the largest fluctuations are
correlated only within small groups of stocks and typically
they are uncorrelated. This can be understood if one realizes
that it needs time to develop large movements of the whole
market, and 20 min is too short to accomplish this.

Finally, the third observation from Fig. 2 is that some node
clusters notably overlap with the industrial sectors, especially
for 3.0 � q � 5.0. It is the most evident for the IT cluster
(red; this cluster is seen even for q = 1.0), the financial
cluster (green), and the basic materials cluster (magenta).
For the remaining sectors, their stocks are distributed across
the qMST for q � 3.0. It is also noteworthy that since the
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FIG. 3. The q-dependent minimum spanning trees created for the
hourly (s = 60 min; left) and daily (s = 390 min; right) time scales
and for q = 2.0 (top), q = 4.0 (middle), and q = 6.0 (bottom). Trees
were filtered to remove statistically insignificant edges (ρq < τρ) and
nodes with degree k = 0. For node captions see file Figure3.png in
the Supplemental Material [48].

edges shown on the filtered qMSTs are statistically significant,
any restructuring of the connections while changing q can be
related to uncovering some previously “hidden” correlations.

These results can be compared with those obtained for other
time scales: s = 60 min and s = 390 min (Fig. 3) as well as
for s = 1950 min. and s = 7800 min. (Fig. 4). For any given
s, if we augment q, the main hub (the General Electric stock)
shown at q = 2.0 loses its centrality and typically becomes
a peripheral one. The other, less important hubs can either
preserve their degree or lose it as well, which depends on s

or individually on a node. An additional general rule is that
the shorter the time scale is, the more dramatic the changes
in topology observed with increasing q. The edge weights
gradually become higher with increasing s (the edges become
thicker) for all the exponents q, which means that the average
correlation strength among the stock pairs also increases. This
remains in perfect agreement with the results obtained earlier
with other means, suggesting the existence of the so-called
Epps effect [56–58].

It is interesting to observe the changes in tree topology
for a fixed q and variable s. For example, for q = 2.0 there

FIG. 4. The q-dependent minimum spanning trees created for
the weekly (s = 1950 min; left) and monthly (s = 7800 min; right)
time scales and for q = 2.0 (top), q = 4.0 (middle), and q = 6.0
(bottom). Trees were filtered to remove statistically insignificant
edges (ρq < τρ) and nodes with degree k = 0. For node captions
see file Figure4.png in the Supplemental Material [48].

is a clear, gradual transition from a centralized one-factor
structure for s = 20 min (Fig. 2, top right) to an almost-perfect
sectorial structure for the monthly scale (Fig. 4, top right),
indicating that cross-correlations between the stocks build up
progressively, from the most general marketwide ones at short
time scales to more specific intraindustry ones at long time
scales.

From the perspective of practical application of the qMST
graphs, it is important to note that, since their topology depends
on q, the correlation structure of the market is different if
one considers different fluctuation amplitudes. That is, with
the help of such graphs one can quickly realize what this
structure looks like in volatile periods and what it looks
like in more typical or quiet periods. They can allow one
to fine-tune the investment portfolios, for instance, in order
to avoid a composition of the stocks that tend to be more
strongly correlated during volatile times, which increases the
portfolio’s risk and which can remain unnoticed if one uses
standard measures. For example, in the considered interval
of time (1998–1999) for q = 2.0 the Corning shares were
the most closely related to the General Electric ones, while
for larger q’s it occurs that they were even more strongly
related to the AIG shares, so that a simultaneous investment in
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FIG. 5. The q-dependent minimum spanning trees (�t = 1 min,
s = 20 min) created for two data sets with different statistical
properties: set 1 (large fluctuations randomized, small and medium
ones preserved), on the left; and set 2 (small and medium fluctuations
randomized, large fluctuations preserved), on the right. The respective
qMSTs for different values of q are compared: q = 2.0 (top;
ce = 51 edges common to both sets), q = 1.0 (middle; ce = 21), and
q = 4.0 (bottom; ce = 0). Trees were filtered to remove statistically
insignificant edges (ρq < τρ) and nodes with degree k = 0. For node
captions see file Figure5.png in the Supplemental Material [48].

both these stocks was in fact more hazardous than might have
been expected from an analysis of the MST for q = 2.0 or an
analysis using the standard MST approach.

Another situation, in which generalized qMST graphs
are preferred over q = 2 MSTs, is illustrated in Fig. 5.
We consider two data sets that differ from each other in
their statistical properties. Both data sets consist of signals
that were obtained from the original time series of returns
(�t = 1 min, s = 20 min) by partial randomization based on
amplitude. Each signal was randomized independently. Set 1
comprises signals in which large fluctuations [r(t) > 1.8σ ]
were shuffled among themselves, while small and medium
fluctuations [r(t) � 1.8σ ] were preserved as they occurred
in the signals (σ stands for standard deviation). Set 2 was
produced in a similar manner, but here the small and medium
fluctuations (r(t) < 1.2σ ) were shuffled among themselves,
while large ones [r(t) � 1.2σ ] were preserved. Such ran-
domization destroys all the correlations carried by the fluc-
tuations of the respective amplitudes. Thus, only correlations
within the range (1.2σ,1.8σ ) remained common to both sets,
while correlations outside that range were different in each
set.

Despite that such differences exist, the qMSTs for q = 2
reveal comparable topologies for both data sets as indicated
in the top panels in Fig. 5. To express this quantitatively, we
calculated how many edges are common to both trees (by a
common edge we mean an edge connecting the same pair of
nodes in both cases): the respective number is ce = 51 for
q = 2. This indicates that the q = 2 MSTs are not sufficiently
sensitive to differentiate between the sets. In contrast, the
differences appear more significant for both q = 1 (middle
panels; ce = 21 common edges) and q = 4 (bottom panels;
no common edges). In the latter case, the discrepancy is
particularly striking as the tree for set 1 is essentially random
and virtually disappears when tested against a null hypothesis
of no genuine correlations, while almost the whole tree
structure for set 2 is preserved as being statistically significant.
In fact, we expected this result, because for q = 4 only
those parts of the signals are taken into consideration that
comprise many high-amplitude fluctuations in any pair of the
signals, and after reshuffling, the large fluctuations become
decorrelated in set 1, while they are still correlated in set 2.
Therefore, in this situation, applying the generalized qMSTs
proved advantageous since it allowed us to differentiate
between the analyzed data sets.

Topological variability of the qMST graphs for a range of
q may also be considered a property of the data, expressing
stability of the correlation structure at different fluctuation am-
plitudes. The more static the topology of qMSTs for different
q’s is, the broader range of fluctuations is correlated in the same
manner. Figure 6 presents such an application of the qMST
graphs. Trees calculated for the original set of time series of
returns (top panels) are compared with trees calculated for
time series of the Gaussian returns (middle panels) and time
series of the return signs (bottom panels). While the original
returns have a p.d.f. with the power-law tails with a scaling
index α ≈ −3, the Gaussian returns were obtained from the
original ones by suppressing their amplitudes in such a way
that their p.d.f. became Gaussian, while the amplitude ranks of
the fluctuations remained preserved [59]. The sign series were
obtained by replacing the returns with their signs, i.e., r ′(t) = 1
if r(t) > 0, r ′(t) = −1 if r(t) < 0, and r ′(t) = 0 otherwise.
For a larger effect, in Fig. 6 we compare qMSTs at q = 1
(left) and q = 6 (right). As the most variable (i.e., different
for different stock pairs) correlations are observed in the
original data for the largest fluctuations (only ce = 2 edges are
common to q = 1 and q = 6), suppressing these fluctuations
either by Gaussianizing their p.d.f. or by considering only
their signs leads to a more uniform strength of the correlations
(ce = 71 and ce = 65 common edges, respectively). Thus, the
qMSTs presented in the top panels in Fig. 6 have much more
heterogeneous edge weights than their counterparts shown in
the middle and bottom panels.

In this context, one can view the parameter q in qMST
in the same way as it is commonly viewed in studies using
the Rényi entropy or in multifractal analysis, where one
computes a spectrum of the generalized fractal dimensions
Dq , the generalized Hurst exponents Hq , or the multifractal
spectrum τ (q) [60]. By applying different values of q, one
selects certain portions of the analyzed data and acquires some
insight into their properties. Here, by varying q, we obtain a
family of trees describing correlations between different parts
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FIG. 6. The q-dependent minimum spanning trees created for
three data sets (N = 100): the original time series of stock returns
(�t = 1 min, s = 20 min; top), the time series of Gaussianized
returns (middle), and the time series of return signs (bottom). Two
values of q are used—q = 1.0 (left) and q = 6.0 (right)—and the
number of edges common to the respective qMSTs is computed:
ce = 2 (original returns), ce = 71 (Gaussian returns), and ce = 65
(return signs). Trees were filtered to remove statistically insignificant
edges (ρq < τρ) and nodes with degree k = 0. For node captions see
file Figure6.png in the Supplemental Material [48].

of signals based on standard deviations of their fluctuations.
This makes the qMST graphs a possible method of quantifying
the heterogeneity of correlations in a way resembling that in
which the singularity spectra f (α) quantify the richness of
multifractal structures.

For the sake of comparison, we also present the MSTs
calculated in accordance with their standard definition, i.e., by
using the Pearson correlation coefficients [3] for nondetrended
time series of returns. A straightforward choice of the data
sampling interval could be the same �t = 1 min as before,
but one has to realize that there is not any direct counterpart
of the temporal scale s in this case. The difference is that
in DFA-related approaches, the temporal scale is determined
by a window size, in which detrending is performed and in
which the variance of the residual signal is calculated, while
in the standard approach the time scale is associated directly
with the sampling interval �t . Therefore, here we have to
check different values of �t—1, 20, 60, and 390 min—and
to construct one MST for each of them. Figure 7 shows the
resulting trees. As usual in such analyses, by increasing the
time scale, we obtain more and more visible clusters that
may be identified with the market sectors. By comparing the
present trees with the ones in Figs. 2, 3, and 4, it is evident

FIG. 7. Minimum spanning trees constructed in the standard way
by using the Pearson correlation coefficient for time series of returns
with �t = 1 min (top left), 20 min (top right), 60 min (bottom left),
and 390 min (bottom right). For node captions see file Figure7.png
in the Supplemental Material [48].

that they resemble more the centralized trees at 1.0 � q �
3.0 than the trees at q � 4.0, which were significantly less
centralized.

In order to compare the results of both methods in a quanti-
tative manner, we prefer to consider the matrices consisting of
all the respective coefficients for all N (N − 1)/2 = 4950 pairs
of stocks instead of considering only the minimal spanning
trees. This is because by taking all possible coefficients into
consideration, we will increase the statistical significance of
our comparison. Therefore, here we take the values of ρq and
the Pearson correlation coefficients c for all pairs of signals
and investigate how similar the sets are for different choices
of the parameters �t , s, and q. For each choice, we order
both coefficients into vectors in such a way that, first, we
take N − 1 coefficients (of the same type) involving a stock
X1, then N − 2 coefficients involving a stock X2, then X − 3
coefficients involving a stock X3, and so on, until, finally, the
coefficient for stocks XN−1 and XN .

By proceeding in this way, we eventually obtain two
vectors, c(�t) and ρq(s), for each �t , q, and s. [Actually,
the coefficient ρq(s) also depends on some sampling time �t ′,
but as we do not change the latter and consequently use the
data sampled at �t ′ = 1 min, we neglect ρq(s) dependence on
�t ′.] Then we calculate the normalized scalar product of these
vectors,

P (�t,s,q) =
∑4950

m=1 cm(�t)ρ(m)
q (s)

|c(�t)||ρq(s)| , (13)

−1 � P (�t,s,q) � 1,

where the vector components labeled with m correspond
to unique stock pairs (m = 1, . . . ,4950). We prefer the
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TABLE III. Values of the normalized scalar product for 4 Pearson-
coefficient-based (�t = 1, 20, 60, 390 min) and 24 ρq -based (s = 20,
60, 390, 7800 min, q = 1.0, 2.0, 3.0, 4.0, 5.0, 6.0) weighted networks
with nodes representing the 100 largest companies. Values greater
than 0.950 are distinguished in boldface.

q

�t s 1.0 2.0 3.0 4.0 5.0 6.0

1 20 0.97 0.98 0.92 0.61 0.33 0.20
60 0.96 0.96 0.95 0.86 0.70 0.53

390 0.95 0.95 0.94 0.90 0.84 0.77
7800 0.89 0.87 0.83 0.77 0.71 0.66

20 20 0.96 0.95 0.86 0.53 0.28 0.17
60 0.97 0.97 0.95 0.84 0.68 0.52

390 0.98 0.98 0.96 0.92 0.86 0.79
7800 0.94 0.92 0.88 0.82 0.77 0.71

60 20 0.95 0.95 0.86 0.55 0.29 0.19
60 0.97 0.97 0.95 0.85 0.69 0.53

390 0.98 0.99 0.98 0.94 0.88 0.81
7800 0.97 0.96 0.93 0.89 0.83 0.78

390 20 0.91 0.90 0.83 0.53 0.28 0.19
60 0.93 0.93 0.91 0.83 0.70 0.53

390 0.95 0.95 0.95 0.92 0.86 0.79
7800 0.98 0.98 0.96 0.91 0.86 0.81

normalized scalar product to the Pearson correlation coeffi-
cient here, because we do not want the matrix elements cXiXj

and ρ
(XiXj )
q to be altered by the normalization.

The results are listed in Table III. They show that the two
methods coincide most for 1 � q � 2 (or sometimes up to
q = 3) and for s � �t (but not for s � �t), exactly as one
would expect on formal grounds. In this case qMSTs offer
similar information as the standard MST. In contrast, if s is of
the order of an hour or less, at q � 4 the presently introduced
method provides us with information that cannot be found
with the standard approach. This means that in the latter case,
by using detrended MSTs of order q, we obtain significantly
more extensive information about the correlation structure of
the data under study. This constitutes a strong quantitative
argument in favor of the new method.

IV. CONCLUSIONS

In this work we have introduced a family of q-dependent
minimum spanning trees that are able to visualize the cross-
correlations that are restricted to a specific range of fluctuation
amplitudes. These trees are a generalization of the detrended

MSTs proposed in [29]. They are defined on the basis of
the q-dependent detrended cross-correlation coefficient ρq

by transforming it to a metric distance. We applied the
technique of qMST graphs to visualize the correlation structure
of the American stock market and found that by changing
the fluctuation amplitudes and time scales focused on, one
observes substantial changes in the topology of the graphs.
We identified a few previously known features of the financial
data like the Epps effect, the division of the market into
industrial sectors, the presence of the so-called market factor,
and the privileged role of some specific stocks (like General
Electric and Cisco) in the market structure. We showed that
the trees for small values of q (e.g., q � 3) exhibit clusters
that are strongly related to the industrial sectors of the market,
especially for longer temporal scales s, while for larger values
of this parameter (q � 4) this industrial structure becomes less
and less evident. This thus indicates that what binds these
industrial clusters are the typical fluctuations of moderate
amplitude, while the largest fluctuations are more likely to
synchronize among stocks that do not necessarily belong to
the same industries.

The detrended qMSTs can complement the coefficient ρq

in disentangling “hidden” cross-correlations, which cannot be
observed either in analyses based on the measures defined
for q = 2.0, like ρDCCA and the related detrended MSTs, or
in analyses using the standard minimal spanning trees. In
principle, the role of the MST is to decrease significantly
the number of edges in a network by focusing on the most
important ones. By considering a family of such trees with
varying q’s, the number of edges remains the same in each
tree but the routes of connections among nodes may change
with different choices of q. Changes indicate heterogeneity
of cross-correlations, like, for instance, their varying strength
for different fluctuation amplitudes in the time series, while
independence of q provides evidence of homogeneity of cross-
correlations. Our generalization of the MST concept to qMST
indicates the direction of studying and quantifying such effects.

In order to illustrate how advantageous the qMST approach
is, we applied it to two data sets with different, known statistical
properties and documented that the trees representing q = 2
performed poorly in distinguishing between these sets, unlike
the generalized trees with q �= 2, whose performance was
satisfactory. We thus showed that qMSTs, if constructed for
different choices of q, are capable, as expected, of detecting
diversity of correlations. The topological variability of the
trees for different q’s is related to how diverse the correlations
are. Therefore, we envisage that both ρq and qMSTs will
prove helpful in portfolio analysis and, of course, also in many
other areas where cross-correlations are to be extracted from
nonstationary time series.
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