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Scale-free networks emerging from multifractal time series
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Methods connecting dynamical systems and graph theory have attracted increasing interest in the past few
years, with applications ranging from a detailed comparison of different kinds of dynamics to the characterization
of empirical data. Here we investigate the effects of the (multi)fractal properties of a signal, common in time series
arising from chaotic dynamics or strange attractors, on the topology of a suitably projected network. Relying
on the box-counting formalism, we map boxes into the nodes of a network and establish analytic expressions
connecting the natural measure of a box with its degree in the graph representation. We single out the conditions
yielding to the emergence of a scale-free topology and validate our findings with extensive numerical simulations.
We finally present a numerical analysis on the properties of weighted and directed network projections.
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I. INTRODUCTION

Network science [1] has emerged in recent decades as
a transverse interpretative framework for understanding the
structure and phenomena that takes place on them, ranging
from financial crises and traffic congestion to epidemic and
social influence spreading [2–4].

In the realm of dynamical systems [5], network techniques
have been applied to the analysis of nonlinear time series, with
a particular focus on characterizing chaotic dynamics [6]. The
main idea of this methodology is to project the information
of a time series into the topology of a network. The key
element of this approach resides in the identification of nodes
and links in the network from the time series information.
Several alternatives have been proposed in this context [7].
Thus, Zhang and Small [8] consider cycles of a pseudoperiodic
time series as the nodes of a network, which are connected
by links depending on the similarity between cycles. Lacasa
et al. [9,10], on the other hand, build on the concept of visibility
graphs, where nodes correspond to series data points and
two nodes are connected if a straight line can be established
between them without intersection with any intermediate data
height.

Another general approach is based on encoding topological
information from the reconstructed phase space of a time
series into a proximity network. In these networks, nodes
represent segments of time series or vectors in the related
reconstructed phase space, and links depend on a specific
criterion determining adjacency in the phase space. Cycle
networks [11], correlation networks [12,13], and recurrence
networks [14–17] are typical examples of proximity networks.
Finally, the related class of transition networks [18–21]
encompasses different models for mapping time series into
networks, in which the values on the time signal are mapped
into a finite number of states (regions in the phase space
of the series), representing the nodes, which are connected
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if the signal transits from one state to another one. This
transformation procedure preserves the temporal information
of the dynamics in the network, is stable to noise affecting real
time series, and can account for the fundamental structure of
the related attractors [21].

Using this kind of network projections, several aspects of
dynamical systems have been cast in terms of topological
network properties. Here we will focus in particular on
the effects that the fractal and multifractal properties of a
time signal have on the topology of representative classes
of projected networks. Many time signals, particularly those
arising from a chaotic or strange attractor [6], have a fractal
structure, characterized by a statistically self-similar pattern
in the phase space. Moreover, they can also show multifractal
properties, described by a strongly heterogeneous probability
of visiting different neighborhoods of the phase space [22–25].
Using as a simple example an undirected binary transition
network representation [19,26], framed within a box-counting
formalism [23] in which each box corresponds to a vertex,
we find analytic expressions tying the visitation probability
of a box with its associated degree. From these relations we
obtain the conditions under which an undirected projected
network grows with a scale-free topology [27], characterized
by a degree distribution of the form P (k) ∼ k−γ . Our results
highlight the correspondence between an attractor’s structure
and the topology of the associated projected network and relate
the possible origin of a heterogeneous scale-free topology
with the heterogeneous and hierarchical visitation probability
characterizing multifractal attractors.

The present paper is organized as follows: In Sec. II, we
briefly summarize the multifractal formalism for chaotic time
series and attractors. In Sec. III, we present an undirected
transition network mapping for general time series, based on
the box-counting algorithm [19]. In Sec. IV, we relate the
topological properties of the associated undirected networks
with the multifractal properties of the original time series.
This relation is directly mediated by the natural measure of
the series, defined as the probability that the time sequence
visits a given box in a partition of the topological support of
the series. Numerical checks of our theoretical predictions are
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detailed in Sec. V. In Secs. VI and VII, we consider and study
numerically the extension of the network representation in
terms of weighted and directed networks, respectively. Finally,
we present our conclusions in Sec. VIII.

II. MULTIFRACTAL TIME SIGNALS

For time signals arising from strange (chaotic) attractors,
it is common that different regions of the phase space are
differently visited, and chaotic orbits spend most of their
time in a small region of the geometrical support underneath
the chaotic attractor itself. This heterogeneity is at the basis
of the so-called multifractal structure of the strange attractor,
which can be mathematically captured by the formalism
presented below [22,24].

Let us consider a real-time signal, or a d-dimensional
chaotic attractor, given by the normalized sequence of points
G = {�xt : �xt ∈ [0,1]d ,t = 1,2, . . . n}, where the index t repre-
sents either time or the order in the sequence of points that
generate the attractor (e.g., the index of the iteration in an
iterated map), while n � 1 is the number of points in the
signal. We consider a partition of the set [0,1]d in M boxes of
length ε = M−1/d . Box are labeled by the indexes i, with 1 �
i � M . Let us associate to each point �xt = {x(1)

t ,x
(2)
t , . . . ,x

(d)
t }

in the sequence an integer index

it = 1 +
d∑

r=1

⌊
x

(r)
t L

⌋
Lr−1 (1)

in the range 1 � it � M , where L = M1/d , and �z� is the
floor function. In this sense, the signal or attractor can be
interpreted as visiting the it th box in the partition at time t . In
heterogeneous fractals, not all the boxes will be equally visited.
In general, during the n steps of the signal, the ith box will be
visited a number of times ni , and the total number of boxes
visited at least once will be N (ε). This quantity coincides with
the number of boxes of length ε needed to cover the fractal
set, and thus we can define the box or capacity dimension of
the attractor [23], D0, by the relation

N (ε) ∼ ε−D0 . (2)

Let us define the probability pi(ε) = limn→∞ ni/n, termed
the natural measure, as the probability that the chaotic map
visits the ith box of the N (ε) available during an infinitely
long orbit. For an homogeneous structure in d dimensions,
pi(ε) ∼ εd , while in the case of a uniform fractal of dimension
D0 � d, pi(ε) ∼ εD0 . In more complex situations, however,
the attractor exhibits a nonuniform fractal distribution, and
we assume a general form for the natural measure pi(ε) ∼
εαi , where the exponent αi , taking values in the interval
[αmin,αmax], measures the strength of the local singularity of
the measure at box i. In general, there will be many boxes
with the same value of α, such that their number scales as
Nα(ε) ∼ ε−f (α). The function f (α), called the multifractal
spectrum of the measure, defines the fractal dimension of
the set of boxes with the given value α, and is in general
a convex function with a single maximum. An equivalent,
and numerically simpler, description can be obtained from the

generalized dimensions Dq , defined as [22]

Dq = 1

q − 1
lim
ε→0

log
∑

i pi(ε)q

log ε
, (3)

which, for q � 0, fulfill D0 � Dq � D∞ ≡ αmin. For a uni-
form measure Dq = const. = D0. For multifractal measures,
Dq is a decreasing function of q, which is related with
the multifractal spectrum (α,f (α)) by means of a Legendre
transformation [22], defining a parametric exponent α(q) that
fulfills the equations

α(q) = d

dq
(q − 1)Dq, (4)

f (α(q)) = qα(q) + (1 − q)Dq. (5)

Numerically, the generalized dimensions can be estimated
from Eq. (3), by noticing that, for finite ε,∑

i

pi(ε) ∼ ε(q−1)Dq , (6)

allowing Dq to be determined from a linear regression of∑
i pi(ε) for decreasing values of ε (increasing M) in a log-log

plot.

III. NETWORK MAPPING

In order to construct an undirected unweighted tran-
sition network representation, we follow the approach in
Refs. [19,26] and associate a (virtual) vertex to each box
1 � i � M in the partition of the chaotic attractor in phase
space. Actual vertices in the network are given by the set of
boxes that have been visited at least once by the signal, with a
size N (ε). Edges in the network are established by associating
an undirected connection between vertices i and i ′ if the signal
jumps at least once between boxes i and i ′ in two consecutive
time steps, i.e., i ≡ it and i ′ ≡ it+1 or i ′ ≡ it and i ≡ it+1

during its orbit.
The resulting projected networks, which are characterized

by the coarse-grained scale ε, are connected by construction,
and preserve temporal information of the generator of the
signal. A completely random, stochastic signal will lead to
a fully connected network; on the other hand, for a limit cycle
or periodic attractor, the projected network will be ring, with a
number of nodes equal to the period of the cycle. The former
case corresponds to D0 = d, and the latter to D0 = 1.

IV. RELATING TOPOLOGY WITH MULTIFRACTALITY

In the case of a multifractal time series, the topology of
the associated undirected transition network described above,
in particular its degree distribution, can be related to the
generalized dimensions Dq . We will consider in particular
the degree distribution Pε(k) of a projected network with
a coarse-graining level ε, defined as the probability that a
randomly chosen node has degree k, i.e., it is connected to k

other nodes. To make explicit this relation, we observe that
every node (box) i, will be characterized by a number of visits
ni and a degree ki . In the limit n → ∞, we assume that the
relative number of visits, i.e., the natural measure pi(ε), and
the degree of a node are stable quantities. The corresponding
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degree distribution will thus depend only on the phase space
discretization ε. On average, the two quantities pi(ε) and ki

will be related, since obviously the more times a box is visited,
the larger is expected to be the degree of the associated node.
We can thus assume a functional relation between these two
averaged quantities, valid for sufficiently large ki and pi , of
the form

pi(ε) � Gε(ki), (7)

where Gε(z) is an increasing function of z. The function Gε(ki)
depends in general on ε. Indeed, from the normalization of the
natural measure, Eq. (7) implies that

∑
i

Gε(ki) ≡ N (ε)
∑

k

Pε(k)Gε(k) = N (ε)〈Gε(k)〉 = 1,

where we have defined 〈F (k)〉 = ∑
k Pε(k)F (k). From here,

we have

〈Gε(k)〉 = N (ε)−1 ∼ εD0 . (8)

We make the assumption, to be validated numerically later on,
that the ε dependence of the function Gε(k) resides exclusively
in a multiplicative prefactor, i.e., Gε(k) = a(ε)g(k). From
Eq. (8), we have that 〈Gε(k)〉 = a(ε)〈g(k)〉 ∼ εD0 . We make
the additional assumption that the average of g(k), 〈g(k)〉, is a
constant, independent of ε. From here, we obtain the relation

pi(ε) � εD0 g(ki). (9)

This relation implies that we can express the multifractal
properties of the attractor in terms of topological properties
of the network. In fact, from Eq. (9), we have

∑
i

pi(ε)q �
∑

i

[εD0g(k)]
q � εqD0N (ε)

∑
k

Pε(k)g(k)q

� ε(q−1)D0〈g(k)q〉, (10)

where we have used N (ε) ∼ ε−D0 . From Eq. (6) we have
also

∑
i pi(ε)q ∼ ε(q−1)Dq . Combining this with Eq. (10), we

obtain the relation linking network and multifractal properties,
namely,

〈g(k)q〉 ∼ ε−(q−1)(D0−Dq ). (11)

For a homogeneous fractal set, Dq = D0 ∀q, and 〈g(k)q〉 =
const. On the other hand, for a multifractal strange attractor,
since Dq < D0 for q > 0, we have that the moments 〈g(k)q〉,
with q > 1, diverge as the number of boxes in the partition
increases, i.e., as the network size grows. This observation
allows to extract conclusions on the functional form of the
degree distribution, which will depend on the particular growth
law g(k). We will consider analytically tractable forms in the
following section. To avoid complications in the development,
we will further assume in our analysis that the degree
distribution of the projected network is stable, meaning that
the effect of ε consists essentially in imposing an upper degree
cutoff kc to a functional form P (k) independent of ε.

A. Exponential growth

Let us consider first the case of an exponential (faster than
algebraic) growth of the number of visits in a box with the

associated node degree, i.e.,

g(k) ∼ eβk, (12)

where β > 0. The fact that 〈eβk〉 is constant and 〈eβqk〉
diverges for q > 1 is compatible with a degree distribution
that shows, at large values of k, the asymptotic behavior
P (k) ∼ e−αk , with α > β, that is, an exponentially bounded
degree distribution. Assuming a stable degree distribution, for
a nonzero ε the divergence of the exponential moments 〈eβqk〉
will be reflected in a dependence on the network size N (ε),
modulated by the largest degree in the network, or degree
cutoff kc(ε) [28]. To estimate this value, we observe that, from
Eq. (9), ki ∼ ln [pi(ε)/εD0 ]

1/β ∼ ln [ε−(D0−αi )/β]. The largest
value of ki will correspond to the minimum of αi , αmin = D∞.
Therefore, we have

kc(ε) ∼ ln[ε−(D0−D∞)/β]. (13)

This expression allows us to relate the network parameters α

and β with the multifractal exponents D0 and D∞ by noticing
that, in a network of finite size N (ε), the maximum degree is
given by the condition

∑∞
k=kc(ε) P (k) = 1/N(ε) [28]. With an

exponential degree distribution P (k) = αe−αk , we thus have,
in the continuous degree approximation,

∫ ∞
kc(ε) αe−αk dk =

e−αkc(ε) = 1/N (ε), from where we obtain

kc(ε) ∼ ln[N (ε)1/α] ∼ ln[ε−D0/α]. (14)

Combining Eqs. (13) and (14), we obtain the relation

α

β
= D0

D0 − D∞
. (15)

The properties of the network can also be used to extract
information on the full set of generalized dimension by
building on relation Eq. (11). Indeed, we can write the
diverging moments in a finite network as

〈eβqk〉 ∼
∫ kc(ε)

e(qβ−α)k dk ∼ e(qβ−α)kc(ε)

qβ − α
, (16)

which, taking into account Eq. (13), yields

〈eβqk〉 ∼ ε−(D0−D∞)(q−α/β). (17)

Combining Eq. (17) and Eq. (11) leads to the asymptotic
expression, valid for large q,

Dq ∼ D∞
q

q − 1
, (18)

which recovers the result known for deterministic multifractal
measures [24].

B. Algebraic growth

In the case of an algebraic growth of the number of visits
with the associated degree, we have

g(k) ∼ kδ, (19)

with δ > 0. From Eq. (11), we have that 〈kδ〉 is finite, and 〈kqδ〉,
with q > 1, diverge in the limit of infinite network size. The
fact that all higher degree moments diverge indicate that the
degree distribution P (k) of the network has long tails, which in
the simplest case are compatible with a power-law distribution
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of the form P (k) ∼ k−γ , where we impose γ > δ + 1 to ensure
a finite value of 〈kδ〉.

Performing again a finite-size analysis, from Eq. (9) we
obtain a maximum degree,

kc(ε) ∼ ε−(D0−D∞)/δ ∼ N (ε)(1−D∞/D0)/δ. (20)

On the other hand, the network relation
∑∞

k=kc(ε) P (k) =
1/N(ε) leads now, with a power-law degree distribution
P (k) ∼ k−γ in the continuous degree approximation, to [28]

kc(ε) ∼ N (ε)1/(γ−1) ∼ ε−D0/(γ−1). (21)

Combining Eqs. (20) and (21), we obtain the relation between
network properties and multifractal exponents:

γ − 1

δ
= D0

D0 − D∞
. (22)

In the case of an algebraic g(k) function, Eqs. (20) and (21)
can be used to directly estimate δ and γ . This approach is more
difficult in the case of an exponential g(k), due to the much
smaller range of variation of the logarithm of ε; see Eqs. (13)
and (14).

Finally, writing

〈kδq〉 ∼
∫ kc(ε)

kδq−γ dk ∼ kc(ε)δq−γ+1

∼ ε−D0[δq/(γ−1)−1], (23)

and comparing with Eq. (11), we obtain again the simple
asymptotic expression for the generalized dimensions given
by Eq. (18).

V. NUMERICAL EXPERIMENTS

In order to check the validity of the predictions made
in Sec. IV, we have considered different multifractal time
signals, generated by means of iterative maps. In particular,
we have studied three paradigmatic examples of one- and
two-dimensional chaotic attractors, namely the logistic, the
Duffing, and the Henon map. The well-known logistic recur-
rence [6,29] in dimension d = 1,

xt+1 = μxt (1 − xt ), (24)

maps the interval x ∈ [0,1] into itself when the control
parameter μ ranges between 0 and 4. This system undergoes a
period-doubling bifurcation transition to chaos, which sets-in
at μ = 3.569456 . . .. Multifractal chaotic regimes interspersed
with periodic windows then occur in the parameter interval
μ ∈ [3.57,4). Here we fix μ = 3.7. The two-dimensional
Duffing map,

x
(1)
t+1 = x

(2)
t , (25)

x
(2)
t+1 = −b x

(1)
t + a x

(2)
t − [

x
(2)
t

]3
, (26)

is a discrete representation of the Duffing oscillator, describing
a forced oscillator coupled to a dissipative restoring force
[6]. This map typically produces chaotic behaviors with the
critical parameters a = 2.75 and b = 0.2, and generates values
of x(1) and x(2) in the range [−1.71,1.71]. Following our
network projection algorithm, each variable is thus shifted
and normalized into the interval [0,1]2.

Finally, the Henon map [6,30] in d = 2 is defined by the
recurrence

x
(1)
t+1 = 1 − a

[
x

(1)
t

]2 + x
(2)
t , (27)

x
(2)
t+1 = b x

(2)
t , (28)

with the parameters a and b fixed to 1.4 and 0.3, respectively.
For these values, starting from an initial point (x(1)

0 ,x
(2)
0 ),

the dynamics can either asymptotize to a fractal attractor
relying on the subset x(1) ∈ [−1.3,1.3] and x(2) ∈ [−0.4,0.4]
or diverge to infinity. For other values of a and b the map
may be still chaotic, intermittent, or converge to a periodic
orbit. Here we use the classical parameter setting and, again,
we transform the values of each variable into the interval
[0,1]2. A one-dimensional projection of the Henon map is
also considered, obtained by taking into account only one
normalized variable of the map (both x(1) and x(2) give
analogous results).

In Table I we present a summary of the multifractal
properties of the chaotic time signals considered, computed
by using the box counting formalism described in Sec. II.
In particular, from Eq. (6), we compute the exponent Dq by
performing a linear regression of log

∑
i pi(ε) as a function of

log ε, for ε = M1/d , in a range of values of M between 103

and 4 × 106, depending of the particular attractor. The slope
of this regression yields the factor (q − 1)Dq . According to
Eq. (18), the asymptotic value D∞ is obtained by means of
linear regressions of Dq as a function of q/(q − 1), performed
over suitable intervals of the variable q/(q − 1). In Fig. 1 we
present numerical data for Dq as a function of q/(q − 1) for
q ranging between 30 and 80, computed using ensembles of
100 signals of length n = 103 × M iterations, with different
seeds.

In Fig. 2 we plot the natural measure p̄ε(k), averaged
over all nodes of degree k, as a function of k, for different
partitions of the multifractal attractors, i.e., different ε (or M).
In order to check the main assumption in Eq. (9), we plot
the rescaled function ε−D0 p̄ε(k) as a function of the degree,
using the fractal dimensions D0 quoted in Table I. In this case,
we expect all plots of each map for different ε to collapse onto
the single universal function g(k). From Fig. 2 we observe,

TABLE I. Properties of the different multifractal maps and associated projected undirected and unweighted networks.

Attractor d D0 D∞ β δ α γ

Logistic 1 0.998(2) 0.49(1) – 1.04(2) – 3.14(1)
Duffing 2 1.306(2) 0.75(1) 0.28(8) – 0.42(6) –
Henon 1 1.000(1) 0.73(2) – 1.10(5) – 4.48(1)

2 1.24(1) 0.82(2) 0.15(2) – 0.57(5) –
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(a) (b)

(c) (d)

FIG. 1. Generalized dimensions Dq as a function of q/(q − 1)
for the logistic map (a), the Duffing map (b), the d = 1 Henon map
(c), and the d = 2 Henon map (d). Error bars are smaller than the
symbol sizes. The corresponding asymptotic values of D∞ can be
extrapolated by means of a linear regression of these plots following
Eq. (18). The results are listed in Table I.

for the logistic, Duffing and d = 2 Henon maps, a perfect
convergence of the rescaled average natural measure as a
function of k, indicating the validity of the assumption in
Eq. (9). In the case of the d = 1 projection of the Henon
attractor, however, the collapse of p̄ε(k) is not fulfilled. In this
particular case, therefore, the predictions made in Sec. IV are
not expected to hold.

(a) (b)

(c) (d)

FIG. 2. Rescaled average natural measure, ε−D0 p̄(k), as a func-
tion of the degree k for the logistic map (a), the Duffing map (b),
the d = 1 Henon map (c), and the d = 2 Henon map (d). The
function p̄(k) is computed for different values of M , considering
n = 1000 × M iterations. Dashed lines represent the estimated values
of the exponents δ or β in each case; see Table I.

(a) (b)

(c) (d)

FIG. 3. Complementary cumulative degree distributions, Pcum(k)
of the undirected networks projected from the logistic map (a), the
Duffing map (b), the d = 1 Henon map (c), and the d = 2 Henon
map (d), computed for different values of M and with n = 1000 × M

iterations. Dashed lines represent the estimated values of γ or α of
the pertinent case; see Table I.

From Fig. 2, we also observe that in the d = 1 cases
[Figs. 2(a) and 2(c)], both the attractor of the logistic map and
that of the projected Henon map obey an algebraic behavior,
g(k) ∼ kδ , while in the d = 2 cases [Figs. 2(b) and 2(d)],
both the Duffing and the Henon systems show an exponential
growth, g(k) ∼ eβk . A linear regression performed on the data
of the log-log plot in Fig. 2 provides an estimation of the
exponents δ and β. In general, it can be noticed how these
linear trends become more defined and stable while refining
the statistics of g(k) by increasing M; we thus fit data obtained
with M = 106 in the algebraic case and M = 4 × 106 for
an exponential g(k). We find the exponents δ = 1.04(2) for
the logistic map, β = 0.28(8) for the Duffing map, while
δ = 1.10(5) and β = 0.15(2) are obtained for the d = 1 and
the d = 2 Henon maps, respectively.

In Fig. 3 we examine the topology of the projected
networks by plotting the complementary cumulative degree
distributions, Pcum(k) = ∑∞

q=k P (q), for different values of
M . As predicted in Sec. IV, the networks characterized by an
algebraic growth g(k) (here d = 1 cases) exhibit power-law
degree distributions. Figures 3(a) and 3(c) show how for
different network sizes (i.e., different values of M) all trends
converge to a common power-law distribution characterized
by γ = 3.14(1) in the logistic networks and γ = 4.48(1) for
the d = 1 Henon networks. Interestingly, in this last case, the
prediction of a scale-free degree distribution holds, despite
the fact that Eq. (9) is not fulfilled. This must be attributed
to the affect of an algebraic function g(k), still present in
the d = 1 Henon map. By contrast, the networks resulting
from the projection of the d = 2 maps follow short-tailed
degree distributions, compatible with an exponential behavior
P (k) ∼ e−αk . These plots present a poor statistics and we
can only extrapolate rough values for α, namely α = 0.42(6)
and α = 0.57(5) for the Duffing and d = 2 Henon maps,
respectively.
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(a) (b)

FIG. 4. Scaling of the degree cutoff, kc(ε), estimated as the
maximum degree in the network, as function of the network size N (ε)
for the logistic map (a), and the d = 1 Henon map (b). The logarithms
in figure are in base 10.

With these values characterizing the multifractal properties
of the maps and the topological properties obtained from the
analysis of the projected transition networks, we can validate
our theoretical framework. We first check the cross-relations
given by Eqs. (15) and (22) for exponential and algebraic cases,
respectively. Regarding the algebraic examples we obtain
(γ − 1)/δ = 2.06(7) and D0/(D0 − D∞) = 1.96(5) for the
logistic map (see values from Table I). In this case, the identity
Eq. (22) is well fulfilled within error bars. For the Henon
attractor in d = 1, we obtain instead (γ − 1)/δ = 3.2(2) and
D0/(D0 − D∞) = 3.7(3), again coinciding within error bars.
For exponential cases, the equality Eq. (15) leads to the
comparison α/β = 1.5(6) and D0/(D0 − D∞) = 2.34(5) for
the Duffing map, and α/β = 3.8(8) and D0/(D0 − D∞) =
2.9(2) for the d = 2 Henon attractor. In this case, the exponent
relations are affected by stronger errors, but the trend is clearly
toward a positive comparison.

Finally, for an algebraic g(k), as observed in the logistic
map and the d = 1 projection of the Henon attractor, we
can proceed to check the behavior of the maximum degree
kc(ε) as a function of the network size N (ε), see Fig. 4.
We do not consider the relation between degree cutoff and
network size for maps with an exponential g(k), since the
very small span of network sizes obtained does not allow
for a determination of the exponent in relation Eq. (13).
Indeed, for the algebraic case, following Eq. (20), the behavior
of the maximum degree is given by kc(ε) ∼ N (ε)r , with
the exponent r = (1 − D∞/D0)/δ. The numerical exponents
obtained through a linear regression of log kc(ε) as a function
of log N (ε) are r = 0.48(1) and r = 0.54(1) for the logistic
and the d = 1 Henon map, respectively. From the values of
δ, D0 and D∞ in Table I, our theoretical predictions are
r = 0.48(3) and r = 0.25(3) for the logistic and the d = 1
Henon map, respectively. The agreement between numerics
and theory is very good for the logistic map, but completely
off in the d = 1 Henon case. The disagreement in this last case
must be attributed to the failure of Eq. (9). While the general
shape of P (k) compatible with a power-law is ensured by the
algebraic form of g(k), the lack of its expected dependence
on the prefactor ε (see Fig. 2) affects the scaling relations
deduced from Eq. (9). In the d = 1 Henon case yet another of
the approximations made breaks down, namely the assumption
of a stable degree distribution. This fact is further checked in
Fig. 5, which shows that the average degree 〈k〉 of the projected
networks is essentially independent of ε for all the multifractal

FIG. 5. Average degree, 〈k〉, as a function of M for the different
maps considered. All of them, except for the d = 1 projection of the
Henon map are essentially independent of the network discretization.

time signals considered, except for the d = 1 Henon attractor,
which exhibits instead a power-law increasing behavior. This
fact indicates that d = 1 Henon networks belong to the class
of accelerated networks [31]. This increasing average degree
prevents the degree distribution to be stable, introducing an
additional scale, beyond the degree cutoff kc. Surprisingly,
however, the exponent relation Eq. (22) seems to still be
fulfilled, at least within error bars.

VI. WEIGHTED UNDIRECTED NETWORK PROJECTIONS

The transition networks discussed above have been consid-
ered as undirected and binary, meaning that there is a single
edge between nodes i and j if there has been at least a transition
between boxes i and j , irrespective of the order it occurs. This
restriction can, however, be lifted by considering the more
general cases of weighted or directed transition networks. In
an undirected weighted transition network [19,21,32,33], a
weight ωij , given by a real number, is associated to the edge
joining nodes i and j . In a transition network framework, the
natural choice is to make ωij equal to the number of transitions
nij between boxes i and j , irrespective of their directionality.
We therefore associate to each edge the normalized weight

ωij = nij

n
. (29)

The statistical pattern of weights can be studied in terms of
the weight distribution, P (ω), defined as the probability that a
randomly chosen edge has weight ω. This distribution cannot
be simply related to the mutifractal spectrum of a time series,
since this spectrum disregards the transitions between different
boxes. In Fig. 6 we plot the complementary cumulative weight
distributions Pcum(ω) = ∑∞

ω′=ω P (ω′) obtained numerically
from the different maps we analyzed above. As we can see,
in all cases we obtain long-tailed distributions, that can be
approximated to a power-law form P (ω) ∼ ω−a , with an
exponent a between 3 and 4 (see Table II).

An important measure in weighted networks is the vertex
strength si [32,33], defined as the sum of all weights incident
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FIG. 6. Complementary cumulative weight distributions,
Pcum(ω), of the weighted networks projected from the different maps,
computed for M = 106 and n = 109. Dashed lines represent the
estimated values of the exponent a, in a fit to the form P (ω) ∼ ω−a .

on vertex i, i.e.,

si =
∑

j∈V(i)

ωij , (30)

where V(i) is the set of neighbors of vertex i. Given the
definition of the weights in Eq. (29), we have si = 2ni/n ≡
2pi(ε), i.e., proportional to the natural measure at box i.
Therefore, the strength and natural measure distributions are
identical, except for a trivial factor 2. In Fig. 7 we plot
the complementary cumulative strength distributions, Pcum(s),
computed for the four different considered maps. Once more,
in all cases we observe a power-law distribution, P (s) ∼ s−b,
with an exponent b ranging between 3 and 5; see Table II.

The correlations between the pattern of weights and the
topology of the network is usually determined by looking at
the average strength of nodes of degree k, s̄(k) [33]. Given
the relation between strength and natural measure, we can
approximate [see Eq. (9)],

s̄(k) � 2εD0g(k). (31)

From the results in Fig. 2, we obtain s̄(k) ∼ kδ for the
d = 1 maps and s̄(k) ∼ eβk for the d = 2 maps. This allows
to tie strength and degree distributions through the relation
P (s)ds = P (k)dk, which, for the maps in d = 1, leads to the
exponent relation

γ = δ(b − 1) + 1. (32)

Applying Eq. (32) and the values in Table II to the d = 1 maps,
we obtain a satisfactory matching with the values extrapolated

TABLE II. Properties of the different multifractal maps and
associated projected undirected and weighted networks.

Attractor d a b

Logistic 1 3.07(1) 3.07(1)
Duffing 2 3.86(1) 3.75(1)
Henon 1 3.72(1) 4.30(1)

2 3.96(1) 3.75(3)

FIG. 7. Complementary cumulative strength distribution,
Pcum(s), of the weighted networks projected from the logistic map
(a), the Duffing map (b), the d = 1 Henon map (c), and the d = 2
Henon map (d), computed for M = 106 and n = 109. Dashed lines
represent the estimated values of the exponent b, in a fit to the form
P (s) ∼ s−b.

by fitting the unweighted degree distributions P (k). In detail,
we find γ = 3.15(5) versus 3.14(1) for the logistic map and
γ = 4.6(2) versus 4.48(1) for the d = 1 Henon map.

Additionally, by combining Eq. (32) with Eq. (22), we
obtain a relation between the exponent of the strength
distribution and the multifractal spectrum, given by

b = 1 + D0

D0 − D∞
. (33)

For the d = 2 maps with an exponential growth of g(k), the
combination with a power-law strength distribution leads to
an exponential degree distribution, P (k) ∼ e−αk , in agreement
with the results presented above, with

α = β(b − 1). (34)

Toward a favorable comparison, though less quantitative as
compared to d = 1 cases, are also these exponents obtained
for the d = 2 maps, namely α = 0.8(2) versus 0.42(6) for the
Duffing map and α = 0.41(6) versus 0.57(5) for the d = 2
Henon map.

Comparison of Eq. (34) with Eq. (15) leads again to
Eq. (33), relating b with the multifractal spectrum. Application
of Eq. (33) with the data of the multifractal analysis from
Table I gives exponents b = 2.96(5), 3.35(5), 4.7(3), and
4.0(2) for the logistic, Duffing, and d = 1 and d = 2 Henon
maps, in reasonable agreement with the values extracted from
a direct fit to the strength distribution; see Table II.

VII. DIRECTED NETWORK PROJECTIONS

Apart from a weighted projection, we can additionally
consider a directed transition network projection, in which
a directed edge pointing from node i to node j indicates the
presence of a dynamical transition from box i to box j [19,21].
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(a) (b)

(c) (d)

FIG. 8. Complementary cumulative in-degree and out-degree
distributions of the directed networks projected from the logistic map
(a), the Duffing map (b), the d = 1 Henon map (c) and the d = 2
Henon map (d), computed for M = 106 and n = 109. For the sake of
comparison, in a dashed line we plot the degree distribution of the
corresponding undirected network projection.

The topology properties of nodes in this (unweighted) directed
network can be represented in terms of the in-degree kin

i and
out-degree kout

i of node i, defined as the number of directed
edges arriving to node i and departing from node i, respectively
[1].A statistical characterization of these quantities is given
by the in-degree P (kin) and out-degree P (kout) distributions,
measuring the probability that a randomly chosen node has
in-degree kin or out-degree kout, respectively. Information
about these distributions cannot be obtained analytically, since
the formalism developed above relies on the natural measure,
which does not take transition directionality into account. We
thus plot these distributions evaluated numerically in Fig. 8 for
the different iterative maps under consideration. We observe
that, in general, the span of the out-degree distributions is
shorter than the one of the in-degree distributions, indicating
that the out-degree of these networks is very homogeneous.
This is specially evident in the logistic map, where the
in-degree distribution shows a power-law tail, overlapping
with the undirected degree distribution, while the out-degree
distribution shows a strong exponential decay. For the d = 1
Henon map, both in- and out-degree distribution show power-
law tails, compatible with the undirected degree distribution.
For the case of the d = 2 maps, Duffing and Henon, the in-
and out-degree distributions are both exponential, like the
undirected degree distributions, but all three appear to be
different in both cases.

VIII. DISCUSSION

In this paper, we have investigated the effect of fractal
and multifractal properties of a temporal signal on the topol-
ogy of the corresponding projected network. By combining
a transition network representation with the box-counting
formalism, we have mapped temporal signals into undirected
unweighted networks whose nodes are the boxes partitioning

the attractor of the temporal signal in the phase space, and
links are established between successive pair of boxes between
which the signal jumps. We have developed a mathematical
framework connecting the network topology to the multifractal
properties of the generating signal. This formalism allows
us to predict the functional form of the network degree
distribution on the basis of the functional, g(k), linking the
natural measure of a box with the associated node degree.
We have focused on the prototypical and general cases of
an exponential and an algebraic growth g(k), showing that
the latter results in power-law degree distributions whose
exponent γ is controlled by the multifractal exponents of the
generating signal. We have verified the validity of our approach
through extensive numerical simulations, highlighting the
excellent agreement observed in many cases, and discussing
in detail the reasons why in some cases (e.g., the Henon
map in d = 1) the numerical experiments depart from some
theoretical predictions.

In particular, we could conclude that a sufficient condition
to obtain a scale-free topology is that the natural measure of
a box must increase with the degree of the associated node
in a algebraic fashion. In our numerical experiments we have
observed that this condition is fulfilled in multifractal attractors
in d = 1 with capacity dimension D0 = 1. This fact leads us to
conjecture that scale-free networks can be observed in general
multifractal time series in which the capacity dimension is
equal to the euclidean dimension of the embedding phase
space.

We have additionally considered numerically the properties
of weighted and directed versions of the projected network. In
the case of weighted networks, a relation with the multifractal
spectrum of the time series can be drawn at the level
of the strength distribution and the strength correlations
with the node’s degree, giving rise to further information
on the projected network structure. This analysis constitutes
the basis for building new statistical tools for unravelling
intrinsic directional constraints and correlations in multifractal
dynamics.

Our work extends existing approaches bridging time series
analysis and network science by addressing the ubiquitous
case of signals exhibiting multifractal properties. By doing
this, it enriches the set of interpretative tools available for
a better characterization of empirical time-series. Viceversa,
our approach also paves the way for exploiting multifractal
generators as possible mechanisms for growing complex
networks.

For this reason, we can envisage that it will be of interest
also to the growing community of interdisciplinary researchers
studying natural time series through the lenses of network
science.
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