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Influencing various aspects of human activity, migration is associated also with language formation. To examine
the mutual interaction of these processes, we study a Naming Game with migrating agents. The dynamics of
the model leads to formation of low-mobility clusters, which turns out to break the symmetry of the model:
although the Naming Game remains symmetric, low-mobility languages are favored. High-mobility languages
are gradually eliminated from the system, and the dynamics of language formation considerably slows down. Our
model is too simple to explain in detail language competition of migrating human communities, but it certainly
shows that languages of settlers are favored over nomadic ones.
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I. INTRODUCTION

The constatation that complex systems can be regarded as
composed of many interacting subunits opens up a possibility
of studying them with methods that were primarily developed
in the context of physical many-body systems. Such an
approach turned out to be very successful [1] and leads
to the emergence of new research fields like socio- or
econophysics [2]. Even certain linguistic problems can be
studied using methods with a strong physical flavor. Language
emergence [3] or death [4], its diversification [5] and diffu-
sion [6], time-evolving structure [7], appearance of grammar
or linguistic categories [8], and language learning [9] are just
a few examples of problems where physicists’ contributions
might prove to be valuable.

Of course, language, as one of our human attributes, is
interrelated with many other forms of our activity. Social
interactions, economical status or political situation influence
the way language is acquired and changed, or sometimes falls
into oblivion. Language, as an integral part of our culture
and way of life, is also intricately related to migrations of peo-
ple [10,11]. Various tribes, ethnic groups, or even entire nations
firmly settled certain areas, while some others, due to various
reasons, almost constantly migrate. Migration might mix as
well as separate human communities and language formation
processes should be thus strongly influenced by such a factor.
Moreover, some modern trends, especially globalization, most
likely increase people’s migrations [12]. Some researches even
suggest that merging multinational and multicultural migrants
creates in some areas a new kind of super-diverse societies, and
to describe their intercommunication, traditionally understood
languages do not seem to be sufficient [13].

It would be desirable to have some general understanding
of how migration affects the language formation processes
and perhaps vice versa. As for the language formation, an
interesting class of models originates from the so-called
Naming Game [14]. In this model a population of agents
negotiates a language (or, more generally, conventional forms).
Although the dynamics might depend on, for example, the
structure of the interaction network, typically the model
reaches a consensus on the language. The process of lan-
guage formation resembles the ordering dynamics of Ising
or Potts models accompanied, due to the symmetry of the

Naming Game, by a spontaneous symmetry breaking. One
can even introduce the notion of an effective surface tension
to explain some dynamical characteristics of the Naming
Game [15,16].

In the present paper, we thus examine the Naming Game in
a population of migrating agents. When mobility of agents is
uniform in the entire population, the model is very similar to
the Naming Game of immobile agents. However, an interesting
behavior appears when the mobility depends on the language
used by an agent. In such a case, the dynamics turned
out to break the symmetry of the Naming Game, favoring
low-mobility languages. During the coarsening, agents form
low-mobility clusters that effectively attract and convert high-
mobility neighbours. As a result, the low-mobility agents
become more widespread, which considerably slows down
the dynamics. Of course, our model is too simple to explain
the intricacies of language competition in settled and nomadic
communities, nevertheless, it shows that the (difference in)
mobility has a strong effect on such proccesses.

II. MODEL

In our model, we have a population of agents placed on
a square lattice of linear size L (with periodic boundary
conditions). Initially agents are uniformly distributed on the
lattice with the density (i.e., probability) ρ. Each agent has its
own inventory, which is a dynamically modified list of words.
The dynamics of our model combines the lattice gas diffusion
with the so-called minimal version of the Naming Game [17].
More specifically, in an elementary step, an agent (Speaker)
and one of its neighboring sites are randomly selected. If
the selected site is empty, Speaker moves to this site. If the
selected site is occupied by an agent (Hearer), then the pair
Speaker-Hearer plays the Naming Game:

(1) Speaker selects a word randomly from its inventory
and transmits it to Hearer.

(2) If Hearer has the transmitted word in its inventory, the
interaction is a success and both players maintain only the
transmitted word in their inventories.

(3) If Hearer does not have the transmitted word in its
inventory, the interaction is a failure and Hearer updates its
inventory by adding this word to it.
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FIG. 1. Illustration of the Naming Game dynamics. In the case
of success—when the word selected by Speaker (dog) is known
to Hearer—they both retain only the transmitted word in their
inventories. Failure occurs when Hearer does not know the transmitted
word, which is then added by Hearer to its inventory.

The unit of time (t = 1) is defined as ρL2 elementary steps,
which corresponds to a single (on average) update of each
agent. In the following, we will refer to words communicated
by agents as languages. Rules of the Naming Game are also
illustrated in Fig. 1.

III. TWO-LANGUAGE VERSION

When ρ = 1, all sites are occupied, thus there is no
diffusion and the model is equivalent to an ordinary square-
lattice Naming Game. For ρ < 1, a fraction 1 − ρ of sites
is empty and in addition to playing the Naming Game,
agents change their locations from time to time. There are
several characteristics that might be determined for Naming
Game models. To demonstrate some analogies to Ising-type
models, we examined a two-language version of the Naming
Game [18]. We measured the average time τ needed for a
system to reach a consensus, i.e., the state where every agent
has the same language in its inventory. The initial configuration
includes a square of size M , inside of which all agents have
language B in their inventories, while outside agents have
language A. Both within the square of size M and outside, the
agents are distributed with the uniform density ρ. In Ising-like
models, general arguments, which refer to the notion of a
surface tension and the Laplace law of excessive pressure,
estimate the lifetime of such a bubble as τ ∼ M2 [19]. Our
numerical results (Fig. 2) are in very good agreement with
such estimation for both ρ = 1 and ρ < 1 (a slight deviation
for ρ = 0.1 can be attributed to the finite size effects). It is
thus strong evidence that for migrating agents, the domain
dynamics in the Naming Game is also driven by an effective
surface tension.

Let us notice that the relation τ ∼ M2 is expected to hold
when the bubble and its surroundings are thermodynamically
equivalent phases. In the Ising models it means that there
is no external magnetic field, which would favor one of
them. In the Naming Game, we have also such symmetry
since the dynamics of the Naming Game does not favor
any of the languages used by agents. We do not present
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FIG. 2. The average lifetime τ of language B whose users are
initially in a square of size M , surrounded by language A users
(L = 300). The straight and dotted lines have slopes corresponding to
τ ≈ M2 and τ ≈ M1.1, respectively. The data for ρ < 1 and language-
independent mobility (dA = dB = d = 1) also seem to obey such
scaling. A different behavior can be seen for language-specific
mobility: the language B is either quickly extinct (dB > dA) or is
relatively persistent (dB < dA). Numerical results are averages over
100 independent samples.

here our additional numerical results, though we have also
measured some other characteristics of the Naming Game
with migration (such as the average time needed to reach a
consensus for a system initialized with randomly assigned
languages), and they qualitatively agree with the ordinary
ρ = 1 version [15,16].

Instead, we would like to examine an extension of the
above defined model, in which to each language its own
(thus language-specific) mobility d is assigned. An agent
that changes its language changes thereby also its mobility
(which, we hope, might reflect the behavior in some human
communities). Now, if the chosen neighboring site is empty,
Speaker migrates to this empty site with the probability d

corresponding to the language it uses. If Speaker has several
languages in its inventory, then one of them is selected
randomly to determine the probability of migration (though
only a very small fraction of agents have more than one
language in its inventories).

Let us notice that such modification affects only the dynam-
ics of migration while the Naming Game remains symmetric.
We determined the average time τ in a two-language version
of this model (Fig. 2). When mobility dB of language B users is
larger than mobility dA of surrounding language A users, τ still
increases but considerably slower and perhaps linearly τ ∼ M

(the least square fitting gives τ ∼ M1.1 but a slight bending of
our data makes the asymptotic τ ∼ M very plausible). We do
not present the estimation of time for dB < dA since it can be
made only for very small M . In turn, for M above a certain
threshold value, the initial bubble instead of shrinking starts
to grow and eventually B-users engulf the entire system. An
example of such growth can be seen in Fig. 3.

Such behavior resembles the the behavior of the Ising model
but in the presence of an external magnetic field. When the
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FIG. 3. The initial configuration (L = 200, ρ = 0.2) includes in
the center a square of size M = 30 with B-speaking agents (red/gray),
surrounded by A-speaking agents (green/light gray). B-speakers
are less mobile (dB = 0.1) than A-speakers (dA = 1.0). The figure
presents a configuration after t = 5 × 104 steps. Agents that have
both A and B in their inventories are marked in blue (dark gray).

magnetic field does not favor the bubble, a finite velocity of
shrinking is expected for large M and that would explain the
growth τ ∼ M [20]. For the field favoring the bubble, the
existence of a threshold size, above which the bubble will
grow indefinitely, is also a well-known feature. It suggests that
in our model the difference in mobility acts as a magnetic field
in the Ising model and breaks the symmetry of the Naming
Game favoring low-mobility languages.

To confirm that dA − dB is an analog to the magnetic field in
the Ising model, we made simulations of the system initially
divided (say vertically), in which the left half is filled with
agents of mobility dA and the right half with agents of mobility
dB . Depending on the sign of the difference dA − dB , the
interface should move (possibly at constant speed) either to the
left or to the right, and only for dA = dB it shoud stay more or
less in the inital position. Our simulations fully confirmed such
scenario (Fig. 4). The interface always moves in such a way
that a less-mobile language becomes more widespread. Let us
notice that even a very small difference dA − dB is sufficient
to favor one language over the other, and only for precisely the
same mobilities dA = dB , the languages are equivalent.

Let us emphasize that the rules of the Naming Game do
not favor any of the languages, and the bias that appears for
unequal mobilities is generated dynamically. In our opinion,
the asymmetry appears due to a tendency of low-mobility
languages to form clusters. Such low-mobility clusters are
relatively resistant upon interactions with high-mobility agents
(Fig. 5). That low-mobility languages have a tendency to form
clusters can be seen also in Fig. 3. Indeed, the central area with
the less mobile language seems to be more densely filled than
its surroundings (and initially the entire lattice was filled with
the same density ρ = 0.2). Moreover, the interface between
the languages has a considerably lower density than the
interior of the area with the more mobile language. Apparently,
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FIG. 4. The time evolution of the density ρB of language B
users. In the inital state, the lattice (L = 500) is divided into two
halfs containing only A- or B-speakers, respectively (ρ = 0.7). The
vertical interface thus created moves in the direction which depends
on the difference in mobilities of languages. Only for equal mobilities
(dA = dB = 0.5), the interface remains immobile. The results are
averages over 100 independent runs.

high-mobility agents that are close to the interface get
intercepted by the low-mobility center (and converted into
low-mobility agents).

To support the above arguments, we made simulations
where we measured the probability probA that a small system
(L = 6) starting with randomly distributed agents will reach

FIG. 5. (Left) Due to the symmetry of the Naming Game, the A-B
pair with equal probabilities ends up in the A-A or B-B state. When
language A is more mobile, the pair is likely to drift apart, while the
B-B pair is more stable. (Right) Apparently, the A-B symmetry is
broken for more complex interactions. Even if A happens to graft his
language onto a cluster, it is likely to drift apart. Then a single A user,
surrounded by three B neighbors, is likely to be converted back to B.
Thus less mobile clusters are relatively immune to encounters with
more mobile agents and the dynamics (effectively) favors less mobile
languages.
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FIG. 6. Probability that consensus will be reached on language A
(dA = 1) as a function of the number of agents n. Simulations were
made for a small lattice with L = 6. For each n we made 106 runs
with a random distribution of agents (initially, languages A and B
were also assigned randomly). Only for n = 2 (pair interactions) and
n = 36 (no migration), the dynamics of the model remains symmetric
and the probability to end up with language A is the same as with
language B.

a consensus with language A. Initially, languages A and B
(and migrations dA and dB) are also randomly assigned to
agents. Numerical simulations show (Fig. 6) that only for the
number of agents n = 2 and n = 36, we have probA = 0.5.
For n = 2, only binary interactions of agents might take place
(left panel of Fig. 5) and the symmetry of the Naming Game
implies that probA = 0.5. Similarly, for n = 36 migration is
suppressed and probA = 0.5 is the expected ordinary Naming
Game result. Simulations show, however, that for any other
value of n the symmetry of the model is broken and the less
mobile language (B) is effectively favored.

It would be certainly desirable to have more general
understanding of the mobility-induced symmetry breaking
that takes place in our model. For example, one might hope
to develop some kind of a coarse-grained description of
our model in terms of the Ginzburg-Landau potential, an
approach that turned out to be quite effective in some other
agreement-dynamics models [21,22].

IV. MULTI-LANGUAGE VERSION

In the present section we examine the multi-language
version of our model. In such a case Fig. 7 shows that the
cluster-formation mechanism is also at work (simulations start
from a random distribution of languages and their mobilities).
Initially mobilities were set randomly from the range 0<d<1,
but by time t = 3 × 103 and especially t = 104, languages
with the largest mobilities (close to 1) were eliminated. One
can clearly see the formation of low-mobility clusters, which
grow by depleting their surroundings from more mobile agents.

We also examined the time dependence of the average
mobility 〈d〉 in the system. Indeed, the numerical results
in Fig. 8 confirm that 〈d〉 systematically decreases. For a
low density (ρ = 0.1), one can notice relatively long initial
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FIG. 7. The configuration obtained after t = 5 × 102 (top),
3 × 103 (middle) and t = 104 (bottom) MC steps (L = 200, ρ = 0.1).
Low-mobility languages form more dense clusters, surrounded by
depleted zones, and gradually grow at the expense of more mobile
neighbors. The color bars apply only to the mobility panels.

plateaux, related to the fact that the system needs some time
to build low-mobility clusters, and only then the process
that favors low-mobility languages starts. Moreover, in the
time decay of the average mobility, one can distinguish two
power-law regimes. In the high-density regime (ρ = 0.6 and
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FIG. 8. The time dependence of the average mobility 〈d〉;
simulation for L = 103 with random initial conditions and averaged
over 100 independent runs. The dash-dotted line corresponds to the
decay 〈d〉 ∼ t−0.9.
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FIG. 9. The time dependence of the number of users of the most
common language lM ; simulation for L = 103 with random initial
conditions and averaged over 100 independent runs. The dashed line
corresponds to the increase lM ∼ t0.8.

0.8), one has 〈d〉 ∼ t−0.9 while in the low-density regime
(ρ = 0.1, 0.2, and 0.3), the exponent is smaller than 0.9 and
perhaps even varies with density.

Certain Naming Game characteristics exhibit a similar
power-law behavior. In Fig. 9 we present the time dependence
of the number of users of the largest language lM . While in the
high-density regime (ρ = 1.0, 0.8, 0.6), the increase seems to
be universal and lM ∼ t0.8, in the low-density regime (ρ = 0.3,
0.2, 0.1), the power-law behavior has a density-dependent
exponent. The behavior of 〈d〉 and lM shows that the dynamics
in the high-density regime is much faster and the Naming
Game characteristics are very similar to those of an ordinary
Naming Game (with ρ = 1). The low-density regime has a
much slower dynamics and we relate such behavior to the
formation of low-mobility clusters (Fig. 7). It is likely that the

model undergoes a phase transition around ρ = 0.5, but its
more detailed analysis is left for the future.

The two-language version described in the previous section
exhibits a symmetry breaking that speeds up the dynamics.
In the multi-language version, however, we have initially the
entire spectrum of languages and mobilities. The dynamics
gradually eliminates large-mobility agents, and thus the
remaining small-mobility agents are primarily responsible for
a considerably slower dynamics (Fig. 9).

V. CONCLUSIONS

In summary, motivated by a possible mutual influence of
language formation and migration of human communities, we
examined the Naming Game model with mobile agents. As our
main result, we have shown that even a small difference in a
language-specific mobility favors a low-mobility language. Of
course, taking into account an extreme complexity of human
interactions, we are not even tempted to suggest that our model
proves that languages of settlers should outperform nomadic
ones, nevertheless, it certainly shows a strong relation between
language formation and migration. In our model, low-mobility
languages form clusters and in a low-density regime this
process slows down the dynamics of the Naming Game. Let
us also notice that the dynamics of a typical Naming Game
(with ρ = 1) rather quickly leads to the consensus, which not
necessarily corresponds with a relatively stable multi-language
structure of the human population [23]. With this respect, a
slower dynamics and a longer lifetime of the multi-language
state (as suggested in Fig. 9) of the proposed model might be
more suitable. Finally, it should be also noted that the Naming
Game is one of the models with the so-called agreement
dynamics. The Voter or Ising models are yet other well-known
examples of this kind of models and some aspects of mobility
in such systems were already examined [24]. It would be, in
our opinion, interesting to examine their generalizations that
taking into account the state-dependent mobility.
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