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Time-varying community structures exist widely in real-world networks. However, previous studies on the
dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To
study the effects of time-varying community structures on social contagions, we propose a non-Markovian social
contagion model on time-varying community networks based on the activity-driven network model. A mean-field
theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two
hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively
large, the behavior can easily spread in one of the communities, while in the other community the spreading only
occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes,
hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission
rates, three distinctive patterns are demonstrated in the change of the whole network’s final adoption proportion
along with the growing community strength. Within a suitable range of transmission rate, an optimal community
strength can be found that can maximize the final adoption proportion. Finally, compared with the average
activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of
edges generated by active nodes.
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I. INTRODUCTION

The dynamics of spreading is one of the hottest research
topics in network science. The aim of this research is to
reveal the underlying mechanisms in real spreading processes
such as epidemic spreading, information spreading, behavior
contagions, and innovation diffusion. The findings from it
further provide theoretical supports for the forecasting and
controlling of these spreading processes [1,2]. In general,
based on the differences in the studied objects, the spreading
processes can be classified into biological spreading and social
contagions. The former focuses on the spreading of diseases
or viruses on networks [3–6], while the latter focuses on
contagions of information and behaviors on networks [7–10].
The social reinforcement effect in social contagions is the
essential difference between biological spreading and social
contagions [11]. It contains the idea that the adoption of an
individual’s behavior often depends on his neighbors’ attitudes
to the behavior [12,13]. For example, when an increasing
number of our friends buy a new smartphone or watch a new
movie, we are more likely to do so ourselves.

Previous research often focused on describing the influ-
ence of the social reinforcement effect on social contagions
[12,14,15]. The Markovian linear threshold model is one of
the most classical models studied [14]. In it, a non-adopter
individual becomes an adopter once the number or proportion
of his adopted neighbors exceeds a threshold. Watts found that
the final behavior adoption proportion, following an increase in
the average degree, first grows continuously and then decreases
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discontinuously [14]. However, an individual’s decision to
adopt a behavior not only depends on the current state of
his neighbors, but it also relates to the behavioral information
he has received in the past. The social reinforcement effect
based on memory thus becomes an essential characteristic
of social contagions. To describe the memory effect (or the
so-called non-Markovian effect), Wang et al. proposed a social
contagion model based on nonredundant memory information,
and they found a continuous growth and a discontinuous
growth of the behavior adoption proportion with the increasing
information transmission rate [16,17]. They also found that an
individual’s limited contact capacity would reduce the final
behavior adoption proportion [18].

However, most previous studies assumed that the network
structures are unchanged. The latest empirical studies showed
that in social networks the connections among individuals vary
with time, which is not a feature of static networks [19]. The
concept of time-varying networks (also be called as temporal
network) was proposed to handle those real situations [20].
A widely observed phenomenon is that individuals are not
always active in a social network due to limitations of time,
funds, energy, or other resources. Perra et al. described these
resources as the active potential of nodes, and they proposed
an activity-driven network model that allows for an explicit
representation of dynamical connectivity patterns [21]. At each
time step, every individual becomes active or not according to
its active potential. If an individual becomes active, it will ran-
domly connect to some individuals. Spreading processes in an
activity-driven network model show striking differences from
the well-known results obtained in quenched and annealed
networks [22]. Perra et al. found that the outbreak threshold
of the SIS model on an activity-driven network is greater
than that on the corresponding aggregated network [21].
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Liu et al. found that a disease spreads more slowly on
activity-driven networks than it does on the corresponding
aggregated networks, and the invasion threshold on the former
is hundreds of times greater than that of the latter [23].
Holme et al. studied the threshold model on time-varying
networks based on empirical data, and they found that the
final adoption proportions increase due to the time-varying
network structures [24].

Another significant feature observed in real-world networks
is community structure [25,26], which can have a remarkable
effect on the dynamics of spreading on networks. In previous
studies, Liu et al. found that community structures can
facilitate biological spreading on static networks [27], and
Ahn et al. found that there is an optimal community strength
that can greatly promote the social contagions [28]. Recent
empirical studies showed that community structures also exist
in time-varying networks [20,29]. However, the effects of these
structures on social contagions are rarely discovered, and the
exploration to them is still full of challenges. On the one hand,
the contacts in time-varying networks vary over time and do
not exist continuously. Thus, the spreading processes cannot
be described accurately by the existing theoretical methods
that succeeded in static networks. On the other hand, the
mathematical analysis becomes much more complicated due to
the non-Markovian and nonlinear characteristics of equations
caused by strong social reinforcement effects.

In this paper, the effects of time-varying community struc-
tures on social contagions are systematically explored. First, a
non-Markovian social contagion model on time-varying com-
munity networks is presented, and then a mean-field theory is
developed. It is found that two hierarchical features exist in
the behavior adoption processes: (i) when community strength
is relatively large, the behavior can easily spread in one of the
communities, while in the other community rapid spreading
cannot occur until higher behavioral information transmission
rates are adopted; (ii) hierarchical orders are displayed in
the behavior adoption’s spatial-temporal evolution patterns.
Moreover, under different behavioral information transmission
rates, along with the growth of community strength, three
different growth patterns can be observed for the final behavior
adoption proportion for the whole network. In a suitable
transmission rate range, an optimal community strength that
can maximize the final adoption proportion can be found.
Lastly, it is found that the number of edges generated by
active individuals plays a more important role in the promotion
or inhibition of social contagions than the average activity
potential.

II. MODELS

To study the effects of time-varying community networks
on social contagions, a non-Markovian social contagion model
on an activity-driven community network is proposed.

A. Activity-driven community network

In this section, we present a time-varying community
network based on the activity-driven network model [21].
First, it is supposed that a network has N nodes (representing
individuals), consisting of two communities A and B with

FIG. 1. An illustration of the social contagion model on an
activity-driven community network. The network is divided into two
equal-sized communities A and B, each with four nodes. The circle
around a node indicates that the node is active. (a) At t = 0, nodes
1 and 3 are randomly selected as seeds on community A, and the
remaining nodes are susceptible. (b) At t = 1, the instantaneous
structure G1 is generated, in which nodes 1 and 6 are activated
with probability a = 0.25, and m = 3 edges are generated. Every
edge connects to nodes in the same community with probability
u = 0.6 and with probability 1 − u = 0.4 to the other community.
Adopted nodes 1 and 3 transmit the behavioral information to their
susceptible neighbors with λ = 0.8. Note that node three transmits
the information without activation. Node 6 receives two pieces of
information, which reach the adoption threshold π = 2, and thus
it becomes adopted. Then, nodes 1 and 3 try to become recovered
with γ = 0.1. Finally, delete all edges generated at this time step. (c)
At t = 2, nodes 3 and 8 become active and form the instantaneous
structure G2. No information transmission succeeds this time. Then
nodes 3 and 6 both become recovered successfully. (d) At t = 3, nodes
4 and 5 are activated in the instantaneous structure G3. The contagion
process terminates since all adopted nodes become recovered.

equal sizes. Initially, each node is assigned with an equal
activity potential a. Although it is hampered to some extent
by the limitations of our results, we restrict ourselves here
to a fixed a rather than the heterogeneous version [21] to
simplify further analysis. The instantaneous network structure
Gt is then generated as below: at a time step t , each node is
activated with the probability a. If a node v is activated, it
will generate m edges. Similar to the stochastic block model
[30,31], each edge randomly connects to a node in the same
community with a probability μ, called community strength,
and to a node in the other community with a probability
1 − μ (as shown in Fig. 1). Multiple edges and self-loops are
forbidden. To form community structures, we set 0.5 � μ < 1.
There will be fewer edges between communities with the
increase of μ. For a small value of μ, the community structure
is not obvious. When μ = 0.5, the probabilities of an edge
connecting to the same or a different community are equal, and
thus the time-varying community structures disappear. When
μ = 1, there is no edge between communities, which leads to
two isolated networks. This case is meaningless and thus is
excluded. At the end of time step t , all the generated edges are
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deleted. A time-varying community network is generated by
repeating the above process.

B. Social contagion model

In this section, a non-Markovian model, called the
susceptible-adopted-recovered (SAR) model, is proposed to
describe a social contagion on time-varying community
networks [16,32]. The states of the nodes are divided into
susceptible, adopted, and recovered. In the susceptible state
a node has not adopted the behavior, and it is willing to
receive behavioral information from its neighbors who have
adopted the behavior. In the adopted state a node has adopted
the behavior, and it is willing to spread the behavioral
information to its neighbors. In the recovered state a node
loses interest in the behavior and no longer anticipates the
spreading process. Each node holds a constant adoption
threshold π , which reflects its will to adopt the behavior. In
addition, a memory variable χi represents how many pieces
of behavioral information node i has received. By introducing
χi , the dynamics of the social contagion essentially becomes
non-Markovian.

In the beginning, a proportion ρ0 of nodes are randomly
chosen as seeds (initial adopters), and the remaining nodes
are susceptible. A synchronous updating method is adopted
to update the nodes’ states [16]. At each time step, an
instantaneous structure Gt is first generated according to the
method described in Sec. II A. Then the behavior spreads
on network Gt as follows. Every adopted node (not only
active nodes) v transmits the behavioral information to each
susceptible neighbor u in Gt with the probability λ. If u

receives the information successfully, its memory variable χu

will be increased by 1. If χu reaches or exceeds the adoption
threshold π , the node u will become adopted. Note that if
π = 1, the model is memoryless, and thus we only discuss the
situation of π > 1. At the same time step, the adopted nodes
become recovered with probability γ . The contagion process
terminates once all adopted nodes are recovered. In this model,
the probabilities λ and γ can be interpreted as the transmission
rate and the recovery rate, respectively. Contrary to the model
in [16], in which the redundant information is not allowed to
transmit between two individuals, our proposed model allows
a pair of individuals to transmit the same message repeatedly.
An illustration of our model is provided in Fig. 1.

III. THEORY

In the section, a mean-field approximation theory is
developed to describe quantitatively the non-Markovian social
contagions on a time-varying community network. In this
theory, the network size is assumed to be very large, i.e.,
N → ∞ in the thermodynamic limit.

The degree distribution of the time-varying community
network should be derived first. Although the edges are
changing with time, we can still capture the degree distribution
of the instantaneous structure Gt . There are two types of nodes
in Gt , namely active nodes and inactive nodes. The inactive
nodes are unable to generate edges, but they can receive
connections from active nodes. Based on the definitions of
m and a described in Sec. II A, it is expected that Nma edges
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FIG. 2. The degree distributions of the instantaneous structure
obtained from numerical simulations and theoretical predictions.
The solid line (circles) and the dashed line (squares) represent the
theoretical predictions (simulation results) of degree distribution with
m = 5,〈k〉 = 2 and m = 10,〈k〉 = 1.2, respectively. Other parame-
ters are set to be N = 10 000, μ = 0.8. The simulation results are
averaged over 1000 realizations. All presented results have been
normalized within the range 1 � k < 20.

exist in Gt . In the community network, two communities are
of the same size, and each generated edge may connect from
an active node to a node in the same (or different) community
with the probability μ/(N/2 − 1) [or (1 − μ)/(N/2)]. Thus,
every node has the same probability of about 1/N to receive
a connection. The probability that an inactive node has degree
k is

PI (k) =
(

maN

k

)(
1

N

)k(
1 − 1

N

)maN−k

. (1)

In the thermodynamic limit, i.e., N → ∞, maN is very large
and 1/N is quite small. We can rewrite Eq. (1) as

PI (k) = (ma)k

k!
e−ma. (2)

For an active node with degree k, it generates m edges toward
other nodes, and k − m edges are received from other active
nodes. Similarly, we get the degree distribution PA(k) of active
nodes as

PA(k) =
{

0 if k < m,
(ma)k−m

(k−m)! e−ma if k � m.
(3)

Combining Eqs. (2) and (3), the instantaneous degree distri-
bution for the time-varying network Gt is

P (k) = (1 − a)PI (k) + aPA(k). (4)

In Fig. 2, it is shown that our approximation works quite well
even when the community strength is relatively large (μ = 0.8)
or when the averaged degree is not an integer (〈k〉 = 2ma =
1.2).

We next discuss the situations within and between com-
munities. Only the theoretical analysis of community A will
be introduced in detail, since the results on community B can
be derived simply by exchanging the indexes “A” and “B.”
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A node vA belonging to community A connects to nodes in the
same community with probability μ and to nodes in a different
community with probability 1 − μ. Therefore, the probability
of node vA with degree k connecting to i nodes in community
A can be easily written as

ωAA(k,i) = P (k)

(
k

i

)
μi(1 − μ)k−i , (5)

and in community B the form is given as

ωAB(k,i) = P (k)

(
k

i

)
(1 − μ)iμk−i , (6)

where i = 0,1, . . . ,k.
After analyzing the network structure, we turn to describe

social contagions. We denote the proportion of susceptible
nodes who have received r pieces of behavioral information
in community A and community B at time step t as SA(r,t)
and SB(r,t), respectively. ρA(t) and ρB(t) are used to denote
the proportion of adopted nodes in communities A and B,
respectively, and RA(t) and RB(t) are used to denote the
proportion of recovered nodes at time step t . When t → ∞,
all adopted nodes become recovered. We denote the final
proportion of nodes in the recovered state in communities A

and B (N/2 nodes) as RA(∞) and RB(∞), respectively. The
final behavior adoption proportion in the whole network (N
nodes) is computed as R(∞) = [RA(∞) + RB(∞)]/2.

To write the equations for the time evolution of each type of
node, we must first know the probability that vA has n adopted
neighbors at time step t , denoted as θA(n,t). Suppose vA has
i neighbors in community A in the instantaneous structure Gt

[see Eq. (5)]. The probability that j nodes of these i neighbors
are in an adopted state is

ξAA(i,j,t) =
(

i

j

)
[ρA(t)]j [1 − ρA(t)]i−j . (7)

Similarly, the probability that vA with i neighbors in commu-
nity B and j of them are adopted is given by

ξAB(i,j,t) =
(

i

j

)
[ρB(t)]j [1 − ρB(t)]i−j . (8)

Notice that ωAA(k,i) also means the probability that vA,
given degree k, connects to k − i nodes in community B for
the above inference, that is to say, ωAA(k,i) = ωAB(k,k − i).
We have the probability that the vA connects to n adopted
neighbors in the whole network,

θA(n,t) =
kmax∑
k=1

k∑
i=0

ωAA(k,i)
min(n,i)∑

j=0

[ξAA(i,j,t)

× ξAB(k − i,n − j,t)], (9)

where min(x,y), denoting the minimum value of x and y,
is used to avoid the situations that j exceeds i or n. For a
susceptible node vA with n adopted neighbors at time step t ,
the probability that it receives at least one piece of behavioral
information from its neighbors is

ψA(t) =
kmax∑
n=1

θA(n,t)[1 − (1 − λ)n]. (10)

Note that we should sum up all possible values of k to
the maximum degree kmax when numerically solving the
equations. Similarly, the probability that vA receives i � 1
pieces of behavioral information can be expressed as

φA(i,t) =
kmax∑
n=i

θA(n,t)

(
n

i

)
λi(1 − λ)n−i . (11)

Obviously, Eq. (10) can be derived by Eq. (11) as

ψA(t) =
kmax∑
i=1

φA(i,t). (12)

The time evolution of the contagion process can be
described by a developed mean-field approximation. For
SA(r,t) (r = 0), the nodes that have not received any behavioral
information at time step t will change into other states when
they receive at least one piece of behavioral information.
Denote the proportion of these nodes as SA(0,t), and yield

dSA(0,t)

dt
= −SA(0,t)ψA(t). (13)

For 1 � r < π , the change of SA(r,t) is induced by two cases.
SA(r,t) increases when the nodes who have only received fewer
than r pieces of behavioral information, whose proportion
is SA(q,t) (0 � q < r), receive r − q pieces of behavioral
information with probability

∑r−1
q=0 SA(q,t)φA(r − q,t). At

the same time, SA(r,t) decreases because those nodes with
r pieces of behavioral information receive at least one piece
of information and turn to other states with the probability
SA(r,t)ψA(t). The evolution equation of SA(r,t) can be
written as

dSA(r,t)

dt
=

r−1∑
q=0

SA(q,t)φA(r − q,t) − SA(r,t)ψA(t). (14)

Similarly, the increase of adopted nodes results from
the state change of susceptible nodes who have received
information being equal to or over the threshold π , with
probability

∑π−1
q=0 SA(q,t)[ψA(t) − ∑π−1−q

i=1 φA(i,t)], and the
decrease is due to their recovery, with probability γρA(t). Thus
the evolution of the proportions of adopted and recovered
nodes can be written as

dρA(t)

dt
=

π−1∑
q=0

SA(q,t)

[
ψA(t) −

π−1−q∑
i=1

φA(i,t)

]
− γρA(t)

(15)

and

dRA(t)

dt
= γρA(t), (16)

respectively.
Now, Eqs. (13)–(16) form a complete description of

the social contagions process, allowing us to compute the
proportion of nodes in any state in community A at any time
step. By transferring our knowledge to community B, the time
evolutions in community B can be obtained.

The outbreak threshold of social contagion λc is a crucial
physical parameter. When the information transmission rate λ
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is greater than λc, a finite fraction of nodes will adopt the
behavior. When λ � λc, there is only a vanishingly small
fraction of nodes adopting the behavior. Initially, there are
few nodes in the adopted state, thus SA(0) → 1, SB(0) → 1,
ρA(0) → 0, ρB(0) → 0, RA(0) → 0, and RB(0) → 0. Previ-
ous studies indicated that the behavior can break out over the
network if and only if the proportion of adopted individuals
can grow exponentially at the initial time [33,34]. Thus,
one expects to obtain λc by analyzing the stability around
SA(0) → 1. Unfortunately, this method is not suitable for
our model because of the following two reasons. On the
one hand, a vanishingly small fraction of initial adopters
cannot lead to the quick growth of adoption at the initial time
in our model, as the susceptible nodes cannot immediately
accumulate the information memory to reach or exceed the
adoption threshold π [16]. To this extent, SA(0) → 1 might
not be a feasible fix point. On the other hand, the nonlinearity
out of the memory effects in the system makes the linearization
method near the stability point ineffective [35]. Therefore, the
outbreak threshold cannot be obtained by the linearization
method. To get the outbreak threshold, further research is
needed.

IV. SIMULATION RESULTS

Based on the proposed model, we perform extensive simula-
tions to investigate the social contagions on time-varying com-
munity networks. In the simulations, the size of network, the
recovery probability, adoption threshold, and the initial adopter
proportion are set to be N = 10 000, γ = 0.1, π = 3, and ρ0 =
0.03, respectively. In the beginning, Nρ0 nodes in community
A are randomly chosen as seeds of the adopter, and the remain-
ing nodes in the whole network are susceptible. The simulation
results of the final adoption proportion (FAP) RA(∞), RB(∞),
and R(∞) are obtained by averaging the results over 2000
independent realizations. The theoretical values of RA(∞),
RB(∞), and R(∞) are given by solving Eqs. (13)–(16). In the
following subsections, the effects of community structure and
time-varying structure on social contagions will be discussed
separately.

A. Effects of community structure

We first explore the growths of RA(∞), RB(∞), and
R(∞) versus the information transform rate λ under different
community strength μ. Different growth patterns can be
observed in Fig. 3. For relatively small μ (0.5 and 0.9), nodes
in community A and B start to adopt the behavior almost
at the same λ [see Figs. 3(a) and 3(b)]. This is because the
effect of community structure is not obvious when μ is small,
and the adopted nodes are able to transmit the behavioral
information across the community. However, for relatively
large values of μ (0.95 and 0.97), a hierarchical feature arises
in the behavior adoption process: nodes in community A

begin to adopt the behavior at small λ, while the adoption
in community B does not occur until λ reaches a larger
value [Figs. 3(c) and 3(d)]. In this situation, nodes tend to
transmit information to nodes in the same community, which
makes it difficult to transmit the information to community
B and thus leads to the hierarchy mentioned above. The
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FIG. 3. The final adoption proportion (FAP) R(∞), RA(∞), and
RB (∞) vs information transmission probability λ under different
community strengths. In the figure, (a) μ = 0.5, (b) μ = 0.9, (c) μ =
0.95, and (d) μ = 0.97. The solid line (circles), dashed line (squares),
and dotted line (diamonds) represent the theoretical predictions
(simulation results) of R(∞), RA(∞), and RB (∞), respectively.
Simulation and theoretical suggested outbreak thresholds λc are
labeled by triangles and stars, which are recorded as soon as R(∞) is
slightly larger than ρ0, that is, R(∞) > 0.04, due to the difficulty of
determining the outbreak threshold [38,39]. The suggested thresholds
are (a) λc = 0.54,0.60; (b) λc = 0.40,0.44; (c) λc = 0.38,0.42; and
(d) λc = 0.37,0.41 for simulation and theoretical results, respectively.
Other parameters are set to be N = 10 000, ρ0 = 0.03, a = 0.2,
m = 5, γ = 0.1, and π = 3, respectively.

theoretical predictions give a quantitative description of the
above phenomena, which are basically in agreement with the
simulation results, including the suggested outbreak threshold
λc. The deviations between the theoretical predictions and
the simulation results could be explained by the dynamical
correlations among neighbors and finite-size network effects
[36,37]. Figure 4 displays the growth patterns of ρA(t) and
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FIG. 4. Time evolutions of ρA(t) and ρB (t), in which (a) and
(b) correspond to Figs. 3(b) and 3(d), respectively. The time series
shown above are sampled under parameters λ = 0.6 and time span
[0,300], and they are averaged over 200 realizations. The remaining
parameters are set to be the same as those in Figs. 3(b) and 3(d).
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FIG. 5. The FAP R(∞), RA(∞), and RB (∞) vs community
strength μ under different information transmission rates (a) λ =
0.35, (b) λ = 0.47, (c) λ = 0.55, and (d) λ = 0.7. The solid line
(circles), dashed line (squares), and dotted line (diamonds) represent
the theoretical values (simulation values) of R(∞), RA(∞), and
RB (∞), respectively. Other parameters are set to be the same as
in Fig. 3.

ρB(t) versus time t , respectively, corresponding to the cases
in Figs. 3(b) and 3(d). Actually, another hierarchical feature
is displayed in Fig. 3, from which it can be observed that the
increase of ρA(t) and ρB(t) actually starts at different times.
We call this the spatial-temporal hierarchy due to the spatial-
temporal order exhibited in the contagions processes. We stress
the differences between the two hierarchies because under
the same parameters, Fig. 4(a) shows two separate peaks that
might indicate divergence in the time order of outbreaks, while
Fig. 3(b) exhibits no obvious feature to identify the hierarchy.
Thus, it can be concluded that they are two independent
phenomena.

Figure 5 provides the growths of RA(∞), RB(∞), and
R(∞) versus μ under different λ. Three different growth
patterns can be observed. For small values of λ in Fig. 5(a),
R(∞), RA(∞), and RB(∞) increase monotonically with
growing μ. The λ range showing this phenomenon is called as
the enhancing-only region. With the increase of λ, as shown in
Figs. 5(b) and 5(c), RA(∞) increases with μ monotonically,
while RB(∞) and R(∞) first rise and then decline. The peaks
in Figs. 5(b) and 5(c) indicate the existence of the optimal com-
munity strength promoting the behavior adoption. We identify
this λ range as the enhancing-depressing region. The optimal
contagion phenomenon can be explained as follows: there are
more edges in the community for larger μ, which promotes
the information spreading within community A. Meanwhile,
the number of bridge edges between communities decreases
with growing μ. If μ is large enough, the global behavior
adoption will be inhibited, resulting in a decrease of RB(∞)
and R(∞). When λ is very large, nodes in both communities
adopt the behavior easily [as shown in Fig. 5(d)]. For any given
μ, the RA(∞) can always reach a large value. When μ is large
enough, the two communities tend to be isolated and the global

FIG. 6. The FAP RA(∞), RB (∞), and R(∞) vs community
strength μ and information transmission rate λ. Color-coded values
show simulation results in (a) RA(∞), (c) RB (∞), and (e) R(∞),
and theoretical predictions in (b) RA(∞), (d) RB (∞), and (f) R(∞),
respectively. Other parameters are set to be the same as in Fig. 3.

behavior adoption will be suppressed, leading to a decrease of
RB(∞) and R(∞). Thus, this range of large λ is regarded as the
depressing-only region. It is noted that the optimal contagion
phenomena occur near the outbreak threshold λc (refer to Fig. 6
later), so there are slightly obvious deviations between the
theoretical predictions and the simulation results in Figs. 5(b)
and 5(c).

Figure 6 also presents a whole picture of the effects of
λ and μ on RA(∞), RB(∞), and R(∞). According to the
definitions in the preceding paragraph, the (μ,λ) planes are
divided into three regions: (i) the enhancing-only region, (ii)
the enhancing-depressing region, and (iii) the depressing-only
region. As RA(∞) increases monotonically with μ, only region
I exists in Figs. 6(a) and 6(b). Due to the effect of time-varying
community structures, three different regions can be observed
in Figs. 6(c)–6(f). This means that there exists an optimal
community strength within a certain range of λ that can
help the values of RB(∞) and R(∞) reach their maximum
values. As shown in Figs. 6(b), 6(d), and 6(f), the theoretical
results fit the simulation results illustrated in Figs. 6(a), 6(c),
and 6(e).

B. Effect of time-varying structure

In Fig. 7, the effect of time-varying structure on social
contagions is investigated. According to the description of the
time-varying community structure, the average degree of Gt

is 〈k〉 = 2ma at time step t , which allows us to compare the
relative importance of time-varying structure parameters m and
a on the social contagions. Keeping the remaining parameters
the same as Fig. 3, we fix the average degree 〈k〉 = 2, and
we adjust the values of m and a. To draw Fig. 7, the contour
plots of certain R(∞) are obtained in the parameter plane
(μ,λ) with different values of m and a. The contours with
R(∞) = 0.4 and 0.7 are demonstrated in Figs. 7(a) and 7(b),
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FIG. 7. The behavioral information transmission rate λ vs com-
munity strength μ for a given FAP (a) R(∞) = 0.4 and (b) R(∞) =
0.7. The dashed line (diamonds), solid line (circles), and dotted line
(squares) denote the theoretical values (simulation values) of m = 2,
a = 0.5; m = 5, a = 0.2; and m = 10, a = 0.1, respectively. Other
parameters are set to be of N = 10 000, ρ0 = 0.03, γ = 0.1, and
π = 3, respectively.

respectively. With these contours, the corresponding values
of λ for a given R(∞) and μ can be visualized. The change
in the corresponding value of λ actually reflects whether the
social contagions are promoted or inhibited. For example, if
the corresponding value of λ become lower, it can be known
that the social contagions are promoted, because it is easier to
reach the given R(∞) under some μ. Based on this, one can
expect that if the importance of m and a is equal, when they
change inversely proportional to each other their influences
on social contagions will counteract with each other, and the
contours of simulation results and theoretical solutions will
remain almost the same.

However, as shown in Fig. 7, the contours move down
obviously with the increase of m/a, which implies that the
influences of m actually exceed the influences of a. The
phenomenon can be explained in the following way: increasing
the value of m/a means decreasing the number of active nodes
and increasing the average degree of active nodes, which
leads to the emergence of active nodes with a large degree.
When active nodes have a large degree, they will have a high
probability to get in touch with adopted nodes and become
adopted at one time step, thus these contacts are effective. On
the contrary, small m/a will result in a small degree of active
nodes in an instantaneous structure. These active nodes will not
receive enough information at one time step, and they wait for
another round of activation. During the resting, the adopters in
the network might be recovered. Thus, though the number of
active nodes existing at one step is reduced because of the small
value of a, their large degrees still make contacts efficient, and
thus R(∞) can reach the assigned value more easily. To this

extent, compared with the parameter a, parameter m has a
more crucial influence on promoting or inhibiting the social
contagions.

For other average degrees, such as 〈k〉 = 0.2,1,3, similar
phenomena can be observed. The results from our theoretical
method display similar phenomena about the effects of m/a

in Fig. 7.

V. DISCUSSION

In this paper, the goal of which was to explore the effects
of time-varying community structures on social contagions,
and we proposed a non-Markovian social contagion model
on a time-varying community network. We then developed
the mean-field theory to quantitatively describe the proposed
model. Through theoretical analysis and extensive numerical
simulations, it is shown that there are two hierarchical features
in the behavior adoption processes. In one regard, the behavior
spreads in one of the communities easily, while a larger
information transmission rate is required for outbreak in
the other community. Independently, the behavior adoption
displays a hierarchical feature in the spatial-temporal evolution
pattern. Moreover, under different behavioral information
transmission rates, the final behavior adoption proportion
in the whole network versus the community strength can
show one of the different patterns, i.e., the enhancing-only
pattern, the enhancing-depressing pattern, or the depressing-
only pattern. In the enhancing-depressing region, optimal
community strength can be easily found, at which the final
adoption proportion is maximized. Finally, we discovered
that the number of edges generated by active individuals
plays a more important role on social contagions than the
average activity potential. In general, our developed theory
succeeded in qualitatively predicting the occurrence of various
phenomena in simulations, though a more accurate theoretical
approach is urgently needed.

This work can help us to better understand, predict, and
control social contagions on social networks. However, we
assumed that all individuals have the same activity potential.
The role of heterogeneous activity potentials should be
addressed in future studies, e.g., by using activity potentials
with power-law distribution. To distinguish the difference
between time-varying networks and static networks, a com-
parable static network model should be carefully designed.
In addition, the effect of social contagions on epidemic
spreading and the relationship between time-varying net-
works and multilayer networks are worthy of future study
[40–44].
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