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Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity
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Recent studies have demonstrated that defocusing cubic nonlinearity with local strength growing from the
center to the periphery faster than rD , in space of dimension D with radial coordinate r , supports a vast variety
of robust bright solitons. In the framework of the same model, but with a weaker spatial-growth rate ∼rα with
α � D, we test here the possibility to create stable localized continuous waves (LCWs) in one-dimensional
(1D) and 2D geometries, localized dark solitons (LDSs) in one dimension, and localized dark vortices (LDVs)
in two dimensions, which are all realized as loosely confined states with a divergent norm. Asymptotic tails
of the solutions, which determine the divergence of the norm, are constructed in a universal analytical form
by means of the Thomas-Fermi approximation (TFA). Global approximations for the LCWs, LDSs, and LDVs
are constructed on the basis of interpolations between analytical approximations available far from (TFA) and
close to the center. In particular, the interpolations for the 1D LDS, as well as for the 2D LDVs, are based on a
deformed-tanh expression, which is suggested by the usual 1D dark-soliton solution. The analytical interpolations
produce very accurate results, in comparison with numerical findings, for the 1D and 2D LCWs, 1D LDSs, and
2D LDVs with vorticity S = 1. In addition to the 1D fundamental LDSs with the single notch and 2D vortices
with S = 1, higher-order LDSs with multiple notches are found too, as well as double LDVs, with S = 2. Stability
regions for the modes under consideration are identified by means of systematic simulations, the LCWs being
completely stable in one and two dimensions, as they are ground states in the corresponding settings. Basic
evolution scenarios are identified for those vortices that are unstable. The settings considered in this work may
be implemented in nonlinear optics and in Bose-Einstein condensates.
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I. INTRODUCTION

It is commonly believed that the formation of localized
waves (alias solitons) in uniform media is a result of the
balance between diffraction and self-focusing or defocusing
nonlinearity [1]. Following this concept, it has been established
that defocusing nonlinearity creates dark solitons, while self-
focusing nonlinearity is necessary for the existence of bright
solitons in homogeneous media.

The situation may be different in inhomogeneous media.
First, inhomogeneity can be represented by spatially periodic
linear potentials, induced by photonic crystals in optics [2], by
gratings built into plasmonic waveguides for surface plasmon
waves [3], and by optical lattices in atomic Bose-Einstein
condensates (BECs) [4–6] or Fermi gases [7]. Owing to
the straightforward realization in a vast variety of physical
systems, periodic potentials play an increasingly important
role in manipulations of different kinds of waves and solitons
[8,9]. It has been demonstrated that the periodic potentials,
in combination with the self-focusing or defocusing material
nonlinearity, give rise to various species of bright solitons
[5,6,10–13], including ordinary ones, residing in the semi-
infinite gap of the system’s linear spectrum, and gap solitons
in finite band gaps. In particular, the formation of bright
gap solitons in the system with the defocusing sign of the
nonlinearity may be interpreted as a result of the reversal of
the sign of the effective dispersion under the action of the
periodic potential [14–16].
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Another possibility for the creation of bright solitons is
offered by nonlinear lattices (see the review in [15] and
references therein). These are nonlinear counterparts of linear
periodic potentials, which are induced by spatially periodic
modulations of the local strength and possibly sign of the
nonlinearity. In optics, nonlinear lattices may be engineered
by means of properly designed photonic-crystal structures
(e.g., filling voids in photonic crystals by solid [17] or liquid
[18] materials with different values of the Kerr coefficient
or the coefficient accounting for the quadratic nonlinearity
[19]). Another possibility is to use inhomogeneous dis-
tributions of nonlinearity-enhancing dopants [20] (note, in
particular, that appropriate dopants may induce defocusing
on top of a self-focusing background [21]). In BECs, similar
nonlinearity landscapes can be induced by the Feshbach
resonance in spatially nonuniform optical [22] or magnetic
[23] fields. In the framework of one-dimensional (1D) set-
tings, nonlinear lattices support bright solitons under various
conditions [24].

In contrast to the commonly adopted principle that pure
defocusing nonlinearities, without the help of linear poten-
tials, cannot produce bright solitons, it was demonstrated
that media with a pure self-repulsive (defocusing) spatially
inhomogeneous nonlinearity, whose local strength grows from
the center to the periphery at any rate faster than rD (r is
the radial coordinate), can support a great variety of robust
self-trapped modes in the space of dimension D, including 1D
fundamental and higher-order (dipole and multipole) solitons,
2D solitary vortices with arbitrarily high topological charges
[25], and sophisticated 3D modes, such as soliton gyroscopes
[26] and skyrmions, i.e., vortex rings with intrinsic twist [27].
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Such modes exist due to the balance between the spatially
inhomogeneous repulsive nonlinearity and linear dispersion
or diffraction. A characteristic feature of these self-trapped
modes is nonlinearizability of the underlying equations for
their decaying tails, in contrast to the usual bright solitons in
media with uniform or periodically modulated nonlinearities,
where solitons are restricted to the semi-infinite or finite band
gaps of the corresponding linear spectrum [5,6,10–13]. In
fact, the nonlinearizability of the tails makes the concept
of the linear spectrum irrelevant for the solitons supported
by repulsive nonlinearities with the spatially growing local
strength.

The exploration of bright solitons and solitary vortices
supported by such a scheme has been extended to a variety
of physical settings (see Refs. [25–32] and references therein).
However, all the studies in this field thus far have been
restricted to the above-mentioned condition of the steep spatial
modulation of the self-defocusing, whose local strength must
grow with r faster than rD . Actually, this condition secures
the convergence of the soliton’s total norm for bright solitons.
Weakly localized states, possible in the presence of a more
gentle modulation, ∼rα with α � D, have not been studied
yet. Because their total norm diverges (they are localized
too loosely for the convergence of the norm), like in the
usual continuous-wave states and dark solitons [33], such
spatially even (symmetric) and odd (antisymmetric) modes
may be considered, respectively, as localized continuous-wave
(LCW) states and as localized dark solitons (LDSs). In
particular, the LCW configurations represent the ground state
in the present settings. The consideration of this system is
relevant, as it may be easier to implement a gentle modulation
profile in the experiment than its above-mentioned steep
counterpart, and the LDS offers an essential extension of
the well-elaborated concept of dark solitons in the uniform
1D space [33]. This is the subject of the present work.
We focus here on 1D and 2D media with the defocusing
cubic nonlinearity subject to the moderate spatial modulation.
In these settings, 1D LDS solutions and 2D vortex modes
[localized dark vortices (LDVs)] with vorticity S = 1 can be
obtained in an approximate analytical form, which is validated
by comparison with numerical results. More complex states,
such as higher-order 1D solitons and vortices with S > 1, are
constructed numerically.

The paper is organized as follows. In Sec. II we introduce
the model and report approximate analytical solutions. Tails of
the weakly localized states are produced in a universal form,
which does not depend on the spatial dimension, or on the
parity (spatial symmetry or antisymmetry) of the underlying
solution, by means of the Thomas-Fermi approximation
(TFA). For the global structure of the LCWs, LDSs, and LDVs
we develop approximations based on interpolations between
asymptotic forms available close to the center and far from
it. In particular, a deformed-tanh interpolation produces quite
accurate results for 1D LDS and 2D LDV with S = 1. In
Sec. III numerical results are reported for the shape and
stability of 1D fundamental and higher-order LCWs and LDSs.
Numerical findings for 2D states are presented in Sec. IV. The
paper is summarized in Sec. V.

II. MODEL AND ANALYTICAL APPROXIMATIONS

A. Underlying equations

The model is based on the generalized nonlinear
Schrödinger (NLS) or Gross-Pitaevskii equation for the mean-
field wave function ψ(r,z), written in the scaled form

iψz = − 1
2∇2ψ + g(r)|ψ |2ψ. (1)

The model is cast in the optics notation, with the evolution
variable z realized as the propagation distance (for matter
waves, z is replaced by time t), g(r) > 0 being the local
strength of the defocusing cubic term, which is specified below,
and the Laplacian ∇2 = ∂2

x + ∂2
y acts on transverse coordinates

{x,y} in the bulk medium, with r =
√

x2 + y2. Stationary
solutions to Eq. (1) with real propagation constant k are
sought as ψ(x,y,t) = φ(x,y) exp(ikz), where the stationary
wave function (generally speaking, it may be complex) obeys
its own equation,

kφ = 1
2∇2φ − g(r)|φ|2φ. (2)

Equation (2) can be derived from the respective Lagrangian

L =
∫∫ [

k|φ|2 + 1

2
|∇φ|2 − 1

2
g(r)|φ|4

]
dx dy. (3)

The 1D model corresponds to an obvious one-dimensional
reduction of Eqs. (1)–(3).

To illustrate the concept of the loosely localized solitons,
we note that the 2D version of Eq. (2) with

g(r) = g0r
2, (4)

which corresponds to the critical case of α = D, gives rise to a
family of weakly singular exact LDV solutions with vorticity
S = ±1:

φ(r,θ ) =
√

−k/g0r
−1e±iθ , (5)

where θ is the angular coordinate and the wave number k may
take any negative value.

B. Thomas-Fermi approximation

The TFA, which neglects derivatives in the stationary
equation (2), gives rise to real self-trapped solutions in the
form of

φTFA(r) ≈
√

−k/g(r), (6)

which is relevant at large r , where it is asymptotically exact,
i.e.,

[φ(r) − φTFA(r)]/φTFA(r) → 0 at r → ∞ (7)

[25]. Because the defocusing nonlinearity implies g(r) > 0,
Eq. (6) holds for k < 0 [cf. the exact vortex solution (5)].
The TFA produces universal results for the tails, which, as
mentioned above, do not depend on the spatial dimension or
on the global structure of the underlying solution [e.g., whether
it is an LCW, a fundamental LDS, its higher-order counterpart
(see below), or an LDV].
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For modulation profiles g(r) that have a power-law asymp-
totic form at r → ∞,

g(r) = g0r
α, (8)

with α � D (r is realized as |x| for D = 1), Eq. (6) gives rise
to slowly decaying tails in the form of

φ(r) ≈
√

−k

g0
r−α/2

(
1 − α

16
[α + 2(2 − D)]r−2

)
, (9)

where the second term in large parentheses represents the
first post-TFA correction, which corroborates relation (7). It
follows from Eq. (9) that the critical point α = D, which
separates states with convergent and divergent values of the
norm (or integral power, in terms of optics) N = ∫

φ2(r)dr,
is an exact one (the correction to the TFA does not affect this
point).

The divergence of N for α < D can be estimated by
introducing an overall size R of a truncated version of the
system, with r � R (obviously, any physical system has a
finite size). Then Eq. (6) yields

ND(α) ≈ 2πD−1|k|
g0(D − α)

RD−α (10)

for D = 1 or 2 (|k| is written here, as k is negative), which
explicitly displays the divergence at R → ∞. In the limit case
of α = D, Eq. (10) is replaced by

Nα=D ≈ 2πD−1|k|
g0

ln(R/r0), (11)

where r0 is an internal size of the mode; for instance, it
is r0 = S/

√
2|k| for the vortex (14) (see below). We note

that while the truncation determines the N (α) dependence
in the case of α � D, it does not strongly affect the shape
of the modes under consideration if R is large enough, as
the shapes of the modes decay at large r anyway, even if
relatively slowly. This conclusion is corroborated in particular
by the shapes displayed below in Figs. 1, 3, 6, and 8.

It is worth noting that expressions (10) and (11) satisfy
the anti-Vakhitov-Kolokolov (anti-VK) condition dN/dk < 0,
which is a necessary stability condition for localized modes
supported by defocusing nonlinearities [34]. In fact, the anti-
VK condition is sufficient for the stability of ground states, but
it may not be sufficient for excited states (see below).

In the 2D version of the model, LDVs states with integer
vorticity S are looked for as

ψ(r,θ,z) = eikz+iSθϕS(r), (12)

with real amplitude ϕ(r) obeying the following equation:

−kϕS = −1

2

(
d2ϕS

dr2
+ 1

r

dϕS

dr
− S2

r2
ϕS

)
+ g(r)ϕ3

S. (13)

For g(r) taken as per Eq. (4) and S2 = 1, an exact solution
of Eq. (13) is given by Eq. (5). In the general case, a solution
to Eq. (13) can again be looked for by means of the TFA,
neglecting the radial derivatives:

ϕ2
S(r) =

{−[1/g(r)](k + S2/2r2) at r2 > −S2/2k

0 at r2 < −S2/2k
(14)
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FIG. 1. Comparison of the analytical interpolation for 1D LCW
states, given by Eq. (15), with their numerically found counterparts,
for (a) α = 0.2 and k = −1.35, (b) α = 0.65 and k = −3.4, (c) α = 1
and k = −2.1, and (d) α = 2 and k = −2.1 (the latter case, with
α > D = 1, corresponds to a bright soliton). (e) Numerically found
dependence N (k) for the 1D LCW state at different values of α, with
norm N computed in a finite domain |x| � 20. The dashed lines show
the analytical counterpart, given by Eq. (10) with D = 1 and R = 20.
This figure and all others pertain to g0 = 1 in Eq. (8), fixed by scaling.

(cf. the application of the TFA to vortex solutions in
Refs. [26,35]).

C. Global interpolations

The TFA is relevant for the outer zone, where the derivatives
(diffraction, in the optics model, or kinetic energy, in the BEC
system) may be neglected. As an attempt to construct a global
approximation, we will try an interpolation that goes over into
the TFA at large r and matches a correct analytical form of
the solution in its inner zone. The interpolation for the LCW
(the ground state), corresponding to the modulation profile
(8), is based on the following simplest expression, which is
compatible with the TFA asymptotic form (6) and the fact
that the LCW state must be free of singularities and feature a
maximum at r = 0:

φ(r) =
√

|k|
g0

(
r2 + r2

0

)−α/4
. (15)

This expression does not feature spatial dimension D (recall
that r2 is replaced by x2 in one dimension). However, the value
of constant r0, which is determined by the substitution of this
expression in Eq. (2) at r = 0 (or x = 0, in the 1D case),
depends on the D:

r2
0 = Dα/4|k|. (16)

In fact, the interpolation (15) may be used for the bright
solitons at α > D too, although in that case it turns out to
be less accurate (see below).
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It is relevant to calculate the total norm of the truncated
version (r � R) of expression (15) with α � 2 for D = 2 (for
D = 1 the analytical result is too cumbersome):

ND=2(α < 2)

= 2π |k|
g0(2 − α)

[(
R2 + α

2|k|
)1−α/2

−
(

α

2|k|
)1−α/2

]
,

(17)

ND=2(α = 2) = π |k|
g0

ln

(
2|k|
α

R2 + 1

)
. (18)

Obviously, in the limit of (2|k|/α)R2 � 1, expressions (17)
and (18) carry over into Eqs. (10) and (11), respectively,
produced by the TFA.

For the 2D LDV with vorticity S � 1, as well as for the
1D LDS, a natural form of the interpolation, which we call
deformed tanh, is suggested by the hyperbolic-tangent solution
for the usual dark soliton in the 1D uniform space:

[ϕS(r)]tanh =
√

|k|
g(r)

[tanh(λr)]S, (19)

where 1/λ determines the radius of the LDS core, which is
used below as a fitting parameter, while comparing Eq. (19) to
numerical results. In the 1D geometry, [ϕS(r)]tanh in Eq. (19)
is replaced by

φtanh(x) =
√

|k|
g(x)

tanh(λx), (20)

while r is replaced by x as the argument of g(r) and tanh(λr).
Below, results produced by numerical computations are

displayed and compared to these analytical approximations.
We stress that the validity of the numerical schemes needs to be
carefully checked in the present setting, as properly handling
boundary conditions (BCs) for weakly localized modes with
slowly decaying tails is a known challenging problem in
simulations of nonlinear partial differential equations, such
as the NLS equation (1). In particular, we have inferred
that the usual split-step fast Fourier transform method with
periodic BCs does not apply to the present model and the
finite-difference method with Neumann or Dirichlet BCs is
not an appropriate one either. To resolve the issue, we have
developed a finite-difference method with dynamical BCs
for robust simulations of Eq. (1). These BCs are defined as
∂
∂z

( ∂ψ

∂r
|BP) = ∂

∂z
( ∂ψ

∂r
|BP−1), where the subscripts BP and BP − 1

pertain to the boundary point and the inner one adjacent
to it (further technical details are beyond the scope of the
present paper). It is relevant to mention that our numerical
codes correctly reproduce 1D and 2D bright solitons (with
finite norms) for α > D, which were found in earlier works
[25,28–31].

III. NUMERICAL RESULTS FOR ONE-DIMENSIONAL
LOCALIZED MODES

In this section we report numerical results for the 1D
model with modulation profile (8), in which g0 = 1 is fixed
by means of rescaling. The LCW and LDS states (both

fundamental and higher-order ones, in the latter case) were
produced as numerical solutions of the stationary equation
(2). The same stationary solutions can also be found by
means of integrating the NLS equation (1) in imaginary time,
fixing propagation constant k, which is another well-known
numerical method for producing stationary solutions [36].
The stability of the so-found solutions was then checked by
means of systematic simulations of Eq. (1) for the evolution
of perturbed solutions in real time, using the above-mentioned
finite-difference numerical scheme with the dynamical BCs.
The spatial and time steps were taken as 
x = 
y = 0.08 and

z = 0.001, using different sizes of the integration domain,
which are appropriate in different cases, as specified below.

Numerical simulations reveal that the shape of 1D
LCW states conspicuously change with the increase of the
nonlinearity-modulation power α, featuring growth of the
amplitude and decrease of the width. Naturally, the LCW
states carry over into a fundamental bright soliton, with the
convergent norm, at α > D. These features can be clearly seen
in Figs. 1(a)–1(d). A comparison between the numerical solu-
tions for the 1D LCW states and the analytical approximation
based on Eqs. (15) and (16) is shown in Fig. 1 too. It can be seen
that the LCW profiles predicted by the analytical interpolation
provide a good fit to their numerical counterparts for all α � 1,
and the corresponding expression (10) for the norm, calculated
in the truncated domain, also matches well the numerically
computed N (k) dependences, in spite of the absence of any
fitting parameter in the underlying interpolation [in contrast to
the presence of the parameter λ in Eqs. (19) and (20), which
is used below in Fig. 3]. A discrepancy in the analytical and
numerical shapes of the localized mode occurs at α > 1 for
bright solitons, although the wings are still well approximated
by the analytical ansatz in Fig. 1(d), which is explained by its
compliance with the asymptotically exact expression (6). In
the latter case, the discrepancy is naturally explained by the
fact that the smooth interpolation formula cannot accurately
follow the effects of the steep modulation.

Direct simulations demonstrate that all the 1D LCW states
found at α � 1, as well as their bright-soliton continuation
at α > 1, are completely stable, in accordance with the fact
that they represent the system’s ground state. In addition, as
shown in Fig. 1(e), relations N (k) at different values of α obey
the above-mentioned anti-VK criterion dN/dk < 0, which
provides the necessary stability condition for the localized
modes in the defocusing medium; it is actually a sufficient one
for ground states [34].

Examples of 1D fundamental (single-notch) LDSs, with
different values of the modulation power α, are displayed
in Fig. 2(a). It can be seen that the solitons’ amplitude
increases, the waist shrinks, and the decaying tails sharpen
with the increase of α. The N (k) curves for the families of
1D fundamental LDSs, shown in Fig. 2(d), along with their
TFA-predicted counterparts, given by Eq. (10), are obtained
for the truncated 1D system with |x| < R = 15, covered by a
grid of 1024 points [cf. Eq. (10)]. A (relatively small) mismatch
between the numerical and TFA curves is explained by the fact
that the TFA ignores the norm defect induced by the notch.

A comparison of typical numerically found profiles of the
1D fundamental LDSs with their counterparts provided by
the deformed-tanh interpolation (19) is presented in Fig. 3. It
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FIG. 2. (a) Shapes of 1D fundamental (single-notch) LDSs with
different values of parameters (α = 0 and k = −0.5, α = 0.12
and k = −1.1, and α = 0.27 and k = −2.1). The comparison of
these numerically found profiles with their approximate analytical
counterparts is displayed in Fig. 3. Included in (a), for the sake of
comparison, is the commonly known exact dark soliton for α = 0.
(b) and (c) Examples of higher-order LDSs with different numbers
of notches: (b) two notches for α = 0.25 and k = −2.2 and (c) three
notches for α = 0.3 and k = −1. (d) Norm N vs the propagation
constant k for 1D fundamental LDSs in the truncated system with
different values of α. Dashed straight lines show the respective
analytical approximations given by Eq. (10).

shows that the approximation is very accurate, provided the
value of λ in the ansatz (19) is selected as one that yields
the best fit of the analytically predicted LDS profile to the
numerical one.

Results for the stability analysis of the fundamental LDSs,
collected in Fig. 4(a), demonstrate that they are stable at

α < α(LDS)
max ≈ 0.55 (21)
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FIG. 3. Comparison of numerically computed solutions for the
1D fundamental localized dark solitons with the analytical prediction
based on the deformed-tanh interpolation (labeled D-tanh in the
figure), given by Eq. (19) for (a) α = 0.12 and k = −1.1, with
λ = 1.1, and (b) α = 0.27 and k = −2.1, with λ = 1.5.
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FIG. 4. Stability border for (a) the 1D fundamental LDSs and (b)
the 2D LDVs with charge S = 1. The dark solitons and vortices are
stable above the respective borders. While the shape of the stability
borders is relatively complex, the results meet the natural condition
that all the modes are stable in the limit of α → 0, in compliance with
the commonly known fact that dark 1D solitons and 2D vortices are
completely stable in the case of the spatially uniform self-defocusing.

for values of |k| that are not too large. Typical examples of
the evolution of stable and unstable 1D fundamental LDSs
are displayed in Figs. 5(a) and 5(b), respectively. As can
be seen in the latter figure, the unstable fundamental LDS
spontaneously loses its spatial antisymmetry [i.e., the notch,
at which |ψ(x,z)| was originally vanishing, gets filled] and
quickly evolves into an excited (oscillating) version of the
LCW, i.e., a disturbed ground state, with a maximum, rather
than minimum, of |ψ(x,z)|2 at x = 0.

It is relevant to stress that the conclusions concerning
the stability of the 1D LDSs, produced by the simulations
performed in the domain of size |x| � 30, as shown in Fig. 5,

FIG. 5. Evolution of (a) stable and (b) unstable 1D fundamental
LDSs for (a) α = 0.3 and k = −1.9 and (b) α = 0.35 and k = −2.4.
Also shown are the oscillations of weakly unstable perturbed 1D
higher-order LDSs with different numbers of notches: (c) two, for
α = 0.25 and k = −2.2, and (d) three, for α = 0.3 and k = −1.
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(c) α = 2 and k = −2.2. (d) Numerically found dependence N (k)
for the 2D LCW states in the truncated model, at different values
of α. Dashed lines display the analytical approximation for N (k), as
produced by Eq. (17).

are virtually the same as those obtained using a smaller domain
(not shown here in detail) |x| � 10 (which is still essentially
larger than the size of the corresponding LDSs), the shape of
the respective stability area remaining the same in Fig. 4(a). It
is also relevant to stress that in those cases when the LDSs are
unstable [Figs. 5(c) and 5(d)], the instability is clearly seen to
commence in the central segment of the integration domain,
rather than arriving from the periphery. These findings confirm
that conclusions about the stability of the LDSs in the infinite
system may be based on the simulations performed in finite
domains, in spite of the divergence of the total norm in the
infinite system. The same conclusions are valid for the 2D
setting. In particular, conclusions concerning the instability
boundary and development of 2D vortices (see Fig. 9 below)
are virtually the same for the domain with size |x,y| � 20 and
for a smaller one (not shown in detail here) of size |x,y| � 10.
In the latter case, the instability remains confined too to the
central core of the integration domain.

A noteworthy property of the 1D model is the existence
of excited states in the form of higher-order LDSs that are
defined by the number of the profile’s zero crossings (notches),
starting from the single one for the fundamental LDS. As is
well known, the integrable NLS equation, corresponding to
α = 0, does not give rise to higher-order dark solitons. Typical
examples of the second- and third-order LDSs are displayed
in Figs. 2(b) and 2(c), respectively.

All the higher-order LDSs are unstable, but the instability
may be weak. As shown in Figs. 5(c) and 5(d), weakly
unstable higher-order dark solitons develop regular spatially
symmetric oscillations, keeping the initial number of notches.
These plots clearly demonstrate that the instability of the

higher-order LDSs is explained by the interaction between
individual notches.

IV. NUMERICAL RESULTS FOR TWO-DIMENSIONAL
LOCALIZED CONTINUOUS-WAVE

AND DARK-VORTEX MODES

In this section we focus on 2D LCW states and 2D LDVs,
the latter representing the most interesting modes in the 2D
geometry. Noteworthy results are obtained for both types of
modes.

A comparison of the analytical interpolation for the LCW,
based on Eqs. (15) and (16), with the numerically found
solutions is shown in Figs. 6(a)–6(c). Outer segments of the
analytical shapes completely overlap with their numerical
counterparts, while the inner ones show minor discrepancies.
Note that, similar to the 1D LCWs [see Figs. 1(a)–1(c)], good
accuracy is provided by the analytical interpolation without
the use of any fitting parameter. At α > 2, the 2D LCW state
carries over into the fundamental bright soliton, which was
found in Ref. [25]. Similar to the 1D counterparts, the 2D
LCW states are found to be completely stable in their entire
existence region α � 2, which is easily explained by the fact
that they are ground states of the 2D setting.

Examples of LDVs with vorticities S = 1 and 2 are plotted,
respectively, in Figs. 7(a) and 7(b). Both plots include the
standard dark vortex in the uniform space, with α = 0 [35,37],
for the sake of comparison. It can be seen that, with the increase
of α, the shape of the weakly localized vortex sharpens, for
both S = 1 and 2, similar to the trend featured by the 1D LDS
in Fig. 2(a). On the other hand, the amplitude of the vortex
decreases, while in Fig. 2(a) it was increasing with the growth
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FIG. 7. (a) and (b) Numerically found profiles of 2D LDVs with
topological charges, severally, S = 1 and 2, propagation constant k =
−1.5, and different values of α. The profiles of the usual vortices in the
uniform space, corresponding to α = 0, are shown for comparison. (c)
Profiles of vortices with different values of k, for α = 0.6 and S = 2.
(d) Norm of the vortex in the truncated system, with r � R = 15, vs
k, for the LDVs with S = 1,2 and α = 0.4.
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FIG. 8. Comparison of numerically found profiles of the 2D
LDVs with the fit provided by the deformed-tanh interpolation
(19) (labeled D-tanh): (a) S = 1 and λ = 1.1 and (b) S = 2 and
λ = 1.5. The propagation constant is k = −4 for α = 0.6 in (b),
while k = −1.5 for the other vortices shown here.

of α. The deformed-tanh interpolation (19) may be accurately
fitted to the numerically found shape of the LDVs with S = 1,

as shown in Fig. 8(a).
The results of the stability tests for perturbed LDVs with

S = 1 are collected in Fig. 4(b). The vortices are stable at
α < α(S=1)

max ≈ 0.90 [cf. Eq. (21)] for values of |k| that are not
too large. A stability area was also found for the LDVs with
S = 2 (in particular, it is bounded by α < α(S=2)

max ≈ 0.88), but
its exact delineation requires excessively heavy simulations.

Different unstable vortices feature different scenarios of
the instability development. In Fig. 9(a), an unstable LDV
with S = 1 transforms into an eccentric vortex, with the pivot

FIG. 9. Snapshots of the perturbed evolution of unstable 2D
LDVs with different topological charges S: (a) a vortex with S = 1,
α = 0.51, and k = −2.7 turns into the eccentric vortex orbiting
the center; (b) an unstable double vortex with S = 2, α = 1.2,
and k = −1.8 splits into a rotating pair of unitary vortices; (c) the
transformation of an unstable double vortex with S = 2, α = 0.45,
and k = −2.5 into a broader, apparently stable, double vortex. All
the plots are produced in the domain size |x,y| < 20, as marked
in (a).

moving along a circular trajectory. Furthermore, in Fig. 9(b)
an unstable double vortex (S = 2) splits into a rotating pair
of unitary ones, which is typical for multiple vortices in
self-defocusing media [37]. Finally, in Fig. 9(c), the perturbed
double vortex (again, the one with S = 2) spontaneously
broadens and turns into a different, apparently stable, double
LDV. The latter scenario was found to be typical for the
evolution of the LDVs that are unstable because their |k| is
too large.

V. CONCLUSION

It has recently been demonstrated that, in contrast to the
common belief, the pure defocusing nonlinearity can support
various robust bright solitons in the space of dimension D,
provided the local strength of the nonlinearity increases from
the center to the periphery faster than rD . In previous works,
only bright-soliton modes were investigated theoretically
in settings of this type. In this work, we have addressed
loosely localized modes, with the divergent norm, hence they
may be categorized as LCWs, LDSs, and LDVs (localized
continuous waves, localized dark solitons, and localized dark
vortices, respectively). Such modes are supported by the
local nonlinearity strength growing slower than, or exactly
as, rD . The corresponding nonlinearity landscapes may be
realized for light waves in nonlinear photonic crystals or in
inhomogeneously doped optical media, and for matter waves
in BECs, controlled by means of the spatially inhomogeneous
Feshbach resonance. The LCWs, which represent the ground
state in the 1D and 2D geometries, LDSs (both fundamental
and higher-order ones, characterized by multiple notches in
the 1D case), and LDVs, with vorticities S = 1 and S = 2,
have been constructed by means of analytical approximations
and numerical methods. The relevant analytical methods are
the TFA for universal tails of all modes and the interpolation
between analytical approximations available far from and
close to the center, for the LCW states in one and two
dimensions, and for 1D LDSs and 2D LDVs. In particular, the
interpolation based on the deformed-tanh expression provides
for a very accurate fit to numerically found 1D LDS and 2D
LDV profiles (the latter one fits well for S = 1). Stability
areas for these modes and instability development scenarios
for unstable ones have been identified by means of systematic
simulations of the perturbed evolution. In particular, the LCWs
are completely stable in one and two dimensions alike, which
is readily explained by the fact that they serve as ground states
in the respective settings.

In terms of BECs, the present analysis may be extended
for the 3D setting, with α < 3 in Eq. (8). On the other
hand, it may be interesting to extend the analysis to loosely
localized states in 1D and 2D models with spatially modulated
nonlocal nonlinearity, where the stabilization of vortex solitons
in particular is also a relevant problem [38].
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