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We investigate the instantaneous behavior of synchronized temporal wave forms in two mutually coupled
semiconductor lasers numerically and experimentally. The temporal wave forms of two lasers are synchronized
with a propagation delay time, with one laser oscillating in advance of the other, known as the leader-laggard
relationship. The leader-laggard relationship can be determined by measuring the cross-correlation between the
two temporal wave forms with the propagation delay time. The leader can be identified when the optical carrier
frequency of the leader laser is higher than that of the other laser. However, spontaneous exchange between
the leader and laggard lasers can be observed in low-frequency fluctuations by short-term cross-correlation
measurements, even for a fixed initial optical frequency detuning. The spontaneous exchange of the leader-
laggard relationship originates from alternation of partial optical frequency locking between the two lasers. This
observation is analyzed using a phase space trajectory on steady-state solutions for mutually coupled lasers with
optical frequency detuning.
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I. INTRODUCTION

Coupled nonlinear dynamical systems show various syn-
chronization phenomena in chaotic dynamics, such as identical
synchronization [1–3], generalized synchronization [4–6], and
phase synchronization [7–9]. Synchronization of chaotic dy-
namics is crucial in numerous interdisciplinary research fields,
such as information exchange and the binding problem in the
brain [10,11], secure communications [12], and secure key
exchange [13–15]. Coupled semiconductor lasers have been
used as test-beds for observing a variety of synchronization
phenomena [16–20].

In coupled lasers, one of two lasers oscillates in advance
of the other by a propagation delay time. This phenomenon
is called the leader-laggard relationship [17], a type of lag
synchronization [21–23] for which two temporal wave forms
are synchronized with a propagation delay time. The laser
oscillating in advance is called the “leader” and the other
laser is called the “laggard.” Leader-laggard synchronization
has been investigated in mutually coupled semiconductor
lasers [24–27] and vertical-cavity surface-emitting lasers [28].
The leader and laggard lasers can be identified from the
intensity dropouts of the two lasers, which occur earlier in
the leader laser than in the laggard laser in the low-frequency
fluctuation (LFF) regime, where LFFs are characterized by
sudden dropouts at irregular times and a gradual recovery
in the optical outputs [29–33]. The leader-laggard relation-
ship can be determined only at the timing of the intensity
dropouts of the LFFs. It is currently not well understood
how the leader-laggard relationship changes for the short-term
duration corresponding to the propagation delay time. In
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addition, the leader-laggard relationship in other dynamical
regimes (e.g., coherence collapse) has not yet been well
investigated.

A typical feature of LFF is a sudden power dropout with a
following gradual power recovery. The power dropout and the
recovery process in LFF are irregular, and they are associated
with fast chaotic pulsations. It is known that LFF dynamics
can be interpreted as chaotic itinerancy, since the laser output
power hops around external-cavity modes due to saddle-node
instability [29–33]. Chaotic itinerancy is a universal dynamics
in high-dimensional dynamical systems, showing itinerant
motion and irregular switching among different quasiattrac-
tors [34–37]. Chaotic itinerancy has been investigated in
coupled systems [38,39] and networks [40], and chaotic
itinerancy is considered to be important for memory searching
processes [34,41] and information processing [34,42] in
the human brain. Synchronization with the leader-laggard
relationship can be observed in neural networks, and it is
important to understand the roles played by synchronization
and chaotic itinerancy in information processing in the human
brain. The leader-laggard relationship for a short-term duration
may reveal important information for understanding the
mechanism of synchronization in delay-coupled dynamical
systems.

In this study, we investigate spontaneous exchange of the
leader-laggard relationship in mutually coupled semiconduc-
tor lasers in the LFF regime. We use the cross-correlation of
the temporal wave forms of the mutually coupled lasers to
identify the leader-laggard relationship. We then numerically
investigate both the global and local leader-laggard relation-
ship by changing the length of the temporal wave forms used
for calculating the cross-correlation. We analyze steady-state
solutions of the mutually coupled semiconductor lasers and
explain how the local leader-laggard relationship emerges in
the phase space. We also confirm the spontaneous exchange
of the leader-laggard relationship in experiment.
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FIG. 1. Model for mutually coupled semiconductor lasers with
time delay. τ is the propagation delay time of the light.

II. NUMERICAL SIMULATION

A. Numerical model

The model for mutually coupled semiconductor lasers
used in our study is shown in Fig. 1. The optical output
from laser 1 is injected into laser 2 after the propagation
delay time τ . The optical output from laser 2 is also
injected into laser 1. The coupled lasers are mathematically
treated as infinite-dimensional systems due to the existence
of time-delayed coupling [43]. A variety of dynamics have
been observed in mutually coupled lasers, such as localized
synchronization [44] and synchronized chaotic dynamics with
spontaneous symmetry breaking [17,24].

The nonlinear dynamics of coupled lasers are described by
the Lang-Kobayashi equations [45]:

dE1,2(t)

dt
= 1 + iα

2

[
GN [N1,2(t) − N0]

1 + ε|E1,2(t)|2 − 1

τp

]
E1,2(t),

+ κE2,1(t − τ ) exp[iθ1,2(t)] (1)

dN1,2(t)

dt
= J − N1,2(t)

τs

− GN [N1,2(t) − N0]

1 + ε|E1,2(t)|2 |E1,2(t)|2,

(2)

θ1,2(t) = (ω2,1 − ω1,2)t − ω2,1τ, (3)

where E and N are the slowly varying complex electric-field
amplitude and the carrier density of the semiconductor lasers,
respectively. The subscripts 1 and 2 represent lasers 1 and 2,
respectively. GN is the gain coefficient, N0 is the carrier density
at transparency, ε is the gain saturation coefficient, and α is
the linewidth enhancement factor. τp and τs are the photon
and carrier lifetimes, respectively. J = 1.1Jth is the injection
current of the lasers, where Jth is the injection current at the
lasing threshold.

The second term in the right-hand side of Eq. (1) represents
the optical injection from the other laser. κ is the coupling
strength between the two lasers, and τ is the propagation delay
time of the light. θ1,2(t) is the optical phase difference between
the laser light and the injected light. In Eq. (3), 	ω(= ω1 − ω2)
is the optical angular frequency detuning between lasers 1
and 2, where ω is the initial optical angular frequency of the
laser. 	ω is given by 	ω = 2π	fini, where 	fini represents
the initial optical frequency detuning between the two lasers,
defined as 	fini = fini1 − fini2. The initial optical frequency
of laser 1 fini1 is calculated as fini1 = c/λ1 from the speed of
light c and the optical wavelength λ1 of laser 1.

The initial optical frequency detuning 	fini and the
coupling strength κ are important parameters for observing
synchronization in mutually coupled lasers, since they are
related to optical injection locking. Injection locking can be
achieved for 	fini close to zero and a large κ . In our numerical
simulation, κ is fixed at 30.0 ns−1 and 	fini is varied.

TABLE I. Parameter values used in numerical simulations.

Symbol Parameter Value

GN Gain coefficient 8.40 × 10−13 m3 s−1

N0 Carrier density at transparency 1.40 × 1024 m−3

ε Gain saturation coefficient 4.5 × 10−23

τp Photon lifetime 1.927 × 10−12 s
τs Carrier lifetime 2.04 × 10−9 s
α Linewidth enhancement factor 3.0
λ1 Optical wavelength of laser 1 1.537 × 10−6 m
c Speed of light 2.998 × 108 ms−1

κ Injection strength 30.00 × 10−9 s−1

j = J/Jth Normalized injection current 1.1
τ Propagation delay time of light 36.64 × 10−9 s

between the two lasers
	fini Initial optical frequency detuning Variable

between the two lasers

The propagation delay time τ is also an important parameter
for the dynamics of coupled lasers. In mutually coupled lasers,
it has been shown that the temporal output of one laser
is synchronized to that of the other laser with τ [24,27].
We use a propagation delay time of τ = 36.64 ns in our
numerical simulations, which corresponds to our experimental
conditions discussed in Sec. IV. The parameter values used in
our numerical simulations are shown in Table I.

B. Global leader-laggard relationship

We observe the temporal dynamics of mutually coupled
semiconductor lasers in the LFF regime and investigate the
global leader-laggard relationship, which represents the leader
and laggard lasers on average for a long duration. Cross-
correlation values between the output intensities of lasers 1 and
2 are used to identify the global leader-laggard relationship. We
investigate the dependence of the leader-laggard relationship
on the optical frequency detuning 	fini.

Figure 2(a) shows the temporal wave forms of the laser in-
tensities in mutually coupled semiconductor lasers. The inten-
sities of lasers 1 and 2 are given by I1,2(t) = |E1,2(t)|2. The ini-
tial optical frequency detuning is fixed to 	fini = 2 GHz. The
temporal wave forms shown in Fig. 2(b) are obtained by filter-
ing the temporal wave forms of Fig. 2(a) using a low-pass filter
with a cutoff frequency of 0.1 GHz. We use a finite impulse
response filter realized by a Hanning window with a window
size of 10 ns [46]. A sudden decrease in the intensity, which
is called an intensity dropout, is observed in Fig. 2(b). The
intensity gradually recovers after the intensity dropout. The
interval of the increase in the recovery process corresponds to
the round-trip propagation time of light between the two lasers
(2τ = 73.28 ns). The intensity dropout and the gradual recov-
ery are evidence of LFF dynamics. The intensity dropout of
laser 2 is delayed with a propagation of τ = 36.64 ns compared
with that of laser 1. The time lag of the dropouts in Fig. 2(b)
indicates that laser 1 is the leader and laser 2 is the laggard.

To identify the leader-laggard relationship, we calculate the
cross-correlation function between the temporal wave forms
of the laser 1 and 2 intensities as follows:

C(τ0) = 〈[I1(t − τ0) − Ī1][I2(t) − Ī2]〉T
σ1σ2

, (4)
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FIG. 2. (a) Temporal wave forms of the laser intensities I1,2(t)
in the mutually coupled semiconductor lasers. The initial optical
frequency detuning 	fini is set to 2 GHz. (b) Low-pass-filtered
temporal wave forms of (a) with a cutoff frequency of 0.1 GHz.

where the subscripts 1 and 2 represent lasers 1 and 2,
respectively. I1(t) and I2(t) are the temporal wave forms of
the intensities of lasers 1 and 2. Ī is the mean value of the
laser intensity for the duration T . σ is the standard deviation
of the intensity for T . 〈·〉T represents time averaging over the
period T . The cross-correlation function converges for a large
value of T . In our study, we used the original temporal wave
forms of the laser intensities I1,2(t) for the calculation of the
cross-correlation function without using a low-pass filter.

Temporal wave forms with length T = 10 000 ns are used
for the calculation of the cross-correlation function. The
duration of the intensity dropout and the recovery process
is about 400 ns. Therefore, a temporal wave form of 10 000 ns
includes ∼25 intensity dropouts.

Figures 3(a) and 3(b) show the cross-correlation function of
the temporal wave forms of the two laser intensities for the ini-
tial optical frequency detunings of 2 and −2 GHz, respectively.
The peak intervals of the cross-correlation function correspond
to 2τ = 73.28 ns, indicating that the dominant frequency of
the delay-coupled laser dynamics is determined by 1/(2τ ), as
reported in [17]. More importantly, several peaks appear at the
delay time of ±τ , ±3τ , ±5τ , and so on. The correlation peaks

FIG. 3. Cross-correlation function of the temporal wave forms of
the two laser intensities. The initial optical frequency detuning is (a)
2 GHz and (b) −2 GHz. The propagation delay time is τ = 36.64 ns.

at ±τ (= ±36.64 ns) indicate that one of the two temporal
wave forms is shifted by the propagation delay time τ .

Here, we focus on the cross-correlation values at τ0 = τ

and τ0 = −τ and refer to them as C̄1 and C̄2, respectively
(see Fig. 3). The leader-laggard relationship can be identified
from the values of C̄1 and C̄2. It is expected that the delayed
signal of the leader laser and the signal of the laggard laser are
strongly correlated since the leader laser oscillates earlier than
the laggard laser by τ . Therefore, C̄1 > C̄2 indicates that laser
1 is the leader and C̄1 < C̄2 indicates that laser 2 is the leader.

In Fig. 3(a), C̄1 > C̄2 is observed and laser 1 is the leader
for the initial optical frequency detuning of 2 GHz. On the
contrary, in Fig. 3(b), C̄1 < C̄2 is observed and the laser 2
is the leader for the detuning of −2 GHz. The role of the
leader-laggard is exchanged by changing the sign of the initial
optical frequency detuning. The leader-laggard relationship
can be identified by comparing the values of C̄1 and C̄2.

We also calculate the optical frequency detuning between
lasers 1 and 2 under the mutual coupling 	fmc as follows [47]:

	fmc(t) = 	fini + 1

2π

	φ(t) − 	φ(t − T )

T
, (5)

	φ(t) = φ1(t) − φ2(t), (6)
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FIG. 4. Averaged cross-correlation values C̄1 (black solid curve),
C̄2 (blue dashed curve), and optical frequency detuning under the
mutual coupling 	f̄mc (red dotted curve) as a function of the initial
optical frequency detuning 	fini.

where 	φ(t) is the optical phase difference between the
two lasers. φ(t) is calculated as φ(t) = tan−1 [Eim(t)/Ere(t)],
where Ere(t) and Eim(t) are the real and imaginary parts of
E(t), respectively. The optical frequency detuning 	fmc(t)
also converges by using a large value of T , defined as 	f̄mc.
We can determine injection locking by using 	f̄mc in the
mutually coupled lasers. The injection locking occurs under
the condition 	f̄mc ≈ 0. When the injection locking does not
occur, 	f̄mc is nearly equal to 	fini.

Figure 4 shows the dependence of the cross-correlation
values C̄1,2 and the optical frequency detuning 	f̄mc on the
initial optical frequency detuning 	fini. The black solid and
blue dashed curves represent C̄1 and C̄2, respectively. The red
dotted curve represents 	f̄mc. For the red dotted curve, 	f̄mc

in |	fini| � 7.0 GHz is close to zero due to partial injection
locking. In this region, the cross-correlation values C̄1 and C̄2

have relatively large values ranging from 0.5 to 0.8. From the
comparison of C̄1 and C̄2, it is found that C̄1 is larger than
C̄2 for positive 	fini (fini1 > fini2), while C̄2 is larger than C̄1

for negative 	fini (fini1 < fini2). Thus, laser 1 is the leader
for fini1 > fini2 and laser 2 is the leader for fini1 < fini2. This
result indicates that the laser with the higher initial optical
frequency becomes the global leader. This result is consistent
with a previous report in the literature [17].

C. Local leader-laggard relationship

In this section, we investigate temporal changes in the
leader-laggard relationship in mutually coupled lasers for a
short period. We calculate the short-term cross-correlation
values between time-delayed laser 1 and laser 2 (denoted as
C1), and between laser 1 and time-delayed laser 2 (denoted as
C2), by shifting the propagation delay time τ as follows:

C1(t) = 〈[I1(t − τ ) − Ī1][I2(t) − Ī2]〉T
σ1σ2

, (7)

C2(t) = 〈[I1(t) − Ī1][I2(t − τ ) − Ī2]〉T
σ1σ2

, (8)

FIG. 5. (a) Temporal wave forms of the laser 1 and 2 intensities
at 	fini = 2 GHz. (b)–(e) Correlation plots of the two temporal wave
forms with a time shift. (b) and (c) are calculated from the temporal
wave forms of the region X in (a). (d) and (e) are calculated from the
temporal wave forms of the region Y in (a). The temporal wave form
of laser 1 is delayed in (b) and (d). The temporal wave form of laser
2 is delayed in (c) and (e).

where C1(t) is the cross-correlation value between I1(t − τ )
and I2(t), and C2(t) is the cross-correlation value between I1(t)
and I2(t − τ ). The propagation delay time τ = 36.64 ns is used
as the time T for calculating the short-term cross-correlation
values. We can observe temporal changes in their correlation
values for the short time scale of T = τ . C1(t) and C2(t) are
converged to C̄1 and C̄2 for a large value of T , as already
shown in Figs. 3 and 4. Similar to C̄1 and C̄2, the leader-
laggard relationship can be identified from the sign of 	C(t) =
C1(t) − C2(t), i.e., C1(t) > C2(t) (	C(t) > 0) indicates that
laser 1 is the leader and C1(t) < C2(t) (	C(t) < 0) indicates
that laser 2 is the leader.

Figure 5(a) shows the temporal wave forms of the laser 1
and 2 intensities, and is an enlarged view of Fig. 2(a). The
correlation plots shown in Figs. 5(b)–5(e) are obtained from
the temporal wave forms in the time windows X and Y with a
width of 2τ in Fig. 5(a). In these correlation plots, one of the
two lasers is delayed by τ . Thus, the first half of one temporal
wave form and the second half of the other wave form in
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FIG. 6. Temporal wave forms of the short-term cross-correlation
values C1,2(t) and the short-term optical frequency detuning under
the mutual coupling 	fmc(t). The initial optical frequency detuning
is set to 	fini = 2 GHz. The black solid and blue dashed curves are
C1(t) and C2(t), respectively.

the windows are used for calculating the correlation plots.
Figures 5(b) and 5(c) are the correlation plots for window
X in Fig. 5(a). The laser 1 and 2 intensities are delayed by
τ for Figs. 5(b) and 5(c), respectively. Delayed laser 1 and
laser 2 in Fig. 5(b) are more highly correlated than the case
of laser 1 and delayed laser 2 in Fig. 5(c). The short-term
cross-correlation values are C1(t) = 0.597 and C2(t) = 0.180
for Figs. 5(b) and 5(c), respectively. Laser 1 is the local leader,
since C1(t) is larger than C2(t). Figures 5(d) and 5(e) are the
correlation plots in window Y, which is shifted from window
X by τ . The cross-correlation values are C1(t) = 0.570 and
C2(t) = 0.756 for Figs. 5(d) and 5(e), respectively. Laser 2
becomes the local leader since C2(t) is larger than C1(t).
Although C1(t) hardly changes between windows X and Y,
C2(t) increases and exceeds C1(t), showing that the local
leader-laggard relationship is exchanged.

We show the temporal behavior of the short-term cross-
correlation values C1(t) and C2(t) in Fig. 6. The dynamics
of the mutually coupled lasers operate in the LFF regime.
The temporal wave forms of C1(t) and C2(t) for an intensity
dropout and a recovery process in LFFs are shown in Fig. 6.
The initial optical frequency detuning is set to 	fini = 2 GHz.
Thus, laser 1 is considered the global leader and has an inten-
sity dropout earlier than laser 2. In Fig. 6, C2(t) starts decreas-
ing at about 30 ns, which results from the intensity dropout of
laser 1. The decrease of C1(t) is delayed by the propagation
delay time τ = 36.64 ns, because the intensity dropout of
laser 2 is delayed by τ from the dropout of laser 1. After C1(t)
and C2(t) decrease, their cross-correlation values alternately
increase. The sign of 	C(t) = C1(t) − C2(t) changes repeat-
edly, which indicates that the local leader-laggard relationship
is exchanged. Although laser 1 always shows an earlier inten-
sity dropout than laser 2 due to the positive value of 	fini, the
local leader-laggard relationship is exchanged spontaneously
during the recovery process of LFF. The intervals of the spon-
taneous exchanges correspond to the propagation delay time τ .

FIG. 7. Probability of being the local leader as a function of the
initial optical frequency detuning 	fini. Laser 1 is the local leader
when C1(t) − C2(t) > Cth, whereas laser 2 is the local leader when
C2(t) − C1(t) > Cth, where Cth = 0.1. The black solid and blue
dashed curves represent the probabilities of the local leader being
lasers 1 and 2, respectively.

We investigate the dependence of the spontaneous exchange
of the local leader-laggard relationship on the initial optical
frequency detuning 	fini. To quantitatively evaluate the spon-
taneous exchange, we calculate the probability of the duration
for which one of the lasers becomes the leader. The local
leader-laggard relationship is identified from 	C(t), where
	C(t) > Cth or 	C(t) < Cth indicates laser 1 or 2 is the local
leader, respectively. Cth = 0.1 is used to exclude the ambiguity
of the local leader-laggard relationship near 	C(t) ≈ 0.

Figure 7 shows the probability of being the local leader as
a function of the initial optical frequency detuning 	fini. The
black solid and blue dashed curves represent the probability of
the local leader being laser 1 and 2, respectively. For |	fini| >

8 GHz, the probability is almost 1 or zero, which indicates that
one of the two lasers always becomes the leader. Therefore,
spontaneous exchange is not observed for |	fini| > 8 GHz. For
|	fini| < 8 GHz, the probability of the leader for each laser is
not zero, which indicates that the leader laser changes in time.
Therefore, small |	fini| leads to spontaneous exchange of the
leader-laggard relationship. Comparing Fig. 7 with Fig. 4, it is
found that the parameter region for the spontaneous exchange
roughly corresponds to the region with small 	f̄mc due to
partial injection locking. This result indicates that spontaneous
exchange occurs under partial injection locking.

The occurrence of the spontaneous exchange is related to
the dynamics of the mutually coupled lasers. Figures 8(a)
and 8(b) show the low-pass-filtered temporal wave forms of
the laser intensities. The initial optical frequency detunings
	fini for Figs. 8(a) and 8(b) are set to 5 GHz and 10 GHz, re-
spectively. Intensity dropouts are observed in Fig. 8(a), which
indicates LFF dynamics. The dynamics shows the transition
between the LFF and coherent collapse regimes, which results
in a large number of intensity dropouts [48], since gradual re-
covery is not clearly observed. In Fig. 8(b), there is no intensity
dropout, and the dynamics is fully developed coherent col-
lapse. The temporal wave forms of C1(t) and C2(t) are shown
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FIG. 8. (a), (b) Low-pass-filtered temporal wave forms of the
laser intensities. The initial optical frequency detunings 	fini are 5
GHz and 10 GHz for (a) and (b), respectively. (c), (d) Temporal wave
forms of the short-term cross-correlation values C1,2(t) corresponding
to (a) and (b). The black solid and blue dashed curves represent C1(t)
and C2(t), respectively.

in Figs. 8(c) and 8(d), corresponding to Figs. 8(a) and 8(b),
respectively. In Fig. 8(c), C1(t) and C2(t) alternatively switch
and the sign of 	C(t) changes in time, which indicates the
occurrence of spontaneous exchange of the leader-laggard
relationship. In Fig. 8(d), however, C1(t) is larger than C2(t) for
most of the time and the sign of 	C(t) remains positive. Thus,
the spontaneous exchange occurs only in the LFF dynamics
but not in the fully developed coherent collapse regime.

III. STEADY-STATE SOLUTIONS OF THE
LANG-KOBAYASHI EQUATIONS

In this section, we investigate the mechanism of spon-
taneous exchange of the leader-laggard relationship. We
derive the steady-state solutions of the numerical model for
mutually coupled semiconductor lasers. Steady-state solutions
are useful for understanding the mechanism of laser dynamics.
It is well known that in the LFF dynamics of a semiconductor
laser with optical feedback, the trajectory of the laser in phase
space itinerates around the steady-state solutions [29,30].

We now determine the steady-state solutions calculated
from the Lang-Kobayashi equations (1) and (2) for mutually
coupled semiconductor lasers in the presence of an initial
optical frequency detuning. We explain the relationship
between the steady-state solutions and the trajectories of the
lasers that exhibit spontaneous exchange. In Eqs. (1) and (2),
we define the steady-state solutions of E1,2(t) and N1,2(t)
as As1,s2 exp[i(ωs1,s2 − ω1,2)t] and Ns1,s2, respectively. The
subscripts s1 and s2 represent the solutions for lasers 1 and
2, respectively. As1,s2 are the steady-state solutions for the
electric-field amplitudes. ωs1,s2 are the steady-state solutions

for the optical angular frequencies of the lasers. We consider
that As1,s2, ωs1,s2, and Ns1,s2 are time-constant values. The
following equations are obtained by inserting these solutions
into Eqs. (1) and (2) and by decomposing complex variables
into amplitude and phase terms:

0 = 1

2

[
GN (Ns1,s2 − N0)

1 + ε|As1,s2|2 − 1

τp

]
+ κ

As2,s1

As1,s2
cos θ1,2(t), (9)

ωs1,s2 − ω1,2 = α

2

[
GN (Ns1,s2 − N0)

1 + ε|As1,s2|2 − 1

τp

]

− κ
As2,s1

As1,s2
sin θ1,2(t), (10)

0 = J − Ns1,s2

τs

− GN (Ns1,s2 − N0)

1 + ε|As1,s2|2 |As1,s2|2, (11)

θ1,2(t) = (ωs1,s2 − ωs2,s1)t + ωs2,s1τ. (12)

It is worth noting that θ1,2(t) need to be time invariant,
which is satisfied by assuming ωs1 = ωs2. This assumption
corresponds to injection locking between the two lasers. We
obtain the following equations for the steady-state solutions
from Eqs. (9)–(12) under the assumption ωs = ωs1 = ωs2:

(ωs − ω1)(ωs − ω2) = κ2(1 + α2) sin2[ωsτ + tan−1 α],

(13)

Ns1,s2 − Nth = 2κ2τs

√
1 + α2 cos[ωsτ ] sin[ωsτ + tan−1 α]

(GNτs + ε)(ωs − ω2,1)

+ εNth(j − 1)

GNτs + ε
, (14)

A2
s = jNth − Ns

τsGN (Ns − N0) − ε(Ns − jNth)
, (15)

where Nth is the carrier density at the lasing threshold
[Nth = N0 + 1/(GNτp)]. j = J/Jth is the normalized
injection current and Jth = Nth/τs is the injection current at
the lasing threshold. The steady-state solutions ωs and Ns1,s2

are obtained by numerically solving Eqs. (13) and (14) with
a root-finding algorithm.

The following parameter values are used to calculate the
solutions: propagation delay time τ = 5 ns, coupling strength
κ = 31.06 ns−1, initial optical frequency detuning 	fini = 2
GHz, and gain saturation parameter ε = 2.0 × 10−23. We use
a delay time smaller than that in our numerical simulations
to avoid too many steady-state solutions. The other parameter
values are the same as those in Table I.

We consider a nonzero value of the initial optical frequency
detuning 	fini �= 0 (ω1 �= ω2). The steady-state solutions
obtained by Eqs. (13)–(15) are different from the complete
synchronized solutions in the case of 	fini = 0 reported in
Ref. [49]. The steady-state solutions of Eqs. (13)–(15) become
identical to the complete synchronized solutions in Ref. [49]
only for the condition 	fini = 0.

Figure 9(a) represents the steady-state solutions obtained
from Eqs. (13) and (14). The vertical axis in Fig. 9(a) is
the normalized carrier density calculated as 100Ns1,s2/Nth.
The horizontal axis is the optical frequency shift fs = (ωs −
ω1)/(2π ), which is represented as the steady-state solution of
the frequency shifted from the solitary laser 1 fini1 = ω1/(2π ).
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FIG. 9. (a) Steady-state solutions calculated from Eqs. (13)
and (14). The black and blue dots represent the steady-state solutions
of lasers 1 and 2, respectively. (b) Averaged steady-state solutions
between lasers 1 and 2.

The black and the blue dots represent the steady-state solutions
for lasers 1 and 2, respectively. Asymmetric distributions of
the steady-state solutions of the two lasers are found with
respect to the optical frequency shift. Figure 9(b) shows
the averaged steady-state solutions for the two lasers. The
averaged steady-state solutions are distributed symmetrically.

We consider the averaged trajectory of the two lasers
in order to understand the mechanism of the spontaneous
exchange of the leader-laggard relationship. The averaged
trajectory for mutually coupled semiconductor lasers with
optical feedback has been investigated from the viewpoint
of synchronization in Ref. [49]. We calculate the averaged
trajectory of the carrier density as 100NA(t)/Nth, where
NA(t) = [N1(t) + N2(t)]/2. We calculate the averaged op-
tical frequency of the two lasers fA(t) = [f1(t) + f2(t)]/2,
where f1,2(t) are the optical frequency shifts calculated
from f1(t) = [φ1(t) − φ1(t − τ )]/(2πτ ) and f2(t) = [φ2(t) −
φ2(t − τ )]/(2πτ ) − 	fini.

Figure 10 shows the averaged trajectory (black curve)
for lasers 1 and 2, and the steady-state solutions (red dots)
projected on the phase space of the carrier density and the
optical frequency shift. The averaged trajectory shown in

FIG. 10. (a) Averaged steady-state solutions (red dots) and
averaged trajectory (black curve) in the phase space of the optical
frequency shift and the carrier density. (b) Enlarged view of (a).

Fig. 10 includes an intensity dropout and a gradual recovery
in LFF dynamics. In Fig. 10(a), the trajectory moves in a
clockwise fashion. The carrier density suddenly increases
from the lower side to the upper side of the steady-state
solutions at fA(t) ≈ −13 GHz, which corresponds to an
intensity dropout. After the increase of the carrier density,
the trajectory moves toward fA(t) ≈ 0. The trajectory then
drifts toward the negative direction of the optical frequency
along the solutions of the lower side. Figure 10(b) shows an
enlarged view of the averaged trajectory. It is worth noting
that the averaged trajectory itinerates on the averaged steady-
state solutions chaotically toward the direction of negative
optical frequencies. This phenomenon is considered as chaotic
itinerancy of the averaged trajectory.

We now calculate the temporal wave forms of the optical
frequencies f1,2,A(t) and investigate the relationship between
the optical frequencies and the short-term cross-correlation
values C1,2(t). Figure 11(a) shows the temporal wave forms of
the individual optical frequency f1(t), f2(t), and their averaged
value fA(t). The averaged trajectory corresponds to fA(t) in
Fig. 10. The vertical dashed lines indicate the times when
one of the optical frequencies f1,2(t) starts decreasing, and
the interval of the lines equals the propagation delay time

052212-7



KANNO, HIDA, UCHIDA, AND BUNSEN PHYSICAL REVIEW E 95, 052212 (2017)

FIG. 11. (a) Time evolution of the optical frequency shifts
f1,2,A(t). The black, cyan blue (dark gray), and sky blue (light gray)
curves represent fA(t), f1(t), and f2(t), respectively. The vertical
dashed lines are drawn with the interval of the propagation delay
time (τ = 5 ns) from 15 ns. (b) Time evolution of the short-term
cross-correlation values C1(t) and C2(t). The black and cyan blue
(dark gray) curves represent C1(t) and C2(t), respectively.

τ = 5 ns. The individual optical frequencies f1(t) and f2(t)
change differently in time, which results from the lack of
zero-lag synchronization solutions in the presence of the initial
optical frequency detuning 	fini = 2 GHz. For example, f1(t)
starts increasing at 5 ns, which indicates an intensity dropout
of laser 1. f2(t) also starts increasing at 10 ns, while f1(t) is
almost constant until 15 ns. f1(t) starts decreasing at 15 ns
and f2(t) hardly changes, which leads to f2(t) > f1(t) until
20 ns. After that, f1(t) increases and f2(t) decreases during the
period from 20 ns to 25 ns, and the relationship between f1(t)
and f2(t) is reversed [f1(t) > f2(t)]. This process is repeated
for every 5-ns durations.

The switching between f1(t) and f2(t) is related to the
optical frequencies of the injected light into each laser. The
optical frequency of the injected light into laser 1 corresponds
to f2(t − τ ), since the injected light is delayed by the
propagation delay time τ = 5 ns. For laser 2, the optical
frequency of the injected light into laser 2 corresponds to
f1(t − τ ). For example, in Fig. 11(a), f2(t) decreases rapidly

FIG. 12. Enlarged view of Fig. 11(a). The black, cyan blue (dark
gray), and sky blue (light gray) curves represent fA(t), f1(t), and
f2(t), respectively. The horizontal dashed lines represent the averaged
steady-state solutions of the optical frequency in the lower side of
Fig. 10(b).

from 20 to 25 ns, since f2(t) is strongly affected by f1(t − τ )
and f1(t) decreases from 15 to 20 ns. However, f1(t) does not
change much from 20 to 25 ns since it is affected by f2(t − τ ),
and f2(t) stays almost constant from 15 to 20 ns. After 5 ns, the
relationship between f1(t) and f2(t) is reversed, i.e., f2(t) stays
constant and f1(t) decreases rapidly from 25 to 30 ns, since
they are affected by f1(t − τ ) and f2(t − τ ), respectively.

The local leader-laggard relationship can be determined
from Fig. 11(b), which shows the dynamics of the short-term
cross-correlations C1(t) and C2(t). From 20 to 25 ns, C1(t) is
larger than C2(t), indicating that laser 1 is the leader and laser
2 is the laggard. This observation is consistent with the fact
that f2(t) is pulled by f1(t − τ ) in Fig. 11(a). Compared with
Figs. 11(a) and 11(b), when fi(t) (i = 1 or 2) decreases more
rapidly than the frequency of the other laser, laser i becomes
the laggard, since it follows the frequency and dynamics
of the other laser. fi(t) decreases more than the frequency
of the other laser for the period of τ , and the switching of the
leader-laggard relationship occurs every τ due to the delayed
optical injection.

It is known that it is easier to transfer the optical power
to lower-frequency external-cavity modes in semiconductor
lasers [29]. The energy in each mode is transferred to the
lower-frequency side as a result of the anomalous interaction
of lasing modes [50], since the lower-frequency mode acquires
excess gain in the presence of multimodes. Therefore, the
frequency of the laser tends to be pulled by injected light of
lower frequency. This phenomenon explains the mechanism
for which the laser subjected to the injected light of lower
frequency becomes the laggard.

Figure 12 shows the dynamics of f1(t), f2(t), and their
average fA(t) [enlarged view of Fig. 11(a)]. The steady-state
solutions for the optical frequency are shown as the horizontal
dashed lines. It is worth noting that the averaged optical
frequency fA(t) is locked on the steady-state solutions and
slipped toward the negative frequency direction, whereas f1(t)
and f2(t) fluctuate chaotically without frequency locking. We

052212-8



SPONTANEOUS EXCHANGE OF LEADER-LAGGARD . . . PHYSICAL REVIEW E 95, 052212 (2017)

FIG. 13. Experimental setup of mutually coupled semiconductor
lasers. Amp, electric amplifier; ATT, attenuator; ISO, optical isolator;
PD, photodetector.

interpret that the partial frequency locking of fA(t) always
occurs, and the change in f1(t) and f2(t) determines the
local leader-laggard relationship, i.e., the laser with a rapid
decrease of the optical frequency in the negative direction
corresponds to the laggard. This observation may be slightly
shifted from the local leader-laggard relationship determined
by the cross-correlation values, since there is a small time lag
in the synchronization of the temporal wave forms after the
switching occurs.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We experimentally investigate the spontaneous exchange
of the leader-laggard relationship of the mutually coupled
semiconductor lasers to verify our numerical results. Figure 13
shows our experimental setup of the mutually coupled semi-
conductor lasers. We used two distributed-feedback (DFB)
semiconductor lasers (NTT Electronics, NLK1C5GAAA),
which have an optical wavelength of 1547 nm (referred to
as lasers 1 and 2). The lasers were prepared without standard
optical isolators to allow optical injection. The lasers were
mutually coupled through two optical passes, which were
constructed to form a symmetric coupling configuration. Each
pass provided unidirectional coupling from one laser to the
other by using an optical isolator (ISO). The optical injection
strengths of the two optical passes were adjusted by using
the attenuators. The fiber lengths between the two lasers
were 15.22 m, which corresponds to the propagation delay
time of τ = 36.64 ns. The optical outputs of the lasers were
divided by fiber couplers (FC) and converted into electric
signals by photodetectors (PD, New Focus, 1554-B) with
a frequency bandwidth of 12 GHz. The electrical signals
were amplified by noninverting traveling wave amplifiers
(Amp, New Focus, 1422-LF) with high-pass and low-pass
cutoff frequencies of 14 MHz and 20 GHz, respectively.
The amplified electric signals were sent to a digital os-
cilloscope (Tektronix, DPO71604B, 16 GHz bandwidth, 50
GigaSamples/s). An optical spectrum analyzer (Yokogawa,
AQ6370B) was used to measure the optical wavelengths of
the lasers. Polarization-maintaining fibers were used for all
the optical fiber components.

The injection current and the temperature of the lasers were
adjusted using a current-temperature controller. The lasing
thresholds of the injection currents for lasers 1 and 2 were
8.02 mA and 9.91 mA, respectively. The injection currents
were set to 8.82 mA and 10.90 mA, respectively (1.1 times
the lasing thresholds for both of the lasers). The relaxation
oscillation frequencies of solitary lasers 1 and 2 were 1.25 GHz

FIG. 14. Experimentally obtained optical spectra of lasers 1 and
2 when the two lasers are (a) not coupled and (b) mutually coupled.
The initial optical frequency detuning is set to 	fini = 0 GHz.

and 1.11 GHz, respectively. The optical wavelengths of the
solitary lasers were precisely controlled by the temperature
of the lasers. In our experiment, the peak wavelength λ1 of
solitary laser 1 was fixed to 1 547.045 nm by adjusting the laser
temperature to 294.01 K. The peak wavelength λ2 of solitary
laser 2 was changed to vary the optical frequency detuning
between the two lasers 	fini, which is given by 	fini = c/λ1 −
c/λ2. The temperature of laser 2 was set to be 295.20 K under
the condition λ2 = λ1 (	fini = 0). The optical powers injected
into lasers 1 and 2 were 28.5 μW and 49.5 μW, respectively,
to give the same values of C̄1 and C̄2 at 	fini = 0.

B. Global leader-laggard relationship

We experimentally investigate the dependence of the global
leader-laggard relationship on the initial optical frequency
detuning 	fini. The global leader-laggard relationship is
identified from the comparison between C̄1 and C̄2. The
cross-correlation values C̄1,2 are calculated from Eq. (4). The

FIG. 15. Experimentally obtained cross-correlation values C̄1,2

and optical frequency detuning under the mutual coupling 	f̄mc as
a function of the initial optical frequency detuning 	fini. The black
solid curve with circles and the blue dashed curve with triangles
represent C̄1 and C̄2, respectively. The red dotted curve with squares
represents 	f̄mc.
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delay time for the calculation of C̄1,2 is set to τ = 36.64 ns.
The averaging time T for the correlation values is 60 000 ns.

We investigate the dependence of the optical frequency
detuning under the mutual coupling on 	fini. The optical
spectra of the two lasers without and with the mutual coupling
are shown in Figs. 14(a) and 14(b), respectively. The initial
optical frequency detuning 	fini is set to zero, which is
achieved by matching the peak wavelengths of the two lasers
as shown in Fig. 14(a). Figure 14(b) shows the optical spectra
when the lasers are mutually coupled. From these spectra,
we calculate the weighted means of the optical wavelengths
λ̄1,2, where the weights are calculated from the linear scale
of the optical spectra. The optical frequency detuning under
the mutual coupling 	f̄mc is given by 	f̄mc = c/λ̄1 − c/λ̄2.
In Fig. 14(b), 	f̄mc of 0.038 GHz is obtained. When 	fini

is small, 	f̄mc becomes nearly equal to zero due to injection
locking.

Figure 15 shows the cross-correlation values C̄1,2 and the
optical frequency detuning under the mutual coupling 	f̄mc

when the initial optical frequency detuning 	fini is changed.
The black solid curve with circles and the blue dashed curve
with triangles represent the cross-correlation values C̄1 and C̄2,
respectively. When 	fini is positive, C̄1 is larger than C̄2, and

FIG. 16. (a) Experimentally obtained temporal wave forms of
the laser intensities. (b) Temporal wave form of the short-term cross-
correlation values C1,2(t), corresponding to (a). The initial optical
frequency detuning is set to 	fini = 1 GHz.

laser 1 is the global leader. When 	fini is negative, C̄2 is larger
than C̄1, and laser 2 is the global leader. The dependence of
C̄1 and C̄2 is almost symmetric with respect to 	fini = 0. The
red dotted curve with squares represents the optical frequency
detuning under the mutual coupling 	f̄mc. The slopes of 	f̄mc

inside and outside the region of |	fini| � 5 GHz are different.
The detuning 	f̄mc is close to zero in |	fini| � 5 GHz due
to partial injection locking of the optical frequencies. Our
experimental result shown in Fig. 15 agrees well with the
numerical result shown in Fig. 4.

C. Local leader-laggard relationship

In this section, we show experimental results of the
spontaneous exchange of the local leader-laggard relationship.
Figure 16 shows an example of the spontaneous exchange. The
temporal wave forms of the laser intensities and the short-term
cross-correlation values C1,2(t) are shown in Figs. 16(a)
and 16(b), respectively. The initial optical frequency detuning
	fini is set to 1 GHz. The lasers operate in the LFF regime
and the temporal wave forms of an intensity dropout and a
recovery process are shown in Fig. 16(a). Laser 1 exhibits
an intensity dropout earlier than laser 2 due to a positive
value of 	fini (laser 1 is the global leader). The laser intensity
immediately increases after the intensity dropouts; however,
gradual recovery is not observed since a low-pass filter is not
applied to the temporal wave forms in Fig. 16(a).

The temporal wave forms of the short-term cross-
correlation values C1,2(t) are shown in Fig. 16(b) and the
spontaneous exchange of the leader-laggard relationship can
be observed. C2(t) starts decreasing when laser 1 experiences
an intensity dropout and C1(t) becomes larger than C2(t),
which indicates that laser 1 is the local leader. The intensity
dropout of laser 2 is delayed by the propagation delay time
τ = 36.64 ns with respect to laser 1 and C1(t) starts decreasing.
After that, the short-term cross-correlation values exchange
alternately in time. Therefore, we experimentally confirm the
spontaneous exchange of the leader-laggard relationship.

FIG. 17. Experimentally obtained probability of being the local
leader as a function of the initial optical frequency detuning 	fini. The
black solid curve with circles and blue dashed curves with triangles
represent lasers 1 and 2, respectively.
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Finally, we investigate the dependence of the spontaneous
exchange of the local leader-laggard relationship on the
initial optical frequency detuning 	fini. Figure 17 shows the
probability of being the local leader as a function of 	fini,
calculated from C1,2(t) by using Eqs. (7) and (8) for T = τ . In
the region |	fini| � 5 GHz, the probability of being the local
leader for lasers 1 and 2 is not zero. Therefore, both lasers 1
and 2 have some probability of being the local leader, and the
local leader exchanges in time. On the other hand, only one
of the lasers always becomes the leader when |	fini| is large.
This result agrees well with the numerical results shown in
Fig. 7.

V. CONCLUSIONS

We investigated spontaneous exchange of the leader-
laggard relationship in mutually coupled semiconductor lasers.
The two lasers show LFF dynamics, and one of the lasers,
defined as the leader, always experiences intensity dropouts in
advance of the other laser, due to the existence of the optical
frequency detuning. We observed the spontaneous exchange

of the leader-laggard relationship by using short-term cross-
correlations. We also calculated the steady-state solutions,
which are frequency-locked solutions, for the mutually cou-
pled semiconductor lasers to investigate the mechanism of the
spontaneous exchange of the leader-laggard relationship. We
found that the averaged trajectory for the two coupled lasers in
the phase space itinerates around the steady-state solutions,
and partial optical frequency locking alternately occurs in
the two lasers. We experimentally confirmed the existence of
the spontaneous exchange of the leader-laggard relationship.
The spontaneous exchange of the leader-laggard relationship
could be a general phenomenon in mutually coupled nonlinear
dynamical systems with time delay.
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