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Pattern formation in a reaction-diffusion system of Fitzhugh-Nagumo
type before the onset of subcritical Turing bifurcation
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We investigate numerically the behavior of a two-component reaction-diffusion system of Fitzhugh-Nagumo
type before the onset of subcritical Turing bifurcation in response to local rigid perturbation. In a large region
of parameters, the initial perturbation evolves into a localized structure. In a part of that region, closer to the
bifurcation line, this structure turns out to be unstable and covers all the available space over the course of
time in a process of self-completion. Depending on the parameter values in two-dimensional (2D) space, this
process happens either through generation and evolution of new peaks on oscillatory tails of the initial pattern,
or through the elongation, deformation, and rupture of initial structure, leading to space-filling nonbranching
snakelike patterns. Transient regimes are also possible. Comparison of these results with 1D simulations shows
that the prebifurcation region of parameters where the self-completion process is observed is much larger in the
2D case.
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I. INTRODUCTION

Spatiotemporal patterns formed in systems far from ther-
modynamic equilibrium are widely spread in nature. They are
observed in systems of a different nature: physical, chemical,
or biological [1–3]. They often demonstrate an apparent
likeness, which implies that their formation is due to some
general principles independent of specific details. In view
of the similarity of these structures, one may expect that
mechanisms revealed for a specific system may be principally
the same for systems of various origin. Hence the results
obtained experimentally for model chemical systems are of
vast importance. Two famous classes of chemical reactions
exhibiting rich dynamical behavior are the CIMA (chlorite-
iodide-malonic acid) reaction [4] and the BZ (Belousov-
Zhabotinsky) reaction [5]. Depending on the concentrations
of source reagents, these reactions carried out in a test tube
demonstrate a lot of different oscillatory modes, while in
a thin flat layer concentration waves are observed. Under
sophisticated experimental conditions, these reactions exhibit
a variety of complex spatiotemporal patterns. In the CIMA
reaction held in a gel—in order to slow down the diffusivity
of iodide—nonuniform stationary patterns were first obtained
experimentally [6]. A very interesting experimental setup of
the BZ reaction was suggested by Vanag and colleagues [7], in
which the reaction is performed in a water-in-oil aerosol OT
microemulsion (the so-called BZ-AOT system) so that some
species can diffuse throughout all the given volume, while
others are constrained only to water droplets that collide and
exchange their contents. These conditions make it possible to
observe a great variety of patterns new to chemical reactions,
such as antispirals, wave packets, standing waves, segmented
and dotted waves, as well as oscillating clusters and localized
oscillating spots—oscillons [8].

These fascinating experimental findings stimulated a vast
theoretical investigation of the mechanisms that are responsi-
ble for pattern formation [9–14]. It is common knowledge that
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the formation of stationary nonuniform patterns, i.e., dissipa-
tive structures, in reaction-diffusion systems is a consequence
of Turing instability, which was theoretically predicted by
Turing in his classical paper [15]. Another type of diffusion
instability—wave instability—was shown to be responsible
for the formation of standing waves, wave packets [16,17], as
well as more intricate structures such as antispirals [9,10].

In experiments, two major types of spatially nonuniform
structures are observed: nonlocalized patterns that occupy
the whole available space, and localized structures that do
not spread far away from their place of origin. While
in the region of Turing instability nonlocalized dissipative
structures are always formed, localized structures can arise
in the prebifurcation region of subcritical Turing instability
due to large enough initial local excitation [18,19]. Under
appropriate parameter values, these structures may evolve into
nonlocalized ones due to perturbations. This phenomenon,
referred to as self-completion, is considered to be quite
general and has been observed in systems of a different nature
[20–22]. It has been intensively studied theoretically [23,24]
and experimentally [25], including the chemical BZ-AOT
system mentioned above [26].

In the present paper, we investigate numerically the self-
completion of localized structures in the system of equations
of the well-known Fitzhugh-Nagumo type in one- and two-
dimensional cases [27]. We show that the region of parameters
under which self-completion may take place depends crucially
on the dimension of the system, and in the two-dimensional
case we demonstrate two qualitatively different types of
self-completion mechanism, one of which, to the best of our
knowledge, has not been demonstrated in a Fitzhugh-Nagumo-
like system before the onset of subcritical Turing bifurcation.
Then we examine the dependence of the self-completion
type and thereafter of the qualitative appearance of arisen
patterns on the parameter values, demonstrating the transition
dynamics of the system.

The original Fitzhugh-Nagumo model was suggested as
a mathematical simplification of the physiologically based
Hodgkin-Huxley model [28]. The Fitzhugh-Nagumo model
neglected its biological details, but preserved its essential
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ability to describe the initiation and propagation of action
potentials in neurons. The model has also turned out to be
very useful for the study of general features of spatiotemporal
pattern formation, as it is able to exhibit the majority of pattern
types observed in other reaction-diffusion systems [19].

In this paper, we first briefly present a linear analysis of
the model to obtain the conditions for Turing instability, then
we deduce the amplitude equation for the critical mode, which
determines the parametric region of subcritical bifurcation.
Finally, we present the results of numeric simulations and
discuss them.

II. THE MODEL

We consider the following set of equations:

u̇ = D�u − u(u + α)(u − 1) − v,

v̇ = �v + u − v. (1)

There are two control parameters—the ratio of species dif-
fusion coefficients D and the reaction parameter α. D is
assumed to be less than unity in order for the activator u

to propagate slower than the inhibitor v. The nondistributed
system has three pairs of roots: u = v = 0 and u = v = 1

2 (1 −
α ± √

α2 + 2α − 3), so the system has only one stationary
state (0; 0) when −3 < α < 1, which is true for all the cases
considered herein. This state is stable if for the equations
linearized near it the trace of the Jacobian, which is α − 1,
is negative while its determinant is positive. Both conditions
are satisfied since we take α < 1. In the distributed system,
the trivial homogeneous solution remains stable before the
onset of diffusion-driven Turing instability, resulting in the
spontaneous formation of stationary nonuniform patterns.
Turing bifurcation leads to the instability of waves with wave
numbers k for which the roots of the following dispersion
equation λ1,2 are real numbers with opposite signs [29]:

∣∣∣∣α − k2D − λ −1

1 −1 − k2 − λ

∣∣∣∣ = 0.

For all the other waves, both roots λ1,2 are to be negative
since it is assumed that the trace of the system Jacobian,
which is the sum of these roots, is negative for k = 0 and
with increasing k it can only decrease. At the edges of the
range of unstable waves, one of the roots turns to zero, so,
as follows from the dispersion equation, the waves with wave
numbers between k1 and k2 are unstable, where

k2
1,2 = α − D ±

√
(α + D)2 − 4D

2D
.

Turing bifurcation takes place when these wave numbers
coincide, which means that the radicand of this expression
equals zero, while the whole expression is positive. Having
already set that D < 1, we obtain the final condition for
the Turing instability: 1 > α > 2

√
D − D, αcrit = 2

√
D − D

is the critical value of the control parameter at which the
bifurcation takes place for a given value of D, and kcrit =√√

D−D
D

is the critical wave number, i.e., the wave number of
the wave that becomes unstable first.

To establish the parametric region of interest where the
simulations should be performed, we need to determine where
the Turing bifurcation is of subcritical type. It implies that just
after the onset of the bifurcation, finite-amplitude dissipative
structures are formed, while just before it dissipative structures
may appear under certain conditions while the trivial stable
solution also exists. To find this region, we construct the
amplitude equation for the critical mode near the bifurcation. A
detailed derivation of this equation is described in Appendix A.
As a result, we obtain that when D is less than a certain value,
which is approximately equal to 0.094, the system undergoes
a subcritical bifurcation, otherwise it undergoes a supercritical
one.

III. RESULTS

We performed numerical simulations in a square domain
with the side length L = 20 in two dimensions and in a segment
of the same length in one dimension, setting no-flux boundary
conditions using the C++ implemented code. Splitting with
respect to physical processes was used. Kinetic equations were
solved using the Runge-Kutta fourth-order method. In the 2D
case, diffusion equations were solved using the alternating di-
rection implicit method, each one-dimensional problem being
solved using the flux sweeping method, which allows for sub-
stantially more accurate computations in high gradient regions
than ordinary methods do while using the same time and space
steps, which is crucial under small values of the parameter D.
This method is described in detail in Appendix B. The initial
conditions for variables at the moment t = 0 were set as

u(x,y) = 2v(x,y) = {1 + 6.25[(x − L/2)2 + (y − L/2)2]}−1,

thus the initial rigid local perturbation of sufficient magnitude
was modeled. Time and space steps were chosen based on the
system’s kinetic parameters and characteristic wavelengths,
and they were set to be τ = 5×10−3 and h = 5×10−2,
respectively. Numerical runs with smaller steps demonstrated
no significant difference.

The left graph of Fig. 1 shows the dependence of the
type of model response to rigid perturbation on the system
parameters in the region before the onset of Turing instability
in the two-dimensional case. The parameter of precriticality
�α = αcrit − α indicates how far from the bifurcation the
system is under a predefined D. To the left of the y-axis there
is a region of Turing instability where stationary patterns form
spontaneously due to infinitesimal perturbations. It cannot
happen in the main graph region, which was systematically
checked in numerical simulations. Minus signs indicate the
parameter values for which the initial perturbation eventually
dies out, while other markers denote the formation of localized
structures. For the parameter values indicated by plus signs,
these structures over the course of time turn out to be
unstable under minor perturbations and evolve, covering all
the available space domain. Analogous results for the one-
dimensional case are shown in the right graph. The presented
results point out that in the 2D case the region where the
formation of localized structures may happen is wider than
the corresponding region in one dimension. The same is
true for the region where self-completion takes place—this
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FIG. 1. Type of response of the model, described by Eqs. (1), to initial rigid perturbation depending on the model parameters: (a) in two
dimensions, (b) in one dimension. Minus signs indicate initial perturbation extinction over the course of time, dots indicate the formation of
stable localized structures, and plus signs indicate the formation of localized structures that evolve into nonlocalized patterns. The dynamics of
the one-dimensional self-completion case designated by an asterisk is shown in Fig. 2. The dynamics of the two-dimensional self-completion
cases designated by the letters a–f is shown in Fig. 3.

region widens upon increasing the space dimension, especially
pronounced at small values of D.

Localized structures arising both in the 1D and 2D cases
have the form of axisymmetric large-amplitude peaks with
small-amplitude oscillatory tails. Their amplitude decreases
and their period increases with growth of D and �α. At
small values of D and large precriticality, oscillations are
overdamped. The dynamics of the one-dimensional self-
completion case, marked by an asterisk in Fig. 1, is shown
in Fig. 2. In one dimension, all the observed self-completion
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FIG. 2. Self-completion of localized spotlike structures arising
in the model, described by Eqs. (1), in the one-dimensional case.
Variable u is shown, with white corresponding to negative values,
black to maximal positive values, and gray to small positive values.
Parameter values are D = 0.0015, α ≈ 0.074, and �α = 0.002.

cases occur through the generation of new structures on peaks
of oscillatory tails of the initial structure.

Figure 3 demonstrates the dynamics of self-completion in
the two-dimensional case for specific values of parameters,
which are marked by letters in Fig. 1. In all these and most of
the other runs, the initial pattern lost its stability without the
intentional addition of noise but due to unavoidable numerical
inaccuracies of computations. The system’s response to rigid
perturbation does not change qualitatively when crossing the
line of Turing bifurcation: close to this line in the region of
instability, similar structures arise in the same manner as before
the onset of bifurcation. As seen from Fig. 3(a), new spots arise
around the initial localized structure as a result of rotational
symmetry breaking of the oscillatory ring-shaped tails, which
are marked in gray. The shape of the newly arisen structures
is immediately affected by their neighbors, and new maxima
appear in their turn on their oscillatory tails. They build up to
new localized deformed spots, with the whole process resulting
in a dissipative structure covering all the available space.

When moving away from the bifurcation line at small
values of D, another type of self-completion takes place—the
initial spot deforms and starts elongating in one direction,
corresponding to the one having an increased ratio of activator
to inhibitor due to accidental or intentional perturbation. The
growing structure folds and corrugates, but never branches,
densely occupying all the available space over the course
of time. The first elongating patterns that appear with the
increase of �α accidentally rupture during their development,
but further from the bifurcation line they become more rigid,
though they may still rupture at points of high curvature arising
due to boundary conditions. An example of this type of growth
is a flowerlike pattern, shown in Fig. 3(b), which forms when
the line bends in such a way that its ends have no space
to grow further and instead its “fingertips” begin to spread
away, each of them in its turn splitting into two daughter
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FIG. 3. Self-completion of localized spotlike structures arising in the model (1) in the two-dimensional case. Cases (a)–(e) demonstrate
system dynamics under different parameters values, and they comprise five figures in a row each, except for (e), which comprises four figures.
Case (f) shows static distribution for one specific case. Variable u is shown, with white corresponding to negative values, black to maximal
positive values, and gray to small positive values. Parameters and time values (from left to right) are as follows: (a) D = 0.001, α = 0.057
(�α ≈ 0.005); t = 700, 1100, 1600, 2200, and 24 000. (b) D = 0.0015, α = 0.04 (�α ≈ 0.036); t = 4800, 7300, 10 500, 14 000, and 30 000.
(c) D = 0.0022, α = 0.077 (�α ≈ 0.015); t = 4300, 4600, 5100, 6000, and 25 500. (d) D = 0.001, α = −0.06 (�α ≈ 0.122); t = 12 000,
18 000, 23 000, 30 500, and 60 000. (e) D = 0.0022, α = 0 (�α ≈ 0.092); t = 42 800, 44 800, 55 000, and 84 500. (f) D = 0.01, α = 0.185
(�α ≈ 0.005); t = 3000. �α = 2

√
D − D − α.

tips. There also exist transitive situations when both types
of self-completion—by arising new localized structures and
by deformation—coexist, as shown in Fig. 3(c).

With the decrease of the control parameter α and thus
moving away from the bifurcation line, the rate of the
self-completion process decreases and its behavior changes
qualitatively. The nature of this change differs for different
values of D. When D is less than ≈0.002, with the growth
of �α the rigidity of the line structures continues to grow,
as demonstrated in Fig. 3(d), until the region in parametric
space is reached where self-completion ceases and initially
arisen structures remain localized. However, for larger values
of D with the increase of �α the line structures rupture more
frequently, and quite near the edge of the self-completion
region they begin to break apart pretty soon after initial
deformation into spotlike structures, which then elongate into

the perpendicular direction. This process repeats, resulting in
a dot-covered domain shown in Fig. 3(e). A similar resulting
pattern, like the one demonstrated in Fig. 3(f), is obtained
near the bifurcation line for larger values of D—closer to the
transition from sub- to supercritical type of bifurcation—but
the dynamics leading to this pattern is completely different as
these structures arise on oscillatory tails of already existing
ones in the above-described manner.

IV. DISCUSSION

Fitzhugh-Nagumo-like reaction-diffusion models are of
great importance, as they are able to exhibit a large number
of pattern formation phenomena, which are listed, e.g., in
[19]. In this paper, we present our systematic study of
the behavior of the corresponding system in a sufficiently
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wide parametric range before the onset of subcritical Turing
bifurcation. In a large region, localized stationary structures
arise in response to strong enough initial local excitation. Close
to the bifurcation line due to small perturbations, they evolve
into nonlocalized dissipative structures in a process referred to
as self-completion. We demonstrate two qualitatively different
types of self-completion mechanism in the two-dimensional
case. One of them, which has already been shown for
Fitzhugh-Nagumo-like models, happens via the appearance
and evolution of new localized structures on the oscillatory
tail of the initial one. The other one, which, to the best of our
knowledge, has not been demonstrated in a Fitzhugh-Nagumo-
like system before the onset of subcritical Turing bifurcation,
is the development of a snakelike pattern through elongation,
deformation, and rupture of the initial localized structure. The
objective difficulty hindering this investigation is that in the
considered parametric region—namely, when the diffusion
coefficients differ up to several orders of magnitude—one has
to deal with extremely stiff equations, which pose essential
problems for simulations. We have overcome this difficulty
by using an efficient numerical scheme based on the method
that is, to the best of our knowledge, not used in standard
PDE solvers, and therefore the scheme is described briefly in
Appendix B.

A similar investigation of parameter space preceding
subcritical Turing bifurcation has been carried out for other
systems, and through comparing these studies, essential
differences in the behavior of basic models can be revealed.
For instance, in the two-variable Oregonator model [26], the
initial spotlike structure can lose its stability by producing
new spots and by splitting into two spots as well, but also
by emitting a circular wave, which was not found for the
Fitzhugh-Nagumo-like system considered herein. On the other
hand, a loss of stability through elongation of a structure
and the formation of snakelike space-filling patterns were not
reported for that case.

A similar type of self-completion was already observed in
a model of Fitzhugh-Nagumo type but in a bistable regime as
a result of a competition between regions of two stable states.
That phenomenon was thoroughly studied both theoretically
[30,31] and experimentally [32]. The model derived to describe
the experimental results considered interaction between activa-
tion, related to the curvature of the boundary, and long-distance
inhibition via coupling of interface segments [33], which
resulted in a Fitzhugh-Nagumo equation form. However, as
the mechanism governing that process is different, there is
a considerable qualitative distinction in developed structures
in these two cases—the model investigated herein produces
only nonbranching curves under considered parameter values,
while at points of high curvature the structures obtained at the
bistable regime branch out instead of rupturing.

Another investigation related to the topic is the study
of the Gray-Scott model [34], which possesses saddle-node,
Turing, and Hopf instabilities, their interaction giving rise to
a striking variety of spatiotemporal patterns. For the widely
considered relation of variable diffusivities, equal to 2, in
the region where pure Turing modes exist, its bifurcation is
subcritical [35] and the system is also able to produce snakelike
structures, however they are also qualitatively different from
the ones reported herein, e.g., they are not able to elongate via

“fingertips” when their ends run into an obstacle. The evolution
of localized spots to space-filling curves in the parameter
region preceding subcritical Turing bifurcation was claimed to
be found elsewhere as well [20,36], which infers universality
of this type of self-completion. It should also be mentioned,
though it is not surprising, that a similar process may also
take place in systems that are already in the Turing instability
region [37,38].

Numerical simulations for one- and two-dimensional spa-
tial cases detected an essential difference between them in
the behavior of the Fitzhugh-Nagumo-like model. For the
2D case, the parametric domain within which nonlocalized
patterns are formed is significantly larger, and a qualitative type
of self-completion depends on the values of the parameters.
In the region of parameter space where in the 2D case
self-completion of initial localized structures happens through
elongation mechanism, in the 1D case localized structures
remain stable. The reason for this striking difference is appar-
ently due to the break of cylindrical symmetry of the initial
circular spot, which is impossible in one dimension. This effect
resembles a loss of stability of a localized propagating structure
with increasing dimension due to transverse instability [39],
and it requires further investigation.
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APPENDIX A: AMPLITUDE EQUATION
FOR THE CRITICAL MODE

The purpose of the derivation of the amplitude equation
herein is to reveal the region in which Turing bifurcation is
of subcritical type. There are several approaches to derive
amplitude equations. The one that we use is based on a
multiscale technique described, for instance, in [40].

Let us represent Eqs. (1) in the following form:

∂x
∂t

= L0(α)x + L1(D)�x + h(x,α),

where x = (uv), L0(α) = (α −1
1 −1), L1(D) = (D 0

0 1), and

h(x,α) = (−u3 + (1 − α)u2

0 ).
The value of the critical parameter under which Turing

bifurcation takes place is αcr = 2
√

D − D, the square of the
critical wavelength being k2

cr =
√

D−D
D

.
The decomposition of variables with respect to auxiliary

smallness parameter ε has the following form:

x = εx1 + ε2x2 + ε3x3 + · · · ,

α − αcr = ε2γ2 + · · · ,

∂

∂t
= ε2 ∂

∂τ
+ · · · . (A1)

Linear terms in decompositions of α − αcr and ∂
∂t

are known
to be equal to zero for the considered type of instability, thus
reflecting the spatial symmetries of the system. We consider
the system of small spatial extent, so in some vicinity to the
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bifurcation line only one mode is destabilized, therefore no
additional scaling of space derivatives is needed.

To the first order of ε, considering the one-dimensional case
for simplicity, we get the set of equations[

L0(αcr) + L1(D)
∂2

∂r2

]
x1 = 0.

We seek a solution in the form

x1 = c(τ )ueikcrr + cc,

where c(τ ) is the amplitude of the solution. It gives(
αcr − Dk2

cr −1
1 −1 − k2

cr

)(
u1

v1

)
= 0.

Let us choose(
u1

v1

)
=

(
1

αcr − Dk2
cr

)
=

(
1√
D

)
.

Then

x1 = c

(
1√
D

)
eikcrr + c∗

(
1√
D

)
e−ikcrr .

To the second order of ε, we obtain[
L0(αcr) + L1(D)

∂2

∂r2

]
x2 = −1

2
hxx(αcr)x1x1,

or (
αcr + D ∂2

∂r2 −1
1 −1 + ∂2

∂r2

)
x2

= −
(

(1 − αcr)[{c2e2ikcrr + cc} + 2|c|2]

0

)
.

We seek a solution in the form x2 = ( u2
v2

) = (p0

q0
)|c|2 +

[(p1

q1
)c2e2ikcrr + cc]. It gives p0 = q0 = 2, p1 = 4

√
D−3D
9D

, and

q1 = 1
9 .

To the third order of ε, we get[
L0(αcr) + L1(D)

∂2

∂r2

]
x3 = −γ2L0α(αcr)x1

− hxx(αcr)x1x2 − 1

6
hxxx(αcr)x1x1x1 + ∂x1

∂τ
= q3.

The solvability condition is

∫ 2π
kcr

0
dr u+∗ · q3(c,τ,r) = 0,

where u+∗ is the eigenvector of L +(αcr,D) = L +
0 (αcr) +

L +
1 (D) ∂2

∂r2 , which is up to a factor equal to ( −1√
D

)e−ikcrr .
When integrating, a nonzero contribution is given only by

terms q3, containing the factor eikcrr . They are[
−γ2

(
1 0
0 0

)(
1√
D

)
c

−
(

(1 − αcr)[4 + 8
√

D−6D
9D

] − 3

0

)
|c|2c + ∂c

∂τ

(
1√
D

)]
eikcrr .

As a result of calculations, replacing z = εc, we obtain an
equation of the form

∂z

∂t
= (α − αcr)P1z + P3|z|2z,

where P1 = 1

1 − D
,

P3 = 30D2 − 52D
√

D − 13D + 8
√

D

9D(1 − D)
.

Since we consider 0 < D < 1, P1 is positive and the sign of
P3 determines the type of bifurcation. It changes at D = Dc ≈
0.094—when D is less than this value, the system undergoes
a subcritical bifurcation, otherwise it undergoes a supercritical
one. This result is the same for any space dimensions as it is
not affected by the interplay of modes.

APPENDIX B: FLUX SWEEPING METHOD

Numerically solving diffusion equations results in certain
difficulties when dealing with high gradients of variables. To
avoid these difficulties and to speed up the computations, we
switch from second-order equations to a system of first-order
equations by implementing the flux sweeping method in the
following way, which is based on a method described in [41].

First, we represent each of the diffusion equations as
follows:

∂u

∂t
= ∂P

∂x
, P = D

∂u

∂x
,

and we write down the difference equations:

un+1
m − un

m

τ
= Qm+1/2 − Qm−1/2

h
, m = 0,1, . . . ,N,

Qm+1/2 = D
un+1

m+1 − un+1
m

h
, m = 0,1, . . . ,N − 1,

where τ and h are time and space steps, and indices n and m

represent numbers of time and space steps, respectively. The
sweeping relation has the form

un+1
m = PmQm+1/2 + Rm,

where sweeping coefficients Pm and Rm are to be determined.
We use zero-flux boundary conditions, so we take Q−1/2 to be
equal to −Q1/2. Therefore, we set the zeroth coefficients to
be P0 = 2τ

h
, R0 = un

0. To obtain the formulas for subsequent
coefficients for m = 1,2, . . . ,N , we substitute the already
known sweeping relation for un+1

m−1 into the expression for
Qm+1/2 and get

un+1
m =

(
Pm−1 + h

D

)
Qm−1/2 + Rm−1,

from which using the first difference equation we replace
Qm−1/2 obtaining the linear dependence of un+1

m by Qm+1/2,
thus finding the following coefficients:

Pm =
[
Pm−1 + h

D

]/(
1 + h

τ

[
Pm−1 + h

D

])
,

Rm =
(
Rm−1 + h

τ

[
Pm−1 + h

D

]
un

m

)/(
1 + h

τ

[
Pm−1 + h

D

])
.
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At the right border, we use the same zero-flux boundary
condition, so we state using the first difference equation that
QN+1/2 = −QN−1/2 = h

2τ
(un+1

N − un
N ), and we substitute it

into the sweeping relation for un+1
N , finding the following

value:

un+1
N =

(
RN − h

2τ
PNun

N

)/(
1 − h

2τ
PN

)
.

Then we find the complete variable array at the time step
n + 1 by expressing

Qm+1/2 = Qm+3/2 − h

τ

(
un+1

m+1 − un
m+1

)
,

un+1
m = PmQm+1/2 + Rm

for m = N − 1, N − 2, . . . ,0.
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