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We have studied a two-dimensional piecewise linear map to examine how the hierarchical structure of stable re-
gions affects the slow dynamics in Hamiltonian systems. In the phase space there are infinitely many stable regions,
each of which is polygonal-shaped, and the rest is occupied by chaotic orbits. By using symbolic representation of
stable regions, a procedure to compute the edges of the polygons is presented. The stable regions are hierarchically
distributed in phase space and the edges of the stable regions show the marginal instability. The cumulative distri-
bution of the recurrence time obeys a power law as ∼t−2, the same as the one for the system with phase space, which
is composed of a single stable region and chaotic components. By studying the symbol sequence of recurrence
trajectories, we show that the hierarchical structure of stable regions has no significant effect on the power-law
exponent and that only the marginal instability on the boundary of stable regions is responsible for determining
the exponent. We also discuss the relevance of the hierarchical structure to those in more generic chaotic systems.
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I. INTRODUCTION

In phase space of generic Hamiltonian systems, regular and
chaotic motions coexist [1–3]. Regular orbits form invariant
curves on which the motion is quasiperiodic, while chaotic
trajectories wander in the rest of phase space. In the vicinity
of invariant tori, chaotic trajectories spend a long time before
they eventually get away from tori [2,4,5]. Such sticky motions
lead to nonexponential behavior of statistical quantities: for
instance, in generic mixed phase space the distribution for
Poincaré recurrences asymptotically obeys a power law. These
sticky motions relevant to the power law have been thoroughly
studied by using the standard map,

p′ = p + K

2π
sin(2πq),

q ′ ≡ q + p′ mod 1,

(1)

where K is a parameter. While there are numerous studies for
the standard map, the existence of the universality of the power
law in generic mixed phase space is still under debate [6–
11]. For both theoretical and numerical studies, the structure
of mixed phase space is so complicated, in general, which
prevents us from rigorous investigations.

Stability islands are believed to be hierarchically distributed
in generic mixed phase space: a stability island is surrounded
by smaller resonant islands, each of which is also surrounded
again by smaller resonance islands. Assuming that the tran-
sition in a hierarchical structure takes place in a stochastic
manner, Meiss and Ott have introduced a Markov tree model
[12], in which the regions enclosed by cantori or partial barriers
are taken as the nodes of the tree and the transition between
nodes is modeled by a Markov process. Such an approach has
stimulated subsequent works and now is one of promising
platform for the issue [3,13]. While Meiss and Ott have
proposed a model with hierarchical structures, this does not
necessarily mean that the existence of the hierarchical structure
is a necessary condition of the power law. Indeed, it has been
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shown that the power law around the critical invariant torus can
be attributable to self-similar Markov chains that differ from
the hierarchical structures in the sense of Meiss and Ott [14].

Another strategy to examine the power law would be to
employ sharply divided phase space in which the boundaries
between regular and chaotic components are simple smooth
curves/lines. In phase space of mushroom billiards [15–18]
or a certain class of piecewise linear maps [19–21], chaotic
trajectories stay for a long time along the boundary in spite of
the absence of hierarchical structures. Due to the existence of
the family of marginally unstable periodic orbits, the exponent
for the recurrence time is shown to be ν = 2 [21]. The
result does not provide any insight into the universality of
power-law exponents, since sharply divided phase spaces are
not generic ones as those for the standard map. However, such
an observation at least tells us that the existence of hierarchical
structure is not a necessary condition to have power-law
behaviors. In the present paper, we will look anew at the role of
hierarchical structures by taking a rather tractable system with
hierarchical phase space, which contains infinity stable islands
of marginal instability, though still not generic enough, and
promote our understanding of generic Hamiltonian systems.

II. THE PIECEWISE LINEAR MAP

Let us consider a linearized version of the standard map
Eq. (1), replacing the sine function with a piecewise lin-
ear function, S(q) = {q (0 � q < 1/4),1/4 − q (1/4 � q <

3/4),q − 1/2 (3/4 � q < 1). By applying a coordinate trans-
formation, the “linearized standard map” is shown to be
equivalent to the following map on T2 = [−1/2,1/2)2:

x ′ ≡ y mod 1,

y ′ ≡
{−x + (2 + K)y − K/4 (y � 0)
−x + (2 − K)y − K/4 (y < 0) mod 1,

(2)

where K is a parameter. It has been proven that for K �
4 the system is almost hyperbolic [22], meaning that every
point is decomposed into stable and unstable directions, but
there exists no finite lower bounds for the angle between these

2470-0045/2017/95(5)/052207(8) 052207-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052207


AKIRA AKAISHI, KAZUKI AOKI, AND AKIRA SHUDO PHYSICAL REVIEW E 95, 052207 (2017)

-0.5

 0

 0.5

-0.5  0  0.5

(a)

y

x
-0.5

 0

 0.5

-0.5  0  0.5

I1

I1

I1
I2

I2

(b)

y
x

-0.1

 0

 0.1

 0.3  0.4  0.5

(c)

y

x
-0.5

 0

 0.5

-0.5  0  0.5

ab

c
d

e
f

(d)

y

x

FIG. 1. (a) Phase space portrait for the piecewise linear map
with K = 1. (b) The two invariant domains are denoted by I1

and I2. The red lines indicate the boundary between these two
regions. (c) Magnification of the phase-space portrait. (d) Phase space
partitioning for the map (2) with K = 1. Each region is defined by the
inequalities (4).

directions. Moreover, for K = Km := 2(1 + sin( π
m−1 )) (m =

2,3, . . . ) only a single stable region exists in phase space and
the rest is chaotic [22]. The stable region forms a 2m-sided
polygon. Note that the stable region is a set of periodic orbits
with an identical period depending on m, rather than a bundle
of invariant tori whose rotation number continuously varies.
The discussion of ergodic properties and stable regions for
similar piecewise linear maps is found in Ref. [23].

For 0 < K < 4 except Km, phase space is a complicated
mixture of stable and chaotic regions. In such generic cases,
each stable region forms an ellipse in which the motion is
quasiperiodic. Since the map is piecewise linear, the rotation
number in each stable region is constant, unlike stable islands
in generic mixed phase space. In this sense, our mapping
system is not generic in the class of area-preserving maps.

In the present study, we focus on the case K = 1 and
thus simply denote the map Eq. (2) with K = 1 by (x ′,y ′) =
F (x,y). As we will explain in the following sections, the phase
space for K = 1 contains nontrivial hierarchical structure
of stable polygonal regions and no stable ellipses that are
composed of a bundle of invariant circles with irrational
rotational numbers

The case of K = 1

Figure 1(a) illustrates a phase-space portrait for K = 1. One
can easily show that the phase space is divided into two disjoint
invariant domains, I1 and I2 [see Fig. 1(b)]. The domain I1

consists of a hexagonal-shaped stable region, which is located
in the third quadrant, and a single ergodic component. In

contrast to the simple configuration of I1, stable regions in
I2 are complex [see Fig. 1(c)]. In the region I2, it seems that
infinite-many stability islands and a single chaotic component
coexist.

The boundaries of stable regions both in I1 and I2 are
marginally unstable. More precisely, a family of unstable
periodic orbits with zero Lyapunov exponents exists on
the boundaries of the stable regions. Due to this marginal
instability, chaotic trajectories have the power law property,
i.e., the recurrence-time distribution has an asymptotic power-
law tail. We remark that the boundaries between I1 and I2

are also marginally unstable. Namely, the boundary lines are
sets of marginally unstable periodic orbits (the existence of
the boundary lines is also discussed in Ref. [24]). Therefore,
in I1, the orbits stick along the boundary lines or the edges
of polygonal shaped stable regions. On the other hand, I2

contains many sources of marginal instability and they form
complex structures in phase space.

For convenience of the following analyses, we rewrite the
map Eq. (2) without modulo arithmetic operations. First, we
define six regions in phase space, labeled as a,b, . . . ,f [see
Fig. 1(d)], each of which is specified by the sets of inequalities,

Rs = {(x,y) |
the set of inequalities Is are satisfied.}, (3)

where s represents one of the regions labeled by, a,b, . . . ,f ,
and the sets of inequalities are given as

Ia = {y < 0,y > −1/2,x < 1/2,y < x − 1/4},
Ib = {y < 0,y > −1/2,x > −1/2,y > x − 1/4},
Ic = {y > 0,x < 1/2,y < x/3 − 1/12},
Id = {y > 0,x > −1/2,x < 1/2,

(4)
y > x/3 − 1/12,y < x/3 + 1/4},

Ie = {y < 1/2,x > −1/2,x < 1/2,

y > x/3 + 1/4,y < x/3 − 7/12},
If = {y < 1/2,x > −1/2,y > x/3 − 7/12}.

Then, we define the map on Rs as(
x ′
y ′

)
= Fs

(
x

y

)
= Ms

(
x

y

)
+ Vs, (5)

where

Ma = Mb =
(

0 1
−1 1

)
,

Mc = Md = Me = Mf =
(

0 1
−1 3

)
,

(6)

Va =
(

0
3/4

)
, Vb =

(
0

−1/4

)
, Vc =

(
0

3/4

)
,

Vd =
(

0
−1/4

)
, Ve =

(
0

−5/4

)
, Vf =

(
0

−9/4

)
.

(7)

It is straightforward to check that the redefined map Eq. (5)
with Eqs. (6) and (7) is equivalent to the original map Eq. (2)
with K = 1.
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FIG. 2. (a) Subregions for symbol length n = 2. The boundaries
of the subregions are calculated by the procedure presented in the
Appendix. (b) Subregions for n = 3. (c) The type of subregions for
n = 2. There are only hyperbolic and elliptic regions. (d) The type of
subregions for n = 3.

We remark that this partitioning is not a generating partition
since the phase space is not fully chaotic. In fact, a single
symbolic sequence is assigned to all the points in the stable
polygonal domains.

III. PARTITION OF PHASE SPACE

The partition of phase space defined in the previous section
naturally induces finer partitions. For a finite sequence of the
symbols, s0 . . . sn−1, where si ∈ {a, . . . ,f }, we define a region
Rs0...sn−1 as

Rs0...sn−1 = {(x,y) | (x,y) ∈ Rs0 ,

F (x,y) ∈ Rs1 , . . . , F
n−1(x,y) ∈ Rsn−1}

. (8)

Since Rs0...sk
∈ Rs0...sk−1 the partition by all regions for n = k

is the subpartitioning of that for n = k − 1.
As shown in the Appendix, one can systematically calculate

boundaries of the subregions. Since the coefficients for the
inequalities Eq. (4), the matrix elements of Eq. (6) and the
vectors Eq. (7) are rational numbers, the coordinates of vertices
of subregions are rational numbers as well. Therefore, the com-
putations of boundaries and vertices are free from numerical
errors. In Fig. 2, the subregions for symbol sequences with
symbol length 2 and 3 are shown. We can classify subregions
according to their stability: each region Rs0...sn−1 is referred to
either as hyperbolic, elliptic, or parabolic, according to the
type of eigenvalues of its stability matrix,

Ms0...sn−1 :=
n−1∏
i=0

Msi
. (9)

TABLE I. Number of regions.

Length Total hyperbolic elliptic parabolic identical

1 6 4 2 0 0
2 17 6 11 0 0
3 36 9 0 26 1
4 69 64 5 0 0
5 123 99 24 0 0
6 208 143 0 62 3
7 350 348 2 0 0
8 565 558 7 0 0
9 906 853 0 52 1
10 1465 1448 17 0 0
11 2374 2356 18 0 0
12 3878 3783 0 92 3
13 6335 6297 38 0 0
14 10367 10344 23 0 0
15 17128 17005 0 112 11
16 28323 28316 7 0 0
17 46859 46849 10 0 0
18 77508 77427 0 78 3

Note that all the elements of Ms0...sn−1 are integers. In addition,
define identical regions if the matrix Ms0...sn−1 = ±I , where
I is the identity map. Although the identical type is a special
case of the parabolic type, we here distinguish these two types.

The number of subregions up to the symbol length 18
is listed in Table I. We note that the number of hyperbolic
subregions exponentially increases with respect to the symbol
length while that of the other types of subregions does not
increase exponentially. Notice the parabolic (or identical)
and elliptic regions appear in a complementary manner. The
parabolic (or identical) regions only appear when the symbol
length is given by integer multiples of 3, whereas the elliptic
regions appear otherwise.

A. Stable regions

Identical regions are the “stable regions” that are described
in Sec. II. Indeed, since the map for identical regions is the
identity map, every point in the region is periodic with respect
to the symbol length. The number of stable regions is not the
same as the number of identical regions, namely, identical
regions are multiply counted. For instance, the hexagonal
stable region is labeled as bbb (see Fig. 2) and its i-repetition
symbol sequence, denoted as (bbb)i , represents the same stable
region.

As mentioned above, identical regions are composed of
the periodic orbits whose stability matrix is the identity
matrix. Conversely, it follows that periodic points with identity
stability matrix are contained in identical regions. One can
make use of this fact to find stable regions: in fact, one
can locate stable regions first by finding a periodic orbit
with identity matrix, checking the symbolic sequence of the
periodic orbit, then computing the boundaries of the region
using the procedure in the Appendix. By applying such an
algorithm, instead of enumerating all regions, we can find
stable regions with long symbol length. Figure 3 shows the
stable regions with symbol length 3, 6, 15, 33, 51, and 69. All
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FIG. 3. (a) Stable regions with symbol length 3, 6, 15, 33, 51, 69,
and 87. The number of the regions is 1, 2, 10, 66, 204, 552, and 1218,
respectively. Except for symbol length 3 cases, every stable region has
its symmetric one with respect to the line x = y. (b–d) Magnification
of the stable regions. The stable regions are hierarchically aligned.

stable regions with symbol length 3, 6, 15 are hexagonal-
shaped and for longer symbol sequences we have found
only quadrilateral stable regions. One can clearly recognize
self-similar patterns of the stable regions: for instance a stable
region with symbol length 15 is surrounded by stable regions
with length 33 and so on [see Fig. 3(b)]. Such a structure
reminds us of the hierarchical structure of stable islands in
generic mixed phase space.

Every stable region is “sticky” along its boundaries: one
may expect that there is a family of marginally unstable pe-
riodic orbits on every edge of stable polygons [21]. In the
neighborhood of the boundary of the stable regions, we have
found the motion of chaotic trajectories is given as a constant
shift along each boundary [20]. In fact, adjacent regions of
the identical regions are parabolic. Note that the edges of
the stable regions are also composed of periodic orbits. This
means that the same type of marginal instability controls the
stickiness in the map Eq. (2) with K = Km. We emphasize that
for the phase space with K = 1, there are numerous, possibly
infinitely many, stable regions [25].

B. Symbol sequence

The self-similar pattern of stable regions in phase space
is related to the symbol sequence of the regions. Identical
regions have two properties in their symbol sequence. One
is that the cyclic permutation of the symbol sequence of an
identical region represents another identical region: if the
region Rs0s1...sn−1 is identical, then Rs1...sn−1s0 is identical as well.
In fact, Rs0s1...sn−1 maps to Rs1...sn−1s0 by a single iteration of the
map. Another property concerns the reversed symbol sequence
sn−1sn−2 . . . s0. The region Rsn−1sn−2...s0 is an identical region for

TABLE II. Representative symbol sequences of stable regions.
Symbols are expressed by the words defined in Eq. (10). The check
mark above α indicates the words to be substituted by Eq. (11). The
parentheses are inserted for readability.

Length Word sequence

15 ααα̌

33 αα(βαβα̌α̌γ )
51 ααβαβ(βαβα̌α̌γ )αγ , ααβαβα(βαβα̌α̌γ )γ
69 ααβαββαβ(βαβα̌α̌γ )αγαγ ,

ααβαββαβα(βαβα̌α̌γ )γαγ ,
ααβαβαβαβ(βαβα̌α̌γ )αγ γ ,
ααβαβαβαβα(βαβα̌α̌γ )γ γ

87 ααβαββαββαβ(βαβα̌α̌γ )αγαγαγ ,
ααβαββαββαβα(βαβα̌α̌γ )γαγαγ ,
ααβαββαβαβαβ(βαβα̌α̌γ )αγ γαγ ,
ααβαββαβαβαβα(βαβα̌α̌γ )γ γαγ ,
ααβαβαβαββαβ(βαβα̌α̌γ )αγαγ γ ,
ααβαβαβαβαβαβ(βαβα̌α̌γ )αγ γ γ ,
ααβαβαβαβαβαβα(βαβα̌α̌γ )γ γ γ

which the original region Rs0s1...sn−1 is symmetric with respect
to the line x = y [see Fig. 3(a)]. This follows from the fact
that the inverse map of Eq. (2) is given by exchanging x and y

of the original map with each other. Note that this property is
also discussed in the literature [22,23].

Due to these two properties, a set of the stable regions
obtained by cyclic permutation and inversion of symbol
sequences is represented by a single symbol sequence. We
regard such stable regions as a single group, represented by
a single symbol sequence. Indeed, for symbol lengths 15, 33,
51, 69, and 87, the number of the region groups is assigned,
respectively, as 1, 1, 2, 4, and 7. The representative symbol
sequence of the groups are found to be reproduced by the
following two rules:

(A) The representative symbol sequence is composed of the
three “words”

α : eaead,

β : ead,

γ : ec.

(10)

(B) In a symbolic sequence, the next generation in the hierar-
chy is generated from the previous generation by substituting
words as

α → βαβααγ. (11)

Table II lists the word representation of the stable regions. We
note, in rule (B), that only the α’s indicated by the check marks
in Table II are substituted to generate the next generation.

IV. RECURRENCE TIME DISTRIBUTION

Recurrence time statistics is often studied to characterize
the stickiness of chaotic trajectories. The recurrence-time
distribution P (t) is defined as the probability to return
to a given recurrence region at time t . Instead of the
raw distribution, we here use the cumulative distribution
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FIG. 4. Cumulative recurrence-time distributions. The inset
shows the phase space and the recurrence regions. The recurrence
region T1 is a rectangular (0.1 � x � 0.2, 0.1 � y � 0.2) and T2 is
(0.3 � x � 0.48, 0.01 � y � 0.02). T1 is contained in I1 and T2 in
I2. The recurrence regions are chosen so as not to overlap any stable
regions.

Q(t) := ∑∞
t ′=t P (t ′), that is the probability to return for the

time longer than t .
Figure 4 shows the cumulative distribution of the recurrence

time, for which we take two recurrence regions. The recurrence
region T1 is put in the chaotic component in I1 and T2 is put
in I2 (see the inset of Fig. 4). One can clearly see that the
distribution obeys the power law:

Q(t) ∼ t−2. (12)

It should be noted that the power law exponent takes the same
value as the one for K = Km not only for the region I1 but also
for I2. This means that although in I2 many stable regions are
hierarchically distributed, the exponent for the recurrence-time
distribution is not affected

In order to investigate the power law found in the
recurrence-time distribution, it would be helpful to observe the
itinerary before the orbit returns to a recurrence region. Since
the stickiness originates from marginally unstable periodic
orbits, orbits with large recurrence time stay in the region
close to these sticky regions in phase space for a long time.
Indeed, as shown in Fig. 5, typical orbits leaving the recurrence
region T1 have relatively long recurrence time and stick along
the boundaries of the stable hexagonal or along the boundary
lines between I1 and I2. Similarly, in I2 the boundary lines
and stable regions seem to attract recurrent orbits for a long
time. These observations are basically consistent with those in
sharply divided phase space with a single stable region.

A. Symbol statistics

In order to clarify whether the hierarchical structure is
relevant to the stickiness, one needs to quantify how long
recurrent orbits get stuck around stable regions. For this
purpose, we use symbol representation of recurrent orbits:
for each initial point of a given recurrent orbit, we define
the corresponding symbol sequence in such a way that the

-0.5

 0

 0.5

-0.5  0  0.5

y

x

(a)

-0.5

 0

 0.5

-0.5  0  0.5

y

x

(b)

FIG. 5. A typical recurrence orbit for (a) the recurrence region T1

and for (b) T2. Stable regions are shown as filled black polygons. The
recurrence time of the orbits is 1148 for (a) and 1044 for (b).

symbols of the region that the orbit visits are concatenated in
its visiting order. The length of the symbol sequence is equal
to the recurrence time of the orbit. Needless to say, the symbol
representation allows one to see each orbit in “coarse-grained”
phase space. For instance if the symbol sequence of an orbit
has the subsequence represented as . . . ead . . . , the orbit visits
the region of the subsequence, Read , when such a subsequence
appears in the symbol sequence.

We here define symbol sequence statistics of recurrent
orbits. For a given subsequence s = s1 . . . sl and a given
initial point (x0,y0), let τs(x0,y0) be the number of times the
subsequence s1 . . . sl appears in the symbol sequence of the
orbit from the initial point (x0,y0) until the recurrence. Then
let us define the symbol sequence statistics as

Ss(τ ) = Prob.
{
(x0,y0) such that τs(x0,y0) > τ

}
. (13)

In other words, Ss(τ ) is the probability of the recurrent orbits
for which the subsequence s appears more than τ times. The
quantity Ss(τ ) represents, for a given recurrence region, how
many times recurrent orbits visit the region labeled by the
symbol sequence s. It could be a measure to see which phase-
space regions are sticky.

First, we examine Ss(τ ) in I1. Figure 6 shows the symbol
sequence statistics for the case where we take the recurrence
region T1. One can clearly find that the symbol sequence
statistics exhibits two types of distributions: one obeys a
power law and the other exponentially decays, depending on
the symbol sequences. Note that the exponent of the power
law is the same as the one for the recurrence time, namely
S(τ ) ∼ τ−2. This observation is consistent with the fact that
the recurrent orbits stay long time only in sticky regions.

In order to classify symbol sequences, let here F (m)
s1...sl

be the
family of subsequences of length m in the infinite repetition of
s1 . . . sl , namely,

F (m)
s1...sl

=
{
t1 . . . tm | ti = ti+l ,i = 1, . . . ,l

ti = si+j (modl),j = 1, . . . ,l

}
,

Then, let us define the family of symbol sequences
as Fs1...sl

= ⋃∞
m=l F (m)

s1...sl
, e.g., Fa = {a,aa,aaa, . . . },Fab =

{ab,ba,aba,bab, . . . }, and so on. By observing the symbol
sequences, we have found that only two families, Fead (Fdae)
and Faf abdb, yield the power-law distribution. For the symbol
sequences that are not contained in these two families, the
symbol sequence statistics exhibits exponentially decaying
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FIG. 6. (a) Symbol sequence statistics S(τ ) for the recurrence
region T1. The length of the symbol sequences is 3. 26 symbol se-
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quence statistics for the symbol sequence of length 6. The symbol
sequences for the power law are classified into two groups, Fead =
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statistics for Fead (Fdae) and Faf abdb with several symbol lengths.
As the symbol length increases, the symbol statistics asymptotically
approaches a power-law tail. The prefactor for the power law tail for
Fead is slightly greater than the one for Faf abdb.

behavior [see Figs. 6(b) and 6(c)]. In Fig. 6(d), we show S(τ )
by changing the length of the symbol sequence. Here, Fs(l)
indicates the subset of Fs for the symbol length l. As the sym-
bol length increases, meaning that “phase-space resolution”
becomes higher, the power-law distribution becomes clear.

As explained in the previous sections, in I1 there are two
sets of marginally unstable periodic orbits: the boundaries of
the stable hexagonal Rbbb and the boundary between I1 and
I2. Figure 7 demonstrates the phase-space regions in which the
power-law behavior is found in the symbol sequence statistics.
The orbits associated with the families of subsequence Feac

and Faf abdb, respectively, stick along the boundary lines
between I1 and I2 and the boundaries of the stable region Rbbb.

In this way, we confirm that the symbol sequence statistics
Ss(τ ) could be a measure to know which region is responsible
for the power law of the recurrence time. The asymptotic
behavior of Ss(τ ) therefore becomes as

Ss(τ ) ∼
{
τ−2 Rs is a “sticky” region
exp(−ksτ ) otherwise

, (14)

where ks is a coefficient for exponential decay.

B. The power-law decay in I2

We next investigate the symbol sequence statistics for
the invariant set I2 that contains hierarchical stable islands.
Figure 8 shows the symbol sequence statistics in the case where
T2 is taken as the recurrence region. Similar to the results forI1,
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FIG. 7. (a) Phase-space regions in which the power-law behavior
is found in the symbol sequence statistics. The black filled hexagon
represents the stable region and the boundary lines between I1 and
I2 are indicated by the black lines. (b) Magnification of panel (a).
The regions with different symbol length are overlaid. As the symbol
length l increases, the region of Fead shrinks into the boundary lines.
For Faf abdb the region shrinks into the hexagon edges as the symbol
length increases.

the statistics exhibits the asymptotic power law Ss(τ ) ≈ Cτ−2

for particular symbol sequences. In this case, we found that
the four families, Fead ,Fceaeadedaeae,Fααβγ , and Fααβαββγαγ ,
are responsible for the power law. For the rest of the symbol
sequences, due to the limitation of computational resources to
obtain statistically reliable data, we could not judge whether
power-law tails appear or not (while some of those clearly
exhibit exponential decays). Note that the exponent of the
power-law decay for these families is 2, meaning that the
existence of hierarchical stability islands does not seem to
play any significant role.

The orbits associated with such families, as shown in
Fig. 9, stay in the vicinity of the stable regions to which
the corresponding symbols of families are assigned. As seen
in the previous subsection, the regions for Fead are located
along the boundary lines between I1 and I2. The regions
for Fceaeadedaeae are along the boundaries of the two stable
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FIG. 8. Symbol statistics for the recurrence region T2. The symbol
length is 39. The number of initial points is taken as 108.
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FIG. 9. Phase space regions in which the power-law behavior is
found in the symbol sequence statistics. (a) The whole phase space.
From (b) and (c) to (d), we gradually magnify hierarchical regions.
The black filled polygons show stable regions.

hexagonal regions Reaeaea . The regions for the families Fααβγ

and Fααβαββγαγ are located at the boundaries of the stable
regions Rααα and Rααβαβααγ , respectively.

We remark that these word sequences are the first two levels
in the hierarchy of the stable regions (see Table II). These
facts ensure that the power-law decay of the recurrence time
originates from the marginal instability of the boundary of
the stable regions. In our numerical observations, the motion
of transitions between different levels in the hierarchy is not
responsible for the power law. The marginal instability is only
the source of the stickiness and the existence of hierarchy of
stability islands does not affect the power law of the recurrence.

For the four families exhibiting the power-law decay of
the symbol sequence statistics, the prefactor of the decay C

significantly differs between the hierarchy levels, while the
exponent is the same (see Fig. 8). The magnitude of the
prefactor manifests the probability of how often orbits enter
each sticky region. Assuming that the injection probability is
proportional to the area of the sticky region in phase space,
it is consistent that the magnitude of the prefactor value
decreases as the level of hierarchy increases. With increase in
the hierarchy level, the size of stable regions becomes smaller
and thus the area of sticky regions is reduced, whereas the
number of stable regions increases, at most, algebraically. The
largest sticky region plays a significant role to the power-law
decay of the recurrence-time distribution.

V. CONCLUSION AND DISCUSSION

We have investigated the influence of hierarchical structure
of stable regions on the recurrence-time statistics by closely
examining the phase-space structure of the piecewise linear
map (2) with K = 1. The phase space is composed of two

invariant domains: one contains a single stable region and the
other infinitely many stable regions. Each stable region is com-
posed of a set of periodic orbits and forms a convex polygon.
By rewriting the original map into the form without modulo
arithmetic operation, we could introduce a proper partition
in phase space, which leads a kind of symbolic dynamics.
Such a symbolic dynamics allows us to find the one-to-one
correspondence between single symbol sequences and stable
islands. This also offers an efficient systematic procedure to
compute the edges of stable polygons. We have shown that the
stable regions form a hierarchical structure: stable regions in
each hierarchy level is surrounded by those of the next hierar-
chical level and so on. Moreover, we have confirmed that the
symbol sequences of stable regions have a certain relationship
among different hierarchy levels. Namely, symbol sequences
in a hierarchy level is generated from the ones in the lower level
by replacing specific symbol sequences by other ones. This re-
lation in the symbol expression is closely linked to the fact that
the stable islands form the hierarchical structure in phase space.

We have examined how the hierarchical structure affects
the recurrence-time distribution. The most important finding
is that the power-law exponent does not depend on whether
or not there exists the hierarchical structure of stable regions.
On the boundaries of stable regions one may expect there
exists a family of marginally unstable periodic orbits. Due to
the marginal instability, the exponent for the recurrence time
becomes ν = 2, as is the case of the map Eq. (2) with Km or the
case of the stadium and mushroom billiards. We note that the
mapping with K = 1 belongs to a special class of dynamical
systems in spite of the existence the hierarchical structure.

To verify that recurrent orbits are sticky only close to the
boundaries of stable regions, we have introduced the symbol
sequence statistics for recurrent orbits, based on the symbolic
expression of the orbits. The symbol statistics represents how
many times orbits visit a given region in phase space until
the recurrence occurs. For the regions close to stable regions,
the symbol statistics exhibits a power law tail, S(τ ) ≈ Cτ−2,
where the exponent is exactly the same value as that given in
the recurrence time. In each hierarchy level, the statistics obeys
the same power law, while the prefactor C differs among the
hierarchy levels. The prefactor tends to be smaller as the size
of the stable regions becomes smaller.

In generic phase space, as mentioned in the introduction
section, there have been discussions on the origin of power
law decay in generic mixed systems. A model introduced by
Meiss and Ott assumes a hierarchical structure of islands of
stability, and the transition among different hierarchical levels
is considered to invoke the power-law decay. However, for the
present piecewise linear map, the existence of hierarchy does
not play any role, but only the power law originates solely
from the marginal instability around each stable region. Such
difference originates from the difference in configurations of
sticky regions, which is schematically shown in Fig. 10. In
our sharply divided hierarchical phase space, only the vicinity
of stable regions is sticky and different sticky regions do not
overlap in phase space with each other. In generic cases, on
the other hand, the resonant stable islands are located in the
parent’s sticky region so that the surrounding sticky regions
form hierarchical structures and thus the transitions among
several hierarchy levels are critical to the long-time sticky
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FIG. 10. Schematics picture of the hierarchical structures in (a)
generic mixed phase space and in (b) our sharply divided mixed phase
space. The black regions indicate the stable regions and the gray ones
indicate the surrounding sticky regions.

motions. For this reason, the present result might not be directly
linked to the universality in generic situations discussed so far,
but it tells us that not only hierarchical structure of stable
islands but also configuration of sticky regions are significant
for the power-law decay.

APPENDIX: A PROCEDURE TO COMPUTE
PHASE-SPACE PARTITIONS

We here present a procedure to compute the partition
of phase space. The partition is generated by iterating the
piecewise linear map, which is defined on n subregions in
phase space independently and affine in each region.

Let n be the number of regions and S = {s1, . . . ,sn} be a
set of symbols and Rsi

be a convex polygon region on the
two-dimensional plane. Each convex polygon, Rs for s ∈ S, is
expressed by a set of inequalities as

Rs =
{

(x,y) ∈ R2 |
a(1)

s x + b(1)
s y > c(1)

s
...

a(ms )
s x + b(ms )

s y > c(ms )
s

}
, (A1)

where ms is the edge number of the polygon and the
coefficients a

(j )
s ,b

(j )
s ,c

(j )
s specify the edge lines.

Assuming that Rsi
∩ Rsj

= ∅ for i �= j , let us define a
piecewise linear map on

∑
i

⋃
Rsi

, (x ′,y ′) = F (x,y), as

(
x ′
y ′

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ms1

(
x

y

)
+ Vs1 (x,y) ∈ Rs1

...

Msn

(
x

y

)
+ Vsn

(x,y) ∈ Rsn

, (A2)

where Mi is a matrix and Vi is a vector. The regions Rsi
form

a fundamental phase-space partition for the map.
For a given finite symbol sequence t0 . . . tk where ti ∈ S, let

us define a subregion as

Rt0...tk =
{

(x,y) ∈ R2 |
(x,y) ∈ Rt0

F (x,y) ∈ Rt1

...
Fk(x,y) ∈ Rtk

}
. (A3)

Since each region is defined by a set of inequalities, the
conditions for Rt0...tk are expressed by inequalities as well.
Namely, one of the inequalities for the condition F i(x,y) ∈ Rti

in Eq. (A3) is

(a(j )
ti b

(j )
ti ) ·

(
xi

yi

)
> c

(j )
ti , (A4)

where
(

xi

yi

)
=

⎛
⎝ i−1∏

p=0

Mtp

⎞
⎠(

x

y

)
+

i−1∑
p=0

⎛
⎝ i−1∏

q=p+1

Mtq

⎞
⎠Vtp . (A5)

To obtain a subregion, it is sufficient to check whether all these
inequalities are satisfied simultaneously. If these inequalities
are not satisfied simultaneously, the region for the symbol
sequence no longer exists in phase space. One can compute
the edges and the vertices of the subregion by reducing the
inequalities into the minimal ones.

[1] C. F. F. Karney, Physica D (Amsterdam) 8, 360 (1983).
[2] B. V. Chirikov and D. L. Shepelyansky, Physica D (Amsterdam)

13, 395 (1984).
[3] J. D. Meiss, Rev. Mod. Phys. 64, 795 (1992).
[4] B. V. Chirikov and D. L. Shepelyansky, Phys. Rev. Lett. 82, 528

(1999).
[5] M. Weiss, L. Hufnagel, and R. Ketzmerick, Phys. Rev. Lett. 89,

239401 (2002).
[6] G. Cristadoro and R. Ketzmerick, Phys. Rev. Lett. 100, 184101

(2008).
[7] E. G. Altmann and T. Tél, Phys. Rev. E 79, 016204 (2009).
[8] R. Venegeroles, Phys. Rev. Lett. 102, 064101 (2009).
[9] R. Ceder and O. Agam, Phys. Rev. E 87, 012918 (2013).

[10] C. V. Abud and R. E. de Carvalho, Phys. Rev. E 88, 042922
(2013).

[11] O. Alus, S. Fishman, and J. D. Meiss, Phys. Rev. E 90, 062923
(2014).

[12] J. D. Meiss and E. Ott, Phys. Rev. Lett. 55, 2741 (1985).
[13] J. D. Meiss, Chaos 25, 097602 (2015).
[14] J. Hanson, J. Cary, and J. Meiss, J. Stat. Phys. 39, 327 (1985).
[15] E. G. Altmann, A. E. Motter, and H. Kantz, Chaos 15, 033105

(2005).
[16] T. Miyaguchi, Phys. Rev. E 75, 066215 (2007).
[17] S. Tsugawa and Y. Aizawa, J. Phys. Soc. Jpn. 81, 064004 (2012).
[18] L. A. Bunimovich, J. Stat. Phys. 154, 421 (2014).
[19] J. Malovrh and T. Prosen, J. Phys. A 35, 2483 (2002).
[20] E. G. Altmann, A. E. Motter, and H. Kantz, Phys. Rev. E 73,

026207 (2006).
[21] A. Akaishi and A. Shudo, Phys. Rev. E 80, 066211 (2009).
[22] M. Wojtkowski, Commun. Math. Phys. 80, 453 (1981).
[23] M. Wojtkowski, Ergod. Theory Dyn. Syst. 2, 525

(1982).
[24] S. Bullett, Commun. Math. Phys. 107, 241 (1986).
[25] K. Aoki, A. Akaishi, and A. Shudo (unpublished).

052207-8

https://doi.org/10.1016/0167-2789(83)90232-4
https://doi.org/10.1016/0167-2789(83)90232-4
https://doi.org/10.1016/0167-2789(83)90232-4
https://doi.org/10.1016/0167-2789(83)90232-4
https://doi.org/10.1016/0167-2789(84)90140-4
https://doi.org/10.1016/0167-2789(84)90140-4
https://doi.org/10.1016/0167-2789(84)90140-4
https://doi.org/10.1016/0167-2789(84)90140-4
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/RevModPhys.64.795
https://doi.org/10.1103/PhysRevLett.82.528
https://doi.org/10.1103/PhysRevLett.82.528
https://doi.org/10.1103/PhysRevLett.82.528
https://doi.org/10.1103/PhysRevLett.82.528
https://doi.org/10.1103/PhysRevLett.89.239401
https://doi.org/10.1103/PhysRevLett.89.239401
https://doi.org/10.1103/PhysRevLett.89.239401
https://doi.org/10.1103/PhysRevLett.89.239401
https://doi.org/10.1103/PhysRevLett.100.184101
https://doi.org/10.1103/PhysRevLett.100.184101
https://doi.org/10.1103/PhysRevLett.100.184101
https://doi.org/10.1103/PhysRevLett.100.184101
https://doi.org/10.1103/PhysRevE.79.016204
https://doi.org/10.1103/PhysRevE.79.016204
https://doi.org/10.1103/PhysRevE.79.016204
https://doi.org/10.1103/PhysRevE.79.016204
https://doi.org/10.1103/PhysRevLett.102.064101
https://doi.org/10.1103/PhysRevLett.102.064101
https://doi.org/10.1103/PhysRevLett.102.064101
https://doi.org/10.1103/PhysRevLett.102.064101
https://doi.org/10.1103/PhysRevE.87.012918
https://doi.org/10.1103/PhysRevE.87.012918
https://doi.org/10.1103/PhysRevE.87.012918
https://doi.org/10.1103/PhysRevE.87.012918
https://doi.org/10.1103/PhysRevE.88.042922
https://doi.org/10.1103/PhysRevE.88.042922
https://doi.org/10.1103/PhysRevE.88.042922
https://doi.org/10.1103/PhysRevE.88.042922
https://doi.org/10.1103/PhysRevE.90.062923
https://doi.org/10.1103/PhysRevE.90.062923
https://doi.org/10.1103/PhysRevE.90.062923
https://doi.org/10.1103/PhysRevE.90.062923
https://doi.org/10.1103/PhysRevLett.55.2741
https://doi.org/10.1103/PhysRevLett.55.2741
https://doi.org/10.1103/PhysRevLett.55.2741
https://doi.org/10.1103/PhysRevLett.55.2741
https://doi.org/10.1063/1.4915831
https://doi.org/10.1063/1.4915831
https://doi.org/10.1063/1.4915831
https://doi.org/10.1063/1.4915831
https://doi.org/10.1007/BF01018666
https://doi.org/10.1007/BF01018666
https://doi.org/10.1007/BF01018666
https://doi.org/10.1007/BF01018666
https://doi.org/10.1063/1.1979211
https://doi.org/10.1063/1.1979211
https://doi.org/10.1063/1.1979211
https://doi.org/10.1063/1.1979211
https://doi.org/10.1103/PhysRevE.75.066215
https://doi.org/10.1103/PhysRevE.75.066215
https://doi.org/10.1103/PhysRevE.75.066215
https://doi.org/10.1103/PhysRevE.75.066215
https://doi.org/10.1143/JPSJ.81.064004
https://doi.org/10.1143/JPSJ.81.064004
https://doi.org/10.1143/JPSJ.81.064004
https://doi.org/10.1143/JPSJ.81.064004
https://doi.org/10.1007/s10955-013-0898-2
https://doi.org/10.1007/s10955-013-0898-2
https://doi.org/10.1007/s10955-013-0898-2
https://doi.org/10.1007/s10955-013-0898-2
https://doi.org/10.1088/0305-4470/35/10/312
https://doi.org/10.1088/0305-4470/35/10/312
https://doi.org/10.1088/0305-4470/35/10/312
https://doi.org/10.1088/0305-4470/35/10/312
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.73.026207
https://doi.org/10.1103/PhysRevE.80.066211
https://doi.org/10.1103/PhysRevE.80.066211
https://doi.org/10.1103/PhysRevE.80.066211
https://doi.org/10.1103/PhysRevE.80.066211
https://doi.org/10.1007/BF01941656
https://doi.org/10.1007/BF01941656
https://doi.org/10.1007/BF01941656
https://doi.org/10.1007/BF01941656
https://doi.org/10.1017/S0143385700001759
https://doi.org/10.1017/S0143385700001759
https://doi.org/10.1017/S0143385700001759
https://doi.org/10.1017/S0143385700001759
https://doi.org/10.1007/BF01209394
https://doi.org/10.1007/BF01209394
https://doi.org/10.1007/BF01209394
https://doi.org/10.1007/BF01209394



