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Splitting in the pinning-depinning transition of fronts in long-delayed bistable systems
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We investigate the formation of localized domains through front pinning in a periodically forced, bistable
semiconductor laser with long-delayed optoelectronic feedback. At difference with 1D spatially extended
systems, the transition from the pinning to the propagation regime occurs via two separated bifurcations, each
corresponding to the unpinning of one of the fronts surrounding the localized domain. The bifurcation splitting
is systematically explored, unveiling the crucial role played by the forcing frequency. The experimental results
are reproduced and interpreted by means of a prototypical model of our system.
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I. INTRODUCTION

The dynamics of fronts in spatially extended systems out of
thermal equilibrium is of crucial importance in many areas of
research, from chemical morphogenesis [1] to localized states
in biological and optical systems [2].

In variational and spatially unidimensional bistable sys-
tems, it is well known that fronts connecting both phases will
tend to drift at a velocity that is proportional to the asymmetry
between the two phases, leading to stationary fronts only when
both states have the same energy, i.e., at the so-called Maxwell
point [3,4]. Therefore, starting from an inhomogeneous initial
condition, in most cases the energetically favored phase will
end up invading the whole system.

Following the first empirical [5,6] and later theoretical
[7–9] works, showing a strong equivalence (for a review, see
Ref. [10]) between spatially extended and delayed dynamical
systems close to a supercritical Hopf bifurcation, it was re-
cently shown experimentally [11,12] that bistable systems with
delay can display a front dynamics, leading to a homogeneous
state after a transient phase.

In spatially extended systems, several mechanisms can
prevent the collapse of the fronts. In all cases, that leads to
the formation of stable localized states consisting in islands
of metastable phase surrounded by a sea of stable phase [13].
In optics, often invoked mechanisms are fronts pinning either
to each other [14–16] or to some spatial modulation. This
spatial modulation can either be intrinsic when one of the
states is nonuniform [17,18] or extrinsic [19–21]. In the latter
case, an external modulation is applied to a parameter, which
breaks the translation invariance of an otherwise homogeneous
state. In either case, the motion of fronts is strongly impacted,
eventually reaching a pinning transition when the fronts do
not move anymore, leading to the formation of localized
domains.

In the delayed feedback experiment in Ref. [11], the
interaction between neighboring fronts was attractive and
therefore analogs of localized states could not be observed.
Pursuing the idea of delimiting the boundaries of the anal-
ogy between delayed and spatially extended systems in the
context of localized states (also explored in Refs. [22,23]),
an experiment aiming at showing the front pinning transition
has been recently performed [24] in a bistable laser system

with optoelectronic feedback. In that case, the application
of periodic forcing (analog of the spatial modulation) leads
to the formation of localized states through front pinning,
in a remarkably similar way to spatially extended systems.
However, important features of these dynamics in delayed
systems were not exhaustively analyzed. In particular, the
unpinning transition appeared to be split in two distinct
bifurcations, each corresponding to the unpinning of one of
the fronts surrounding the localized domain. In the following,
we explore systematically the bifurcation splitting, unveiling
the role played by the parameters of the (pseudo-)spatial
modulation.

II. EXPERIMENT

A. Experimental setup

The experimental setup is similar to that of Ref. [24] and
it is shown in Fig. 1. A vertical cavity surface emitting laser
(VCSEL) is operated in a regime of polarization bistability.
One of the linear polarizations of the VCSEL is selected by
a polarizing beam splitter and its intensity is monitored by a
photodetector. The photodetector signal is then acquired and
delayed (time delay τ = 19 ms) by a digital reconfigurable
acquisition board and subsequently fed back into the VCSEL
through the pump current. The laser is biased by a dc voltage
signal V0 to which a periodic modulation Vm sin(2πt/T )
provided by a function generator can be superimposed. The
amplitude of the modulation is always kept much smaller than
the width of the bistability region. The mutual stability of the
two polarization states or, similarly, the tilt of the bistable
potential, is controlled by V0, which we will refer to as the
asymmetry parameter. Here we use V0 = −453.3 mV, for
which the energetically favored phase is that corresponding
to the high-intensity state. In order to observe the fronts
and their motion in the pseudospace defined by the delayed
feedback loop, a space-time representation [5] is created by
decomposing the time series into pseudospatial cells of length
τ + ε, with ε > 0 due to causality [10]. Each time value within
the time trace is identified by a real number σ (0 � σ < τ + ε),
indicating the position inside a given delay segment (the
pseudospace) and by the segment number n, which plays the
role of a discrete time.
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FIG. 1. Experimental setup. VCSEL, vertical cavity laser; λ/2,
halfwave plate(s); PBS, polarizing beamsplitter(s); PD, photodetec-
tor(s). The modulation signal V (t) is summed to the laser pump
bias V0. The delay line is realized with an A/D-D/A board suitably
programed in a real-time Linux environment.

B. Experimental results

When the system is prepared in an inhomogeneous state,
where the whole feedback loop is filled with the low power
state with the exception of a small segment in the high-power
state, coarsening is observed. The fronts propagate at constant
speed without changing their shape, such that a single phase
(the dominant) progressively invades the whole system. These
dynamics are usually observed in 1D bistable media. However,
along with their relative motion, fronts in long-delayed systems
also exhibit a common drift. The average position of a phase
domain is shifted to the right at each subsequent delay interval
by a quantity δ � τ : the parity symmetry in pseudospace
can be recovered in the tilted reference frame [11], i.e., by
choosing ε = δ in the space-time representation. An example
of these dynamics can be observed in Fig. 2, where we
plot the evolution of the fronts speed and the corresponding
spatiotemporal reconstruction. The velocity is calculated by
detecting on the time series all occurrences of the rising or
falling fronts and computing the temporal separation between
consecutive occurrences. The difference between this temporal
separation and the (known) delay time is the velocity vrise,fall

of the front in a spatiotemporal representation. The constant δ

is obtained in our case by δ = (vrise + vfall)/2 − τ = 5.11 in
units of sampling time and δ/τ = 2.7 × 10−3. In this reference
frame, rising and falling fronts propagate symmetrically in
the absence of pinning mechanism [up to 130 round trips
in Figs. 2(a) and 2(b) and up to 90 round trips in Figs. 2(c)
and 2(d)] and positive (negative) velocities correspond to fronts
propagating to the right (left) direction.

When the modulation is switched on, the relative motion of
the fronts is initially altered by the forcing and, after a short
transient, is blocked (see Fig. 2). The front pinning is observed
for small values of the asymmetry parameter, i.e., close to the
Maxwell point, and the size of the pinning region depends on
the strength of the spatial forcing.

While the modulation amplitude plays a very similar
role with respect to the observations made, here the forcing
frequency substantially changes the features of the pinning
regime. In particular, for an arbitrary choice of T the
average position of the high-intensity domain changes in the

FIG. 2. Experiment. Spatiotemporal dynamics of fronts gener-
ated from a rectangular initial condition for different detunings.
(a) Time evolution of the fronts speed and (b) the corresponding
spatiotemporal plots: at time n ∼ 130, the modulation is switched
on, detuning γ ≈ −3 × 10−4. (c) Time evolution of the fronts speed
and (b) the corresponding spatiotemporal plots: at time n ∼ 90, the
modulation is switched on, detuning γ ≈ 2.5 × 10−4. Asymmetry
parameter V0 = −453.3 mV, modulation amplitude Vm = 1 mV. On
panels (a) and (c), the solid lines show the front velocity averaged
(with Gaussian weights) over 30 roundtrips and the width of the
stripes indicates the standard deviation of the velocity. This deviation
is due to finite sampling rate of the measurement apparatus.

pseudotime. This is due to the fact that the periodic stable
states of the system are stationary in the pseudotime only if
the modulation period corresponds to an integer submultiple
Np of (τ + δ). Otherwise, they exhibit a drift with a direction
(velocity) determined by the sign (modulus) of the detuning
parameter,

γ = (τ + δ)/T − Np. (1)

This is shown in Figs. 2(a), 2(c) and Figs. 2(b), 2(d) for negative
and positive values of the detuning, respectively. For moderate
values of γ the fronts are still pinned (their relative motion
is frozen), but they are dragged by the underlying moving
pattern.

A nonzero detuning affects also the pinning-depinning
transition. In spatially extended bistable systems, the presence
of the spatial forcing is known to induce an energy barrier

052204-2



SPLITTING IN THE PINNING-DEPINNING TRANSITION . . . PHYSICAL REVIEW E 95, 052204 (2017)

FIG. 3. Experiment. Spatiotemporal dynamics of fronts as the
modulation amplitude is linearly decreased in time. (a) Time evolution
of the fronts speed and (b) the corresponding spatiotemporal plots for
γ ≈ −3 × 10−4. (c) Time evolution of the fronts speed and (d) the
corresponding spatiotemporal plots for γ ≈ 2.5 × 10−4. Asymmetry
parameter V0 = −453.3 mV.

for the front propagation to occur. Fixing the modulation
amplitude and increasing the asymmetry parameter, a regime
is found where the fronts start propagating with a velocity
oscillating around a nonzero mean value. The same behavior
is expected, keeping fixed the asymmetry and decreasing the
modulation amplitude: the depinning of left and right fronts
occurs for the same system parameters via a saddle node (on
a circle-) bifurcation for the front velocities. On the contrary,
here the transition from the pinning to the propagation regime
occurs via two separated bifurcations.

In Fig. 3, we report the front velocities and the space
time plots, for detunings as in Fig. 2, and keeping fixed the
asymmetry. The modulation amplitude is slowly decreased,
starting from values where both fronts are pinned. When the
amplitude becomes sufficiently low, a first depinning transition
is observed. The sign of the detuning determines which of
the two fronts starts to propagate first, while its modulus
determines the splitting between the bifurcations. For positive
detunings, only the left front is propagating, whereas the right

FIG. 4. Experiment. Spatiotemporal dynamics of fronts as the
modulation frequency is varied. Main panel: time evolution of the
comoving fronts velocities (see text). The vertical solid line indicates
the point of effective zero detuning. Insets: spatiotemporal plots
corresponding to different modulation frequencies (i.e., detunings)
during the scan. Asymmetry parameter V0 = −453.3 mV, modulation
amplitude Vm = 1 mV.

front is still pinned [see Figs. 3(a) and 3(b)]. Notice that the
velocity of the left front is oscillating around a (negative)
mean value with a frequency that increases with the distance
to the bifurcation point. Since the modulation amplitude is
continuously swept, it is not possible to extract the exact
frequency scaling as a function of the bifurcation parameters
(the frequency is barely constant over one period). However,
the observed behavior as the depinning point is approached
suggests the occurrence of an infinite-period bifurcation for
the front velocities. For negative values of the detuning the
opposite situations takes place: the right front is propagating
while the left front remains pinned.

A more complete picture can be obtained by analyzing
the system dynamics as a function of the detuning. As
discussed above, changes of the forcing frequency correspond
to variations of the detuning parameter. We thus analyze the
spatiotemporal dynamics of fronts when the the modulation
frequency is slowly varied, keeping fixed both the asymmetry
and the modulation amplitude. Results are reported in Fig. 4. In
the tilted reference frame τ + δ, in which free fronts propagate
symmetrically, fronts locked to the forcing drift at a velocity
proportional to the detuning γ . Here we plot the comoving
fronts speed, defined as the front velocities with respect to
the pseudospatial modulation. In this new reference frame, the
fronts have zero velocity in the whole pinning region.

For modulation frequencies outside the locking range, both
fronts are propagating with oscillating velocities. The number
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of the velocity oscillations indicate the distance from the
corresponding pinning bifurcation point. We remark, however,
that also in this case, we are continuously scanning the
bifurcation parameter and thus we cannot reconstruct the
bifurcation diagram quantitatively. As shown in Fig. 4, inset
(a), the velocity of the right front oscillates faster than that of
the left front, indicating that the latter will undergo the pinning
transition first. At a given point along the scan, we indeed
observe that the left front is pinned while the right one is still
propagating: this is a clear demonstration of the splitting in the
pinning-depinning transition [see Fig. 4, inset (b)]. When the
effective detuning is further decreased, the right front is pinned
although both fronts are moving to the left [see Fig. 4, inset (c)].
A (nearly) stationary pattern in pseudotime is observed only
very close to the point zero detuning [Fig. 4, inset (d)].1 The
same sequence of behavior is observed for positive detunings.
However, the average position of the high-intensity phase is
now moving to the right [Fig. 4, inset (e)] and is the left front the
first to begin propagation [Fig. 4, inset (f)]. At higher values of
the detuning, the second bifurcation takes place, as illustrated
by the oscillating velocities in Fig. 4. This corresponds to the
unpinning of the right front [Fig. 4, inset (g)].

III. NUMERICAL ANALYSIS

The polarization bistability in VCSELs can be described in
terms of the competition of two polarization modes interacting
with a single carrier density providing the optical gain.
Under a suitable separation of the involved time scales, the
VCSELs rate equations reduce to a one-dimensional double-
well potential system, whose asymmetry parameter depends
on the pump current [25,26]. Here, for the sake of simplicity
and generality, we adopt a prototypical model with a cubic
nonlinearity and a linear delayed feedback term [11]:

ẋ = −x(x + 1 + a)(x − 1) + gx(t − τ ). (2)

The time-dependent variable x(t) describes how the total
optical power is partitioned among the polarization modes and
thus is related to the optical intensity in each polarization.
The parameter a controls the degree of stability of the
two stable states, x± = (−a ±

√
(2 + a)2 + 4g)/2, and g > 0

is the feedback gain. As in the experiment, the system
is prepared in an inhomogeneous initial condition x0(t) =
x− + x+rect[(t − τ/2)/w0], (−τ � t < 0), corresponding to
a rectangular-function profile of spatial width (w0/τ ), con-
necting the points x±. The resulting spatiotemporal dynamics
is visualized in the tilted reference frame, i.e., decomposing
the time-series into pseudospatial cells of length τ + δ. As
shown in Ref. [11], for a �= 0 (asymmetric case), the system
displays coarsening, i.e., propagating fronts separating two
domains, each corresponding to one of the two stable states.
When a > 0, the phase x− gradually expands at the cost of
the other one, leading eventually to a homogeneous state. For
a < 0, the opposite situation takes place and from now on we
shall restrict to this regime. The average growth rate of the

1The zero detuning point has been determined by fitting a straight
line (corresponding to the linear scan of the forcing frequency) to the
locked fronts displacements in the tilted reference frame, i.e., τ + δ.

FIG. 5. Numerical results. Average growth rate of the dominant
phase against the mean asymmetry parameter a0, for different
values of the detuning and of the modulation amplitude: (a) γ = 0;
(b) γ = 5 × 10−3; (c) γ = −5 × 10−3. Dotted curves, am = 0; red
(solid) curves am = 0.4; green (dashed) curves am = 0.3; blue
(dot-dashed) curves am = 0.2. Insets: spatiotemporal plots of fronts
corresponding to am = 0.4. γ = 0, a0 = −0.1 (inset a1) and a0 = −0.6
(inset a2). γ = 5 × 10−3, a0 = −0.1 (inset b1), a0 = −0.4 (inset b2)
and a0 = −0.6 (inset b3). γ = −5 × 10−3, a0 = −0.1 (inset c1), a0 =
−0.4 (inset c2) and a0 = −0.6 (inset c3). The system evolves starting
from a rectangular-function profile x0(t) with w0 = 0.02τ (see text).
Other parameters: g = 1, τ = 100, Np = 50, δ ≈ 1.35 × 10−3τ .

dominant phase [dotted line in Fig. 5(a)] increases with |a|
and is zero only at the Maxwell point.

Pinning phenomena can be observed by applying a small
temporal modulation to the asymmetry parameter,

a = a0 + am sin(2πt/T ). (3)

A crucial role is here played by the modulation period T

that, for a given number of periods Np in a pseudospatial
cell (τ + δ) uniquely determines the detuning parameter
γ = (τ + δ)/T − Np. When am �= 0, the homogeneous states
x± become periodic states in the pseudospace. We remind,
however, that such states are stationary in the pseudotime only
for zero detuning, i.e., when T = (τ + δ)/Np, otherwise they
exhibit a drift.

052204-4



SPLITTING IN THE PINNING-DEPINNING TRANSITION . . . PHYSICAL REVIEW E 95, 052204 (2017)

We first consider the stationary case, γ = 0. In Fig. 5(a) we
plot the average fronts velocity as a function of a0, for three
values of the modulation amplitude. For parameters next to the
Maxwell point, we observe the existence of a pinning region
where the average fronts velocity is zero. Within the pinning
region, stationary stable localized states can be generated [see
Fig. 5, inset (a1)] [24]. Outside this range, a regime is found
where the fronts start propagating with a velocity oscillating
around a nonzero mean value [see Fig. 5, inset (a2)]. In
the tilted reference frame, the mean velocities of ascending
(left) and descending (right) fronts have equal magnitude and
opposite sign. When we increase the modulation amplitude,
the pinning region grows, whereas the average front speed
decreases. This behavior is reminiscent of what we observed
in 1D spatially periodic media, where the transition from the
pinning to the propagation regime occurs via a saddle-node
bifurcation.

A substantially different behavior is observed when γ �= 0
[see Figs. 5(b) and 5(c)]. In this case, the periodic modulation
is no longer stationary in pseudotime. At low asymmetry
parameters a pinning region still exists, where fronts have
no relative motion and are pinned to the modulation pattern.
As a consequence, the x+ domain drifts while maintaining
a constant width, thus defining a drifting localized structure
[Fig. 5, insets (b1–c1)]. As |a0| increases, one of the fronts
start propagating while the other remains pinned (see Fig. 5,
insets (b2–c2)]. For larger values |a0|, also the second front
is eventually unpinned [Fig. 5, insets (b3–c3)]. Hence, for
nonzero detunings the transition from the pinning to the
propagation regime occurs via two separated saddle-node
bifurcations. For γ > 0 the localized states propagate to the
left and the right front is the first experiencing the bifurcation
as |a0| increases [see Fig. 5(b)]. The opposite situation occurs
for negative values of the detuning [see Fig. 5(c)].

The average growth rate of the x+ phase, corresponding to
two specific values of the asymmetry parameter, are displayed
in Figs. 6(a)–6(c). For zero detuning, the growth rate decreases
with the asymmetry parameter and abruptly drops to zero
when am = |a0| [see Fig. 6(a)]. On the other hand, when
γ �= 0, the average growth rate generally experiences two
separated transitions (see, e.g., dashed line in Figs. 6(b)
and 6(c)], associated to the individual pinning of each front.
For negative detunings and at very close to the Maxwell point,
the intermediate region in which only one of the fronts is
pinned is not observed. Instead, between the propagation and
the pinning regime we observe a region where the growth
rate is negative (fronts velocities have the same sign), leading
to the consequent annihilation process. All these regimes
can be clearly visualized in Figs. 6(d)–6(f), where we plot
the phase diagrams of the system in the (am, a0) plane for
zero (d), positive (e), and negative (f) detunings. For γ = 0,
the parameter space is separated into two parts. The fronts
pinning (FP) region, whose size increases with the modulation
amplitude, and the propagation region. The pinning regime
exists even for arbitrarily small values of am, reducing to
a single point (the Maxwell point) only at am = 0. In
contrast for finite values of the detuning, at small modulation
amplitudes the system displays just the propagation regime.
In the propagation region PR1 (positive detunings), the right
front propagates faster than the right one [see, e.g., inset (b3)

FIG. 6. Numerical results. Left panels: average growth rate of the
dominant phase against the modulation amplitude, for different values
of the detuning and of the mean asymmetry parameter. (a) γ = 0;
(b) γ = 5 × 10−3; (c) γ = −5 × 10−3. Black (solid) curves, a0 =
−0.3; red (dashed) curves, a0 = −0.2; blue (dot-dashed) curve a0 =
−0.012. The inset in panel (c) shows the spatiotemporal evolution of
fronts corresponding to a0 = −0.012 and am = −0.08. Right panels:
phase diagram of the system in the (am, a0) plane for (d) γ = 0;
(e) γ = 5 × 10−3, (f) γ = −5 × 10−3 (see text). Other parameters as
described in the caption of Fig. 5.

of Fig. 5]. For negative detunings, the opposite situation takes
place (propagation region PR2). As am is increased, a region
appears in which one of the fronts is pinned while the other
is propagating (left front pinned, LFP, when γ > 0 and right
front pinned, RFP, when γ < 0). Here, for suitable values of
a0, the velocity of one of the fronts approximately matches the
drift velocity of the modulation pattern, giving rise to a kind of
locking phenomenon. Both LFP and RFP regions increase in
size with am up to a certain maximum value. Beyond this point,
they maintain a constant size, while appearing at growing
values of the asymmetry parameter. At larger modulation
amplitudes and for a0 close to the Maxwell point, pinning
phenomena are observed: the front pinning region FP1, in
which localized states drifts to the left, and the region FP2, in
which localized states drift to the right. Notice that, for γ < 0,
we observe also a small region in which the average growth
rate of the dominant phase x+ decreases, leading eventually
to the annihilation of fronts [annihilation region, AR, see also
inset (c) in Fig. 6].

We finally complete our analysis by showing in Fig. 7
the phase diagram of the system in the (γ , a0) plane for a
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FIG. 7. Numerical results. Phase diagram of the system in the (γ ,
a0) plane for am = 0.4 (see text) and examples of spatiotemporal
plots in the different regions. Parameters corresponding to the
spatiotemporal plots: (FP) a0 = −0.1, γ = 0; (FP1) a0 = −0.1,
γ = 5 × 10−3; (FP2) a0 = −0.1, γ = −5 × 10−3; (LFP) a0 = −0.4,
γ = 5 × 10−3; (RFP) a0 = −0.4, γ = −5 × 10−3; (PR) a0 = −0.6,
γ = −5 × 10−3; (PR1) a0 = −0.6, γ = 5 × 10−3; (PR2) a0 = −0.6,
γ = −5 × 10−3; (AR) a0 = −0.1, γ = 3 × 10−2. Other parameters
as described in the caption of Fig. 5.

fixed modulation amplitude. On the line γ = 0 the dynamics
is reminiscent of what we observed in 1D bistable media with
a spatially periodic modulation of the asymmetry parameter.
Here, fixing the modulation amplitude, the size of the pinning
region is maximal. At nonzero detunings, the system experi-
ences an additional effective drift velocity. The main effect is
to reduce the pinning region and to induce the appearance of
the intermediate domains LFP and RFP, whose size gets wider
as γ is increased. We point out that (i) the full diagram is not

symmetric with respect to the transformation γ → −γ and
(ii) a0 = 0 does not necessarily show simultaneous unpinning.
In spatially extended systems, both the average front velocity
and the modulations are stationary, which corresponds to the
case γ = 0, and the unpinning transition is not split, which
appears to be a very particular case here.

IV. CONCLUSIONS

We have studied the dynamics of fronts in a periodically
forced, bistable semiconductor laser with delayed optoelec-
tronic feedback. In analogy to spatially extended media,
we observe the formation of localized domains through
front pinning, although the transitional regime exhibit some
unique features, which are inherent to long-delayed systems.
The unpinning transition appears to be split in two distinct
bifurcations, each corresponding to the unpinning of one of
the fronts surrounding the localized domain, a scenario that
has not been described in spatially extended systems. Here
this transition has been carefully studied, showing that for an
arbitrary choice of the modulation period T , the stable states
of the system are not stationary in pseudotime, leading to the
formation of drifting localized states and to the aforemen-
tioned bifurcation splitting. Equivalently, the splitting of the
unpinning transition is caused by the different front velocities
with respect to the forcing when the latter is not stationary.
The simultaneous unpinning of fronts is recovered in a very
specific condition, when the modulation period corresponds
to an integer submultiple of (τ + δ), i.e., γ = 0, or when the
modulation is stationary. Our experimental results, obtained
in a bistable semiconductor laser with long-delayed feedback,
are well described by a simplified prototypical model based
on a one-dimensional double-well potential system with a
cubic nonlinearity and a linear delayed feedback term. This
clearly demonstrates that the phenomenology here described
is independent of the physical details of the laser dynamics
and thus is likely to be observed in any system with similar
characteristics. In particular, we expect the pinning of fronts to
(pseudo-)spatial modulation to present strong analogies with
the pinning of localized states to temporal modulations both
in delayed [27] and in propagative optical systems [28,29].
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