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Qualitative changes in phase-response curve and synchronization
at the saddle-node-loop bifurcation
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Prominent changes in neuronal dynamics have previously been attributed to a specific switch in onset
bifurcation, the Bogdanov-Takens (BT) point. This study unveils another, relevant and so far underestimated
transition point: the saddle-node-loop bifurcation, which can be reached by several parameters, including
capacitance, leak conductance, and temperature. This bifurcation turns out to induce even more drastic changes in
synchronization than the BT transition. This result arises from a direct effect of the saddle-node-loop bifurcation
on the limit cycle and hence spike dynamics. In contrast, the BT bifurcation exerts its immediate influence upon
the subthreshold dynamics and hence only indirectly relates to spiking. We specifically demonstrate that the
saddle-node-loop bifurcation (i) ubiquitously occurs in planar neuron models with a saddle node on invariant
cycle onset bifurcation, and (ii) results in a symmetry breaking of the system’s phase-response curve. The latter
entails an increase in synchronization range in pulse-coupled oscillators, such as neurons. The derived bifurcation
structure is of interest in any system for which a relaxation limit is admissible, such as Josephson junctions and
chemical oscillators.
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I. INTRODUCTION

Different states of macroscopic network dynamics are a
hallmark of complex systems such as the brain. In nervous
systems, transitions between dynamical states constitute im-
portant switch points. For example, the emergence of so-
called frustrated synchronization states (i.e., high-entropic,
multistable network states verging between order and dis-
order) is thought to play a role in neural function and its
pathologies [1]. Such transitions can, on the one hand, emerge
as a consequence of the network topology, as it is found
in the human connectome [2]. Here, we present a general
case where a specific variation in single-neuron properties
can drastically switch network synchronization properties,
provided the cells’ parameters are close to a critical transition
point: the saddle-node-loop (SNL) bifurcation.

While this bifurcation is not unknown [3], our results
demonstrate that its substantial, qualitative consequences
for neural dynamics have so far not been sufficiently ac-
knowledged. Moreover, we show that the SNL bifurcation
is a ubiquitous feature in (planar) type I neuron models.
Because a vast proportion of models [4–6] belongs to this
class (describing neurons ranging from isolated gastropod
somata [7] to hippocampal neurons [8,9]), this transition point
and its implication need to be taken into account for biological
function.
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Different types of spike generation were first classified
by Hodgkin [10] and later linked to particular bifurcations
ruling the transition from rest to spiking [11,12]. Recently,
the ability of neurons to change the mechanism of spike
generation under physiological conditions has attracted the
interest of both theoreticians and experimentalists [13–16].
Attention was mostly directed at the transition between the
two traditional excitability types, which involve either a fold
(saddle node) or a Hopf bifurcation [Fig. 1(a)], along with their
differential subthreshold filtering properties [17–20]. Here,
we investigate an alternative transition, which switches the
spike onset from a saddle node on an invariant cycle (SNIC)
bifurcation to a saddle homoclinic orbit (HOM) bifurcation
[Fig. 1(b)]. This transition is organized by a codimension-two
bifurcation: the SNL bifurcation [21,22]. As we demonstrate,
the SNL bifurcation causes an abrupt change in the phase-
response curve, with far-reaching functional consequences.
For example, the increased ability of individual cells to form
antiphase synchronization observed at an SNL bifurcation
affects the dynamics of networks (Fig. 2), with potential
relevance for various pathological conditions ranging from
epilepsy to Parkinson’s disease [25,26].

SNL bifurcations can occur with several bifurcation param-
eters, including the time constant of the gating kinetics [23].
In this study, we identify the separation of time scales between
voltage and gating dynamics as the decisive bifurcation
parameter, underlying the effect of other parameters, such as
capacitance or temperature. Starting at a SNIC bifurcation in
planar general neuron models, we demonstrate that a variation
in the separation of time scales provokes a generic sequence
of firing onset bifurcations. Compared to other bifurcation
studies, which rely on a local unfolding of a codimension-
three bifurcation [27,28], our approach proves the generic
bifurcation structure including the appearance and ordering of
codimension-two bifurcations on a global scale not restricted
to local analysis. The composed bifurcation diagram hence
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FIG. 1. The transition from rest to spiking in response to an
increase in input current IDC requires (a) that the resting state loses
stability (illustrated are fold and subcritical Hopf bifurcations) and
(b) the creation of a limit cycle [illustrated are saddle homoclinic
orbit (HOM) and SNIC bifurcations]. The membrane capacitance Cm

makes it possible to switch between these bifurcations. The separation
function, sep, marked in red, measures the distance between the stable
and unstable manifold of the saddle. The overlap of both, i.e., sep = 0,
results in a homoclinic orbit.

FIG. 2. (a) Spike raster plot of two small globally coupled
networks of five Wang-Buzsaki models (see Appendix A), one close
to the SNL bifurcation with Cm = 1.47 μF/cm2, the other at a
SNIC bifurcation with Cm = 1 μF/cm2. Synaptic connections are
modeled as voltage perturbations of ε = 0.39 mV. The frequency
detuning of the neurons is approximately equally spaced between
5 and 11 Hz. (b) Phase-locking index, calculated between pairwise
neurons i and j with phase φi,j as 〈ei2π (φi−φj )〉, where brackets denote
temporal averaging. Error bars denote standard deviations. (Top)
Locking index for the network when the capacitance is changed [as
in panel (a)]. (Bottom) Locking index for the network when the leak
conductance gL is changed (instead of capacitance). ε = 0.08 mV,
Cm = 1 μF/cm2, and SNIC at gL = 0.1 mS/cm2 and SNL at
gL ≈ 0.57 mS/cm2; all other parameters are identical to those in
the top panel. Locking at both SNL bifurcations exceeds locking at
the corresponding SNIC bifurcation.

predicts the behavior of a class of neurons over the whole
range of time-scale parameters and thereby warrants a direct
comparison with biological neurons.

The organization of this article is as follows. Section II
describes how the phase-response curve can be identified
from the limit cycle of a dynamical system. With this
relation established, Sec. III proves that a symmetry breaking
of the phase-response curve occurs at SNL bifurcations.
The functional consequences for synchronization in spiking
systems are discussed in Sec. IV. The significance of these
consequences is perpetuated by the results in Sec. V, where
we prove that SNL bifurcations generically occur in planar
neuron models.

II. CONDUCTANCE-BASED NEURON MODEL
AND PHASE REDUCTION

To investigate spike-based synchronization, our detailed,
conductance-based model neurons are reduced to a phase
description. The latter assumes tonic responses of a mean-
driven neuron [18]; i.e., spikes are emitted with a mean spike
rate, f , in response to a constant mean intensity, IDC, and their
occurrence is modulated by inputs sufficiently weak to only
shift spike times {t sp

k }. The spike train is y(t) = ∑
k δ(t sp

k − t).
The dynamics of the membrane voltage v follows a current

balance equation, IDC = Icap + Iion. The input equals the ca-
pacitive current, Icap = dCmv

dt
(with membrane capacitance Cm)

and an ionic current, Iion = Iion(v,mi,...), which is a function
of v itself and the open probability of ion channels given by
their gating variables, mi . Combined, this conductance-based
neuron model forms a dynamical system, Ẋ = F (X), with the
structure ⎛

⎝ v̇

ṁi

...

⎞
⎠ =

⎛
⎜⎝

1
Cm

[IDC − Iion(v,mi,...)]
m∞

i (v)−mi

τmi
(v)

...

⎞
⎟⎠, (1)

where the overdot denotes the derivative with respect to
time and F determines the dynamics of the unperturbed
system. Synaptic inputs are modeled as instantaneous voltage
perturbations: If a spike occurs at time t sp in the presy-
naptic neuron, then vpost(t

sp
pre) �→ vpost(t

sp
pre) + ε, where ε =

IsynC
−1
m

∫ t sp+�

t sp−�
dr δ(r − t sp) results from the integration of δ

currents of amplitude Isyn. The dynamical variables consist of
the voltage and the gating variables. The gating is typically
modeled by first-order kinetics (for details, see Appendix A).

The input IDC acts as bifurcation parameter for both the
fixed-point destabilization and the limit-cycle creation (Fig. 1).
For our analysis, we focus on neuron models in which the fixed
point loses stability at a fold bifurcation.

The study of spike synchronization is facilitated by
reducing the high-dimensional dynamics to a single phase
equation. One way to formally obtain such a reduction from
a biophysical model of membrane-voltage dynamics is to find
the input-output (I/O) equivalent phase oscillator [29]. The
mapping of input to spike times is given by the phase-response
curve (PRC) of the neuron [30]. The PRC, Z, relates the
timing of the occurrence of a weak perturbation to the
resulting temporal advance or delay of the following spike,
Z : φ �→ �φ. The spike times {t sp

k } correspond to the level
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crossings of the phase, φ(t sp
k ) = k for k ∈ Z, so that the

spike train can be written as y[φ(t)] = ∑
k δ[φ(t) − k]. The

occurrence of spikes in neuron i, if receiving inputs from
another neuron j , is governed by the phase equation

φ̇i = fi + Z(φi)y(φj ) + ξi(t). (2)

The intrinsic noise ξi(t) of each neuron is assumed to be a
zero-mean white-noise process, 〈ξi(0)ξi(�t)〉 = σ 2δ(�t).

In the following, the mean spike rate, f , in response to the
mean drive, IDC, and the PRC, Z(φ), are implicitly taken to
be functions of the parameters of the detailed neuron model
introduced above in Eq. (1). The phase oscillator in Eq. (2)
is then used throughout the paper to predict synchronization
properties of neurons.

To identify the I/O equivalent phase model in Eq. (2), the
PRC needs to be calculated for the conductance-based model
in Eq. (1). From a dynamical systems perspective, the PRC Z

is the periodic solution to the adjoint of the first variational
equation of the unperturbed dynamics in Eq. (1), Ẋ = F (X),

dZ

dφ
(φ) = −J	(φ)Z(φ), (3)

where 	 denotes the matrix transpose and J = ∂F
∂X

is the
Jacobian evaluated on the limit cycle. To comply with
Eq. (2), the PRC associated with voltage perturbations needs
to be normalized as Z(φ)F (φ) = f,∀ φ. The resulting relation
between PRC and parameters of the conductance-based neuron
model allows us to consider synchronization at different firing
onset bifurcations. In the following, we use the dynamics on the
homoclinic orbit to deduce PRC properties of the limit cycle
that arises from the homoclinic orbit, and, for convenience,
we refer to the limit cycle PRC as the PRC at the limit-cycle
bifurcation (SNIC or SNL), i.e., ZSNIC or ZSNL.

III. A FLIP IN THE DYNAMICS ALTERS THE PRC
SYMMETRY AT AN SNL BIFURCATION

In a first step, we infer the PRC from the dynamics
at firing onset bifurcations, in particular around the SNL
bifurcation. As bifurcations imply in general qualitatively
different dynamics [31], limit-cycle dynamics are expected
to change at the switch in firing onset dynamics at the SNL
bifurcation. However, what are the specific consequences for
the PRC and hence the synchronization ability of neurons?
To answer this question, we start by discussing changes in
limit-cycle dynamics at the SNL bifurcation. We then show
that this also alters the PRC in such a profound way that it has,
in turn, drastic implications for the resulting synchronization
ability discussed in Sec. IV.

A. Orbit flip

We consider models with classical type I excitability where
the transition from rest to repetitive firing is marked by (i)
the elimination of the resting state in a fold bifurcation and
(ii) the existence of a limit cycle to which the dynamics relax
instead. This limit cycle is born at a limit-cycle bifurcation,
which is in type I neurons typically a SNIC bifurcation. At a
codimension-two SNL bifurcation, the limit-cycle bifurcation
switches between a SNIC and a HOM bifurcation [Fig. 1(b)].

FIG. 3. (Top to bottom) (a) Schematic illustration of the orbits
at small SNL bifurcation, nondegenerated SNIC bifurcation, and
big SNL bifurcation, with semistable (small single arrow) and
strongly stable manifold (double arrows). These bifurcations oc-
cur in the Wang-Buzsaki model for IDC ≈ 0.16 μA/cm2, Cm ≈
[1.47, 1, 0.09] μF/cm2. (b) The associated phase-response curves
measured for IDC 2% above the fold bifurcation.

The following, model-independent analysis focuses on the
small SNL bifurcation that transitions from a SNIC orbit
to a small HOM orbit [Fig. 3(a)], because it entails more
drastic changes in PRC shape, as discussed later. The big SNL
bifurcation (transitioning to a big HOM orbit) will be studied
with numerical continuation (Sec. IV).

The limit cycle created at a HOM, SNIC, or SNL bifurcation
arises from a homoclinic orbit to a saddle (HOM) or saddle
node (SNIC, and also SNL). Under the assumption of
sufficiently large limit-cycle periods, the slow velocity in the
vicinity of these fixed points contracts the dynamics such that
limit-cycle properties, e.g., period or PRC, can be extracted
from a linear approximation around the fixed point.

The linearized dynamics around the saddle-node fixed
point is given by its Jacobian. Assuming nondegeneracy, the
Jacobian has a single zero eigenvalue, associated with the
semistable manifold, while the other eigenvalues are strictly
negative (strongly stable manifolds). Trajectories always leave
the saddle node along the semistable manifold. When a
trajectory loops around in a homoclinic orbit, it can either
reapproach the saddle node along the same manifold (SNIC
bifurcation) or along the much faster, strongly stable manifold
(SNL bifurcation). The approach of the saddle node at an SNL
bifurcation flips from the semistable manifold to one of the
strongly stable manifolds (hence, orbit flip bifurcation [24])
[Fig. 3(a)]. For neuron models, this flip can be induced by a
scaling of the relative speed in the voltage and gating kinetics
(Fig. 4). When the saddle node disappears after the fold
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FIG. 4. Phase-response curve (left) and phase plot around the
saddle node (right) for (a) a nondegenerated SNIC bifurcation
with Cm = 1 μF/cm2 and (b) a small SNL bifurcation with Cm ≈
1.47 μF/cm2 in the Wang-Buzsaki model with the limit-cycle period
fixed in both cases to 2 Hz.

bifurcation, its remaining ghost still dominates the resulting
limit-cycle dynamics. The limit-cycle period drastically de-
creases around the SNL bifurcation (Fig. 5(a); see also [3]),
mainly because of the separation of time scales between
strongly stable and semistable manifold, which renders the
approach along the strongly stable manifold much faster than
the approach along the semistable manifold.

B. PRC symmetry and Fourier modes

Numerical continuation of several neuron models shows
that the PRC is drastically altered at the SNL bifurcation.
Exemplified in Fig. 3(b) for the Wang-Buzsaki model
(Appendix A), the symmetric PRC at a (nondegenerated)
SNIC bifurcation becomes increasingly asymmetric when an

FIG. 5. Variation of the membrane capacitance Cm for the Wang-
Buzsaki model with input fixed at 2% above limit-cycle onset at
IDC ≈ 0.16 μA/cm2. (a) Limit-cycle period (black) and relative
limit-cycle (LC) stability (gray) given by the ratio of the limit-cycle
attraction time (inverse of the Floquet exponent) and the period. A
small LC stability supports the validity of the phase description [36].
(b) Maximal amplitude of the odd part of the PRC, corresponding
to the entrainment range when normalized by the coupling strength
assuming δ coupling (abbreviated sync).

increase in membrane capacitance tunes the model towards
the SNL bifurcation. The strong asymmetry at the SNL
bifurcation directly affects the synchronization ability of the
neuron (see Sec. IV).

The sudden occurrence of PRC asymmetry at an SNL
bifurcation can be directly inferred from the orbit flip in the
dynamics described in the last section (Sec. III A). The PRC
peaks when the phase reaches the ghost of the saddle node,
where the slow dynamics allow infinitesimal perturbations to
maximally advance phase. In the case of the SNIC bifurcation,
the same velocity governs the approach and exit of the ghost,
both aligned with the semistable manifold (Fig. 4; for details,
see Appendix B). The orbit flip to the strongly stable manifold
at the SNL bifurcation either decreases or increases the time
spent on the approach compared to exit for the small or big
SNL, respectively. This, in turn, breaks the symmetry of the
PRC at the SNIC bifurcation by advancing or delaying the
phase at which the maximum of the PRC resides.

Neglecting the fast approach at the small SNL bifurcation,
it seems as if the flow of the limit-cycle trajectory is
directly injected at the ghost. Because the exit dynamics
at SNL and SNIC bifurcations are similar, the PRC at
the small SNL bifurcation appears as a rescaled version
of the second half of the PRC at the SNIC bifurcation,
Zsmall SNL(φ)∝∼ZSNIC(0.5φ + 0.5). This reasoning is supported
by numerical continuation [Figs. 3(b) and 4] and explains
the observation that the limit-cycle period is approximately
halved at the SNL bifurcation [Fig. 5(a)].

The necessity of the PRC symmetry breaking at the SNL
bifurcation can also be seen from normal form theory. For
the SNIC bifurcation (and the supercritical Hopf bifurcation),
the PRC is a simple trigonometric function, ZSNIC(φ) ∝
1 − cos(2πφ) [ZHopf(φ) ∝ sin(2πφ)] [11,32,33]. Approached
from the SNIC, the small SNL bifurcation, however, registers
a sudden emergence of higher Fourier modes in the PRC. On
the other side of the small SNL bifurcation, the canonical
PRC at a small HOM bifurcation is an exponential with some
decay constant τ , ZHOM(φ) ∝ exp(−φ/τ ) [33,34]. Hence, in
contrast to the trigonometric PRCs with a single Fourier mode
at the SNIC or supercritical Hopf bifurcations, the PRCs at
HOM and small SNL bifurcations have an infinite amount of
Fourier modes. This results in Gibb’s phenomenon if finite
approximations are used.

The significant increase in PRC Fourier modes, as well as
the breaking in PRC symmetry, are generic properties of SNL
bifurcations.

IV. SYNCHRONIZATION PEAKS AROUND SNL
BIFURCATIONS

The asymmetry of the PRC scales the frequency detuning
over which a neuron entrains to its input (the width of the
Arnold tongue [35,36]). The input can be either a periodic
signal or the recurrent input from other neurons in a network.
Here, we use synchronization in the sense of a constant phase
relation between oscillators; compare Fig. 2. The relation
between PRC and synchronization can be illustrated by two
δ-coupled phase oscillators, φ1,2, as defined in Eq. (2),

φ̇1,2 = f1,2 + Q(φ1,2 − φ2,1) + ξ1,2, (4)
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where the coupling function Q results from an averaging step
if the interaction between both oscillators are assumed to be
weak [37]. In the present pulse-coupled case this means

Q(�) =
∫ ∞

0
Z(ϕ)δ(ϕ + �)dϕ = Z(�).

The phase difference, ψ = φ1 − φ2, evolves as ψ̇ = �f +
Qodd(ψ), where Qodd(ψ) = Q(ψ) − Q(−ψ) is twice the odd
part of the coupling function. Synchronization (i.e., a constant
phase lag ψ) requires ψ̇ = 0, and the maximal admissible
frequency detuning �f = f1 − f2 is given by the image of
Qodd. In the case of δ coupling, Qodd is equal to twice the odd
part of the PRC, Zodd, so that phase locking occurs only if �f ∈
[min Zodd, max Zodd]. In Fig. 5(b), the synchronization range
max Zodd– min Zodd is plotted. The increased synchronization
range will also manifest itself in globally coupled networks of
the type studied in Refs. [38,39]. For two coupled oscillators,
a small SNL bifurcation favors alternated spiking, which is
sometimes called antiphase synchronization. This is in contrast
to the stable in-phase locking that is observed for PRCs shaped
like a negative sine (see Supplemental Material in Ref. [27]).

The decisive factor for increased synchronization around
the SNL points is the PRC symmetry breaking with the
emergence of high-frequency Fourier modes, which govern
the existence and stability of fixed points in the phase
differences between oscillators. Of minor importance for the
peak observed in Fig. 5(b) is the period reduction observed in
Fig. 5(a), which counteracts the increase in synchronization in
approach of the SNL points by scaling the PRC with the period.
The network example from Fig. 2 also shows a significant
change in synchronization when the period is held constant by
a fixation of the mean firing rate. The PRC symmetry breaking
with the emergence of high-frequency Fourier modes occurs
generically at SNL bifurcations (Sec. III), such that the conse-
quences derived in this section generalize to other oscillators
beyond neuroscience. In particular, neurons close to an SNL
bifurcation synchronize differently from what is expected for
SNIC neurons that show traditional type I excitability.

V. GENERIC OCCURRENCE OF SNL BIFURCATIONS

The consequences of the SNL bifurcation discussed in
Sec. IV will be of particular relevance for neuronal pro-
cessing [40] if the SNL bifurcation generally occurs in
realistic neuron models. Next, we demonstrate that indeed any
two-dimensional, type I conductance-based neuron model can
always be tuned to SNL bifurcations. More precisely, we show
that the SNL bifurcation is an essential element in the bifurca-
tion diagram that uses input current and membrane capacitance
as control parameters. This bifurcation diagram also allows us
to relate the SNL bifurcation to other bifurcations such as
the Bogdanov-Takens (BT) bifurcation, classically termed the
switch of type I/II excitability [37,41].

Concentrating on bifurcations relevant for neuronal spiking
(i.e., bifurcations affecting a stable limit cycle), Fig. 6 shows a
bifurcation diagram of the Wang-Buzsaki model (Appendix A)
with input current and membrane capacitance as control
parameters. Along the dimension spanned by the capacitance,
two SNL bifurcations enclose the SNIC bifurcation. The
lower SNL bifurcation corresponds to a big SNL bifurcation
for which the arising limit cycle encircles the ghost of the

FIG. 6. (a) Bifurcation diagram of the Wang-Buzsaki model
under variation of membrane capacitance Cm and input current IDC.
With Cm = 1 μF/cm2, the limit cycle arises from a SNIC bifurcation.
Increasing Cm leads to the small SNL at Cm ≈ 1.47 μF/cm2. Hatched
areas mark bistability. (b) Decreasing Cm leads to the big SNL and
then to a Bogdanov-Takens (BT) bifurcation. Note that a change
of stability in the big HOM branch, not shown here, follows from
Ref. [42]. (c) Schematic illustration for the limit Cm → 0, in which
the system corresponds to a relaxation oscillator. Drawn in the state
space of gating variable n versus voltage v, the solid line with an
inverted N shape represents the voltage nullcline, and the dashed
line represents the gating nullcline. At some IDC, the resting state
loses stability and a big HOM orbit around all fixed points (green) is
created.

saddle node and the upper SNL bifurcation corresponds to
a small SNL bifurcation for which the ghost of the saddle
node lies outside of the limit cycle [Fig. 3(a)]. In particular,
decreasing the capacitance, an SNL point is passed before the
BT bifurcation is reached.

We show in Appendix C that this bifurcation structure
generalizes (under mild assumptions) to planar neuron models.
The membrane capacitance Cm is used as a bifurcation parame-
ter in the general bifurcation diagram that we construe, because
it simply changes the time scale of the voltage dynamics
[Eq. (1)]. The proof separately considers the lower and the
upper parts of the bifurcation diagram. The lower part is based
on the so-called relaxation limit with infinitely fast voltage
dynamics that arises from the limit Cm → 0 [Fig. 6(c)], where
the bifurcation structure is known [42]. Nonzero capacitance
values are deduced from several observations that restrict the
path of limit-cycle bifurcation branches in planar systems.
The upper part of the bifurcation diagram is extracted from the
unfolding of a BT point.

Our derivation may be an interesting starting point for
similar results in other dynamical systems in which the time
scale of a single dynamical variable is used as a bifurcation
parameter. For our planar neuron models, we find that the
SNIC bifurcation branch is generically enclosed by two SNL
bifurcations that are reached by an adaptation of the voltage
time scale. In particular, our results show that a continuous
variation of the voltage time scale reaches the BT point only
after passing one of the SNL bifurcations.

VI. DISCUSSION

This article explores the intricate relation between SNL
bifurcations, the changes in associated PRCs, and the resulting
consequences for the ability of neurons to synchronize (Fig. 5).
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In a mean-driven regime [18] (i.e., in the presence of a
stable limit cycle), drastic changes in neuronal processing
in general [40], and synchronization in particular, can be
expected if a bifurcation directly affects the stable limit cycle
(and not only the fixed points). This is the case for the
SNL bifurcation, with strong implications for synchronization,
as we have shown here. In contrast, at a Bogdanov-Takens
bifurcation, which is classically regarded as the transition point
between type I and type II excitability, stable limit cycles
are not directly involved. The BT-associated Hopf bifurcation
in neuron models is typically subcritical, and the limit cycle
arising at the subcritical Hopf bifurcation is unstable. Hence,
the limit cycle changes bear only indirect relevance for
mean-driven spiking. This provides an intuitive explanation
for why the changes in synchronization we observed at the
BT transition are minor compared to those of the saddle-
node-loop bifurcation [Fig. 5(b)]. While the subcritical Hopf
bifurcation can lead to substantial changes in subthreshold
dynamics and filtering [17,19,27,37,43], synchronization is
modified only if the system behaves like a fluctuation-driven
escape problem [44,45], and not like the mean-driven regime
considered here.

Moreover, we note that models in the vicinity of a BT
point have a different bifurcation structure than the original
Hodgkin-Huxley (HH) model [46]. In the HH model, the
unstable limit cycle is born at a fold of limit cycles bifurcation
(together with the stable limit cycle) and terminates in the
subcritical Hopf bifurcation (destabilizing the fixed point). In
contrast, in the normal form of the BT bifurcation, the unstable
limit cycle is born at a HOM bifurcation [47]. This difference
will probably affect the PRC of the stable limit cycle, for which
the canonical shape is still unresolved [48]. Furthermore, the
identified generic bifurcation sequence shows that a smooth
change in time-scale parameters does not justify the previously
used heuristic formula that exploits a single Fourier mode to
interpolate between ZSNIC and ZHopf [40,49,50].

As codimension-two bifurcation, the SNL bifurcation is
reached in neuron models by an appropriate tuning of both the
input current and one additional model parameter. Examples
for the second control parameter are the membrane capac-
itance, maximal gating conductances, tonic inhibition [27],
neuromodulators [14], or gating time constants [23]. With
the membrane capacitance as a bifurcation parameter, we
demonstrate for planar conductance-based models with a
SNIC bifurcation that, ubiquitously, an SNL bifurcation is
the first bifurcation reached for lowered or increased capac-
itance, respectively. With the three bifurcation parameters—
capacitance, input, and leak conductance—the identified se-
quence of bifurcations collapses into a codimension-three cusp
BT point [27,28]. This potentially generalizes the described
bifurcation structure beyond the planar case.

Focusing on neuron models that spike at low firing rates,
where the dynamics is dominated by the bifurcation that
creates the limit cycle, allows us to draw model-independent
conclusions. Furthermore, the phase description employed
here demands for small inputs compared to the limit-cycle
stability. The strong stability of the limit cycle around the
SNL point [Fig. 5(a)] validates the phase reduction even
for reasonably sized inputs. The low firing rates required
for the center manifold reduction to be valid and the rel-

atively weak synaptic connections are typical for cortical
neurons [4,5].

Our mathematical arguments (Appendix C) require one
bifurcation parameter to be the relative time scale between
state variables, which can take us to the relaxation limit. The
membrane capacitance is one such parameter. The effective
membrane capacitance depends on cell parameters, such as
the morphology of the neuron or the myelination of its
axon [51], and may hence be adapted on developmental
or evolutionary time scales. Recent studies report reduced
capacitance in human neurons [52,53], potentially due to
the lipid composition of the membrane. While these studies
consider mainly passive membrane properties, our work
extends beyond and reports the implications of changed
capacitance for spike dynamics. In contrast to the general
assumption that the membrane capacitance is constant across
all neurons, the reported variability in membrane capacitance
suggests that evolution could directly tune the membrane
capacitance to the proximity of an SNL point. Indeed, it
seems that not only evolution, but also development acts on
the membrane capacitance; for example, aging reduces Cm in
rhesus monkeys [54].

Among the biologically relevant bifurcation parameters
is the leak conductance gL, which affects the time-scale
separation in a more indirect way than capacitance. Changes
in leak can equally lead to an SNL bifurcation [27], with
the accompanying increase in (antiphase) synchronization
[Fig. 2(b)]. For example, the effective leak conductance
can be changed by the amount of inhibition the neurons
receives (shunting inhibition) [27] or by certain neuromod-
ulators [55,56].

Based on our results, we predict that SNL points can
be identified experimentally via the characteristic breaking
of PRC symmetry. Experimental measurement of PRCs
[27,57–61] can help to assess whether cellular dynamics are
close to an SNL bifurcation. Moreover, our analysis sug-
gests that a specific experimental technique—infrared neural
stimulation—may require a careful interpretation. Specifically,
infrared neural stimulation could not only excite neuronal
tissue, but potentially also alter neuronal dynamics, because it
has been shown to rely on a change in membrane capacitance,
Cm, to depolarize neurons and thus stimulate networks [62].
Hence, during infrared neural stimulation extended changes
in capacitance could push the neurons closer to an SNL
bifurcation, with consequences for neuronal dynamics and
functionality exceeding a pure excitation.

Last but not least, our results provoke the question as to
why neurons should, under natural conditions, favor a position
close to an SNL point. On the one hand, the facilitation of
antiphase synchronization around the SNL point may result
in a frustrated network state with rich dynamical attractors
for memory or information processing [1,65]. On the other
hand, SNL bifurcations may also be relevant in pathology
(e.g., epilepsy). Beyond neural networks [66], frustrated
systems also underlie power blackouts [71], repressive gene
networks [65], and social networks [72].

In summary, our study consists of two parts. First, we
extracted the phase-response curve from the dynamics at
an SNL bifurcation and used this knowledge to infer the
associated synchronization abilities. Both the PRC asymmetry
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and its high Fourier modes are generic properties at SNL
bifurcations. Thereby, our results generalize across neuron
models, and are equally applicable to any system that allows
for a phase reduction. Second, we have demonstrated that
SNL bifurcations occur ubiquitously in a set of planar neuron
models. With the time scale of one dynamical variable as
bifurcation parameter, the structure of our proof is likely to
extend to other systems with a subcritical Hopf bifurcation
in the relaxation limit, such as lasers [73,74], Josephson
junctions [75–78], and chemical reactions [79,80]. Together,
both parts highlight the SNL bifurcation as a hitherto under-
estimated bifurcation with prominent importance for neuronal
dynamics.
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APPENDIX A: GENERIC DEFINITION OF
CONDUCTANCE-BASED NEURON MODELS

We consider a generic class of conductance-based neuron
models [27],

v̇ = Icap(v,...)

Cm
= 1

Cm
[Iin − gL(v − vL) − Igating], (A1)

Igating =
n∑

i=0

gi(v − vi)
K∏

k=0

m
pik

ik , (A2)

where ion channel i has maximal conductance gi and reversal
potential vi and its open probability is given by a product
of gating variables (potentially to some power of pik). Each
gating variable mik of ion channel i is either a function
of the voltage, mik = mik∞(v), or relaxes exponentially to
its steady state value mik∞(v), with gating kinetics given
by

ṁik = mik∞(v) − mik

τik(v)
. (A3)

For numerical continuation, we use a single-compartmental
version of the Wang-Buzsaki model for hippocampal pyrami-
dal cells [9] with the dynamics

v̇ = [I + gL (EL − v) + Igate]/Cm,

ḣ = 5 [αh(v) (1 − h) − βh(v) h],

ṅ = 5 [αn(v) (1 − n) − βn(v) n],

with membrane capacitance Cm = 1 μ F/cm2; maximal
conductances gL = 0.1 μ S/cm2, gNa = 35 μ S/cm2,
gK = 9 μ S/cm2; reversal potentials EL = −65 mV,
ENa = 55 mV, EK = −90 mV; and the following

functions:

Igate = gNam∞(v)3h(ENa − v) + gKn4(EK − v),

m∞(v) =
v+35

exp[−0.1 (v+35)]−1
v+35

exp[−0.1 (v+35)]−1 − 40 e−(v+60)/18
,

αh(v) = 0.07 exp[−(v + 58)/20],

βh(v) = 1

1 + exp[−0.1 (v + 28)]
,

αn(v) = −0.01
v + 34

exp[−0.1 (v + 34)] − 1
,

βn(v) = 0.125 exp[−(v + 44)/80].

APPENDIX B: PRC SYMMETRY

The PRC asymmetry at the SNL bifurcation is a direct
consequence of the broken symmetry in the dynamics at
the SNL bifurcation. This section gives more detail on the
relationship between dynamics and PRC, both intuitively and
with a mathematical argument. We will describe first how
the dynamics at the SNIC bifurcation leads to a symmetric
PRC and then show that these conditions are not met at the
SNL bifurcation, predicting an asymmetric PRC at an SNL
bifurcation. While the arguments are presented with a small
SNL bifurcation in mind, they hold in a similar way for a big
SNL bifurcation.

As introduced in the main text, the orbit at a SNIC
bifurcation follows the semistable manifold of the saddle-node
fixed point, which corresponds to the central manifold of a fold
bifurcation. The zero eigenvalue of the Jacobian J at the saddle
node on the semistable manifold eliminates the linear term.
The leading second-order term results in a parabolic normal
form. For dynamics centered around x = 0, stimulated with
input s, the dynamics is

ẋ = s + x2, (B1)

where all variables are chosen unitless for convenience.
The dynamics is symmetric around the saddle-node fixed

point; i.e., the orbit has corresponding velocities at the
approach and exit of the saddle node. The orbit flip at the
SNL bifurcation breaks this symmetry in the dynamics, and,
as we will show, also in the PRC.

From a mathematical perspective, the normal form allows
for a calculation of the PRC. We, however, will use the
normal form to directly analyze PRC symmetry. For the
SNIC bifurcation, the reflection symmetry of the PRC can
be inferred from the symmetry of the dynamics: If x(t) is
a solution of the dynamical system given by Eq. (B1), then
the same holds for −x(−t); x(t) is hence point symmetric
in time, x(t) = −x(−t). Derivation of the right-hand side
of Eq. (B1) by x results in a Jacobian linear in x, which
is hence point symmetric in x, J (x) = −J (−x). Inserting
both into the adjoint equation [Eq. (3)] directly leads to a
PRC reflection symmetric in time, ZSNIC(t) = ZSNIC(−t). In
contrast, the asymmetric dynamics at the SNL bifurcation lead
to an asymmetric PRC.

Intuitively, on an orbit that connects to a saddle-node fixed
point, the dynamics becomes arbitrary slow at the fixed point.
The limit cycle shows the slowest dynamics in the same region
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in state space, in proximity to the ghost of the former saddle
node. A perturbation that propels the dynamics over the ghost
of the saddle node will therefore maximally advance the next
spike. The maximum of the PRC is at the phase value that
corresponds to the saddle node. For a SNIC bifurcation,
the PRC maximum lies at φ = 0.5 because the symmetric
dynamics of a SNIC take equal time for the approach (from
φ = 0 to φ = 0.5) and the exit (from φ = 0.5 to φ = 1) of
the saddle node. In comparison, the PRC maximum is shifted
towards the left at the SNL bifurcation, because the accelerated
entry along the strongly stable manifold advances the saddle
node to earlier phases. The shift of the maximum away from
the center destroys the symmetric shape of the PRC.

The symmetry breaking generalizes beyond the SNL
bifurcation: A saddle homoclinic orbit shows an asymmetric
PRC [33] if the saddle has different stabilities along stable
and unstable manifold and, hence, nonsymmetric dynamics.
In summary, we showed that the symmetry breaking in the
PRC is an immediate consequence of the symmetry breaking
in the dynamics that occurs as orbit flip at the SNL bifurcation.
Hence, the observed symmetry breaking in the PRC is a general
property of the SNL bifurcation.

APPENDIX C: MATHEMATICAL ARGUMENT FOR
THE GENERIC OCCURRENCE OF THE SNL

BIFURCATION IN PLANAR MODELS

We show in the following that, with a variation of a
time-scale parameter, such as capacitance, in a broad set
of planar conductance-based models, a SNIC bifurcation is
always enclosed by two SNL bifurcations and that a decrease
in capacitance passes the big SNL bifurcation and only
afterwards reaches the BT point. Beyond the BT point, a
Hopf bifurcation destabilizes the resting state before the fold
bifurcation occurs.

To this aim, we prove that the general structure of the
bifurcation diagram (Fig. 6) holds for any planar neuron model
that conforms with our assumptions stated below.

1. Model definition

We consider a generic class of type I planar conductance-
based neuron models. The single gating variable, n, commonly
models the opening and closing of a restorative current origi-
nating, say, from the potassium ion channel. The dynamics is
given by (

v̇

ṅ

)
= F (v,n) =

(
1

Cm
(IDC − Iion)
n∞(v)−n

τn(v)

)
, (C1)

with Iion(v,n) = gL(v − vL) + gNa m∞(v)(v − vNa) +
gK n (v − vK); compare Eq. (A1).

We chose the model such that it fulfills the following
assumptions.

(A1) The firing onset of the model occurs, for some capac-
itance value CSNIC and a specific input current IDC = ISN1 (the
threshold current), at a nondegenerated SNIC bifurcation.

(A2) We demand that at the capacitance CSNIC the sub-
threshold dynamics for IDC < ISN1 relax to a single stable
fixed point, the resting state. We furthermore assume that
with an increase in input current, the limit-cycle dynamics

eventually terminates in a bifurcation denoted excitation block,
after which the dynamics relaxes again to a stable fixed point.
This assumption prevents diverging dynamics.

(A3) The nullcline of the voltage has an inverted N shape.
(A4) We require that n∞(v) from Eq. (C1) is an increasing,

positive, bounded, twice differentiable function that becomes
sufficiently flat in the limit v→±∞, limv→±∞ v ∂vn∞(v)=0.
This assumption allows us to use results from Ref. [27].

All of these assumptions are fulfilled in common neuron
models with type I excitability.

2. Construction of the bifurcation diagram

The following proof establishes an ordering in a sequence
of limit-cycle bifurcations, whereby a SNIC is enclosed by two
SNL bifurcations. The ordering is established by analyzing the
relaxation limit as an anchoring point. We thereby capitalize
on recent results from the relaxation limit, Cm → 0. As we will
show, the ordering that arises in this limit along IDC implies
the same ordering along Cm, mainly because limit-cycle
bifurcation branches cannot cross in planar systems.

The limit-cycle bifurcation branches that we consider lie
in the region with IDC � ISN1, because, for neuronal firing,
the limit-cycle creation has to happen before (i.e., at lower
IDC) or at the fold bifurcation at which the resting state is
eliminated. CSNIC separates the region IDC � ISN1 into a lower
and an upper subregion. Since the occurrence of limit-cycle
bifurcations at CSNIC is prevented by the requirement (A2)
that stable dynamics are given by a unique fixed point, all
limit-cycle bifurcation branches lie either in one or the other
subregion. In the proof, we start with the lower subregion and
then consider the upper one.

3. The lower part of the bifurcation diagram, Cm < CSNIC

Observation 0: Vertical fold bifurcation branches—Fixed
point location depends on IDC, but not on Cm. The nullclines
of Eq. (C1) are given by IDC − Iion(v,n) = 0 and n = n∞(v).
The nullclines are independent of Cm, and therefore also the
location of the fixed points, because the fixed points sit at
intersections of the nullclines. Hence, the location of the fold
bifurcations is also independent of Cm, which ensures that the
fold branches [marked with SN in Fig. 6(a)] are vertical in a
bifurcation diagram of Cm versus IDC.

Based on the inverted N shape of the voltage nullcline and
the monotonous shape of the gating nullcline, we can infer
the existence of one to three fixed points. For the following
discussion, we name these fixed points; a visualization of our
nomenclature is shown in Fig. 6(c). The number and location
of the fixed points is set by the input current IDC, which shifts
the voltage nullcline up or down in the state space. For low, i.e.,
subthreshold IDC, the model has a single, stable fixed point,
Prest. With an increase in IDC, the knee of the voltage nullcline
approaches the gating nullcline from below and results in a fold
bifurcation at some IDC = ISN0. The fold bifurcation creates a
saddle, Psaddle, and a node, Pblock. Our assumptions ensure that
Pblock is unstable because (A2) requires that Prest is the only
stable fixed point at Cm = CSNIC. Increasing the input current
further leads to a second fold bifurcation at some IDC = ISN1.
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This fold bifurcation annihilates Prest and Psaddle. Beyond the
bifurcation, Pblock remains as the only surviving fixed point.

The saddle fixed point Psaddle exists only between ISN0

and ISN1. The association of HOM bifurcations with saddles
directly constrains their bifurcation branches to the region
ISN0 � IDC � ISN1. In an analogous way, Hopf bifurcation
branches are constrained by the existence of the associated
focus fixed point: The Hopf branch that destabilizes the resting
state Prest is restricted to input currents below ISN1, and
the other Hopf branch that changes the stability of Pblock is
restricted input currents above ISN0. Further constraints will
be developed throughout the following arguments.

Observation 1: Starting points for the branches of big HOM
and neighboring Hopf bifurcation—Anchoring the bifurcation
diagram in the limit Cm → 0 yields Ibig HOM < IHopf . In the
limit Cm → 0, the conductance-based model is transformed
into a relaxation oscillator with voltage as the fast variable, as
sketched in Fig. 6(c) [82]. For this limit, de Maesschalck and
Wechselberger have identified the full bifurcation structure
for generic planar neuron models [42]. Their Theorem 2
demonstrates for sufficiently small Cm that an increase in
IDC results for model neurons such as ours in a generic
sequence of bifurcations. Relevant for our consideration is
the occurrence of a big HOM bifurcation at input Ibig HOM

and a subcritical Hopf bifurcation that destabilizes Prest at
IHopf. Their full bifurcation structure ensures furthermore that
neither the big HOM branch nor the Hopf branch returns to the
limit Cm → 0, which is important to ensure the existence of
a codimension-two bifurcation at the other end. They state an
ordering of the bifurcation currents, Ibig HOM < IHopf < ISN1,
which will be used in the following to infer the same ordering
at finite values of Cm.

Lemma 1: HOM branches cannot “bend backwards”—
A variation in Cm generically breaks homoclinic orbits to
hyperbolic fixed points. In order to constrain the location
of HOM bifurcations in subsequent paragraphs, we want to
show that the tracing of a HOM branch leads us always in
one direction along the input current (increasing or decreasing
input). Equivalently, we can show that a HOM branch cannot
“bend backwards” along the input current dimension. This is
the case if we show that HOM branches cannot have “vertical
parts”: A HOM branch cannot align with a parameter variation
exclusively in Cm, because, as we show with this lemma, a
variation in Cm generically breaks the homoclinic orbit.

Homoclinic orbits arise when the trajectory of the unstable
direction of a fixed point connects to its stable direction, i.e.,
stable and unstable manifold overlap. A parameter variation
can separate stable and unstable manifolds from each other,
allowing for the definition of a distance. This distance is
measured by the so-called separation function, sep [Fig. 1(b)].
For parameter values that lie on the HOM branch, the
separation function is zero, sep(CHOM) = 0, and becomes
nonzero, sep(Cm) 
= 0, if a variation in the parameter breaks
the homoclinic orbit, i.e., leaves the HOM branch. This is
analogous to a nonzero value of the partial derivative of the
separation function, which is known as the Melnikov integral,
M [for a derivation in planar systems, see, for example,
Ref. [83], leading to Eq. (6.12), which we use in Eq. (C2)].

A variation in Cm breaks the homoclinic orbit if the
corresponding Melnikov integral evaluated on the homoclinic

orbit is nonzero [24]. The Melnikov integral with respect to
Cm for a homoclinic orbit with flow h(t) is

M =
∫ ∞

−∞
K(t)F (h(t))

∂F (h(t))
∂Cm

dt

= −
∫ ∞

−∞
K(t)

[IDC − Iion(h(t))]2

C3
m

dt, (C2)

where K(t) = exp [− ∫ t

0 divF (h(s))ds]. For our system, the
Melnikov integral is strictly positive, 0 < M , because (i) K(t)
is, as an exponential function, strictly positive, ∀ t : 0 < K(t),
and (ii), because we implicitly assume the existence of a
homoclinic orbit, the difference of ionic and injected currents
cannot be zero at all times; hence, ∃t : [IDC − Iion(h(t))]2 > 0.
With that, the capacitance breaks the homoclinic orbit, and
thus tracing a HOM branch along one direction results either
in continuously increasing or decreasing input current values
on the branch. This lemma is used in the following Observation
2 in order to pursue the big HOM branch starting in the limit
Cm → 0 (see Observation 1).

Observation 2: The big HOM branch eventually approaches
the fold bifurcation at ISN1. Based on the directionality of the
big HOM branch derived in the literature, we will show in this
observation that the big HOM branch eventually approaches
the fold bifurcation branch at which the resting state collides
with the saddle. The point of contact corresponds to an SNL
bifurcation, as we will show in subsequent paragraphs.

The statement of Theorem 2 by de Maesschalck and
Wechselberger states for sufficiently small Cm, in addition to
the ordering used in Observation 1, that the big HOM branch
departs from its starting point to the right, i.e., in the direction
of increasing input current [42]. This directionality of the big
HOM branch generalizes to larger values of Cm, because
Lemma 1 prevents “backward bends” of HOM branches.
Given that the big HOM branch does not return to the limit
Cm → 0 (Observation 1), the big HOM branch eventually
has to approach the fold bifurcation at ISN1. The next lemma
ensures that the connection point is an SNL point.

Lemma 2: A HOM branch and the fold branch at ISN1

connect in an SNL bifurcation—A HOM branch is stable when
it connects to a nondegenerated fold bifurcation involving a
stable node. An SNL bifurcation involves a stable homoclinic
orbit that transitions between a HOM bifurcation and a SNIC
bifurcation. The homoclinic orbit of the HOM branch is
stable if the associated saddle quantity is negative (the sum
of the two eigenvalues of the associated fixed point). At
the connection point with the fold branch, the homoclinic
orbit is associated with a saddle-node fixed point arising
from the collision of a stable node and a saddle. It has one
zero eigenvalue (prerequisite for the fold bifurcation) and one
negative eigenvalue (the former stable node sets the stability of
the strongly stable manifold). The sum evaluates to a negative
saddle quantity, ensuring a stable homoclinic orbit, and hence
an SNL bifurcation.

Lemma 3: The bifurcation sequence in the lower part of
the bifurcation diagram—For IDC = ISN1, increasing Cm from
zero passes first a BT point, then an SNL point, before a
nondegenerated SNIC bifurcation occurs, CBT1 < Cbig SNL <

CSNIC. Combining Observation 2 and Lemma 2, we conclude
that the big HOM branch connects to the fold bifurcation
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branch at ISN1 with a stable homoclinic orbit, i.e., in an
SNL bifurcation. This big SNL bifurcation happens at some
point (ISN1,Cbig SNL), with Cbig SNL < CSNIC because the big
HOM branch cannot pass the capacitance value of CSNIC as
(A2) prohibits stable limit-cycle bifurcations for IDC < ISN1.
From Observation 1, we know for Cm → 0 that a Hopf
branch starts at IHopf and that this branch does not return to
the limit Cm → 0. Because limit-cycle bifurcation branches
cannot cross each other in a planar system, the Hopf branch
can furthermore not cross the big HOM branch. Instead, it
connects to the fold bifurcation branch in a BT bifurcation at
some point (ISN1,CBT1). The ordering Ibig HOM < IHopf from
Observation 1 immediately implies an ordering in Cm, i.e.,
CBT1 < Cbig SNL. In summary, we have shown in this lemma
that CBT1 < Cbig SNL < CSNIC.

These arguments have proven the bifurcation sequence in
the lower part of the bifurcation diagram arising from the
limit Cm → 0. In the following, we use the unfolding of a
second BT point to show the upper part of the bifurcation
diagram.

4. The upper part of the bifurcation diagram, Cm > CSNIC

Observation 3: The bifurcation diagram contains exactly
two BT points. Kirst et al. identified the BT point for a generic
class of conductance-based neuron models (including our
model group) at a capacitance value that can be calculated from
the input current at which the fold bifurcation occurs (Ref. [27],
Supplemental Material). With the twofold bifurcation branches
occurring in our model group at input currents ISN0 and ISN1,
we find one unique BT point on each fold branch. Lemma
3 identified one of them at the BT point (ISN1,CBT1), and
the second BT bifurcation occurs at some point (ISN0,CBT0).
From the BT point at (ISN0,CBT0) arises by normal form theory
a Hopf bifurcation branch and a branch of a small HOM
bifurcation. Both depart in the direction of increasing input
IDC, which will be used as before to constrain their location.

Observation 4: The second BT point lies in the upper
part of the bifurcation diagram—The BT point at (ISN0,CBT0)
occurs at CBT0 > CSNIC. We restrict the region accessible to
the Hopf branch that arises from the BT point at (ISN0,CBT0):
A limit cycle bifurcation branch cannot cross other limit

cycle bifurcation branches (in a planar system), and hence the
Hopf branch cannot pass the SNIC bifurcation line between
(ISN1,CSNIC) and (ISN1,Cbig SNL) or the big HOM branch.
Furthermore, (A2) demands that no stable fixed point exists for
IDC < ISN1 for Cm = CSNIC, effectively preventing the Hopf
branch to pass this line. The Hopf branch lies, hence, either
entirely within or outside of the region bounded by these lines.

We show that the Hopf branch lies outside of this region by
identifying this branch with the excitation block occurring at
Cm = CSNIC: (A2) demands that the excitation block at some
IDC > ISN1, i.e., outside of the identified region. Around the
excitation block, Pblock is stabilized by a Hopf bifurcation.
This Hopf bifurcation affects Pblock and hence belongs to the
same branch of Hopf bifurcations that arises at the BT point at
(ISN0,CBT0), because this is where Pblock is created. With that,
the Hopf branch must lie outside the region denoted above
and correspondingly also the BT point at its end. We hence
conclude CBT0 > CSNIC.

Lemma 4: The small SNL bifurcation—A second SNL
bifurcation occurs at some Csmall SNL > CSNIC. The branch of
the small HOM bifurcation that arises from the BT point at
(ISN0,CBT0) (see Observation 3) continues by Lemma 1 in
the direction of increasing input IDC. Hence, we find some
Cm = Csmall SNL for which the small HOM branch connects to
the fold bifurcation at ISN1. At the connection point, the HOM
branch must be stable by Lemma 2. We identify the point
(ISN1,Csmall SNL) as small SNL bifurcation.

For the overall proof, it remains to show the ordering
Csmall SNL > CSNIC. For that, we observe that a limit cycle
exists between the small HOM and the Hopf branch arising
from the BT point and contrast this with the limit cycle
arising from the SNIC bifurcation. As the Hopf bifurcation
has to terminate the limit cycle of the SNIC bifurcation at
CSNIC [following (A2)], it cannot terminate the limit cycle
arising from the small HOM bifurcation at this capacitance
value. This leaves only the possibility for the SNL point to
occur at some Csmall SNL > CSNIC.

In summary, we have shown that CBT1 < Cbig SNL <

CSNIC < Csmall SNL. This generic bifurcation structure occurs
with the membrane capacitance Cm as bifurcation parameter
at IDC = ISN1. For a model starting at a SNIC bifurcation, a
variation in the capacitance will thus pass an SNL bifurcation
before a BT point is reached.
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