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Localization in random bipartite graphs: Numerical and empirical study

František Slanina*

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic
(Received 11 July 2016; revised manuscript received 22 March 2017; published 30 May 2017)

We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for
this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs
encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and
show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts
of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes.
We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge.
We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this
specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical
studies of the Amazon network.
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I. INTRODUCTION

Localization of eigenvectors is a phenomenon common to
disordered systems. Since the pioneering work of Anderson
[1], a very large amount of knowledge was accumulated [2–5],
yet rigorous answers are scarce [6,7]. Mostly we must rely on
qualitative approaches [8], analytical approximations based
on diagrammatic methods [9–11], replica tricks [12], or
supersymmetry [13], often using a Bethe lattice as simpli-
fied geometry [14–20]. Often the “brute force” numerical
approaches lead to most reliable answers [21,22].

Here we look at localization on random graphs [23]. We
investigate the eigenvalues and eigenvectors of the adjacency
matrix, which encodes the structure of the graph. Therefore,
the disorder is purely off-diagonal, in contrast with, e.g., the
model of a quantum particle in a random potential.

There are numerous motivations for studying spectra
and localization in random graphs. Obviously, topologically
disordered materials, like glasses, are common, and inves-
tigation of their electronic and vibrational spectra has high
practical relevance. Random graphs are a natural choice for
modeling these structures. In the tight-binding approximation,
the Hamiltonian of an electron in such a structure composed of
atoms of the same type (like a metallic glass) is proportional
to the adjacency matrix of the graph. Hence the motivation
for the study of spectral properties of adjacency matrices of
random graphs.

As another example, granular materials [24] exhibit a highly
complex distribution of internal stress, often described in terms
of force chains (see, e.g., Ref. [25]). Sound propagates mainly
along these chains [26–28], so we can make an abstract model
of a granular matter in terms of a (random) graph representing
the force chains. Vibrational states of the granular material
then correspond to eigenstates of the Laplacian defined on
the graph. Unusual behavior of low-energy vibrations in
noncrystalline solids leads to anomalous thermal conductivity
in such materials [29], which finds close analogy also in
granular materials [30].

*slanina@fzu.cz

Interestingly, the physics of glasses and granulars has
recently found common ground in terms of the jamming
transition [31–34]. Packing of hard spheres is an extremely
complex problem with ramifications in various disciplines
[35,36]. Jamming transition occurs when an average number
of contacts is just sufficient for mechanical stability. Recently
a model was proposed [37–39] which relates sphere packing
to combinatorial optimization [40]. In a typical setting, N

objects must satisfy M constraints. This may be formulated
as a minimization problem for a Hamiltonian of N variables,
composed of M additive terms. In a graph-theoretic language,
the problem can be formulated in terms of a bipartite graph,
with a set of N variables on one side and a set of M constraints
on the other side. When the Hamiltonian is expanded to
harmonic approximation, its eigenmodes are related to the
eigenvectors of the underlying bipartite graph. Hence the
importance of studying bipartite graphs for the jamming
problem.

Of course, the approach of Refs. [37–39] is distant from real
systems in the sense that they construct a kind of mean-field
jamming transition, in which the number of contacts between
spheres goes to infinity. However, such a methodology has
already proved useful many times, especially in the theory of
spin glasses [40], which justifies its use also for the jamming
problem. Formally it is manifested by replacing the real
graph of contacts, which is embedded into three-dimensional
Euclidean space, by a random graph which is effectively
infinite-dimensional. We believe this also justifies the use of
jamming terminology in the case of the random graphs used
in this work. At the same time, we should keep in mind that
graphs pertaining to realistic models of jamming should have
quite a narrow degree distribution. Therefore, in the context of
our scale-free graphs we should rather speak of “abstract” of
“generalized” jamming problem. In this sense we can speak of
a jamming transition in any bipartite graph.

However, our immediate motivation comes from the study
of bipartite random graphs that naturally occur in electronic
commerce. They belong to a broader class of scale-free
graphs (i.e., those with power-law degree distribution) [41].
At this point let us make just brief remark that related problems
were also investigated in the field of correlation matrices
[42–45].
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We already studied several electronic-commerce networks
in the past [46–48]. Here we reexamine the Amazon network
[46]. It is a bipartite graph of reviewers on one side and items
offered for sale on the other side. We found that the degree
distribution follows a power law on both sides. Moreover, we
found by diagonalization of the corresponding matrix that the
localized eigenvectors carry nontrivial semantic information
on the network. Indeed, we were able to clearly identify several
groups of agents sharing the same interests. Therefore, we
found a practical application of the study of localization in
empirical networks. However, it would be highly desirable to
have a model of such a network, at least to provide a certain
benchmark as to density of eigenvalues and dependence of
the inverse participation ratio on eigenvalues. We propose a
random bipartite graph with a power-law degree distribution
as a model of these empirical networks. Here we want to
study how much the model reproduces the empirical data as to
spectrum and localization properties.

For completeness we should also mention that localization
was already used in extracting information from scale-free
graphs, e.g., in Refs. [49–53].

So the aim of this work is investigation of spectra and
especially the localization in bipartite random graphs with
a power-law degree distribution (usually called scale-free
graphs, although this term is somewhat misleading). A good
deal of information was already obtained on the spectra of
scale-free graphs. To cite just a few articles, see Refs. [54–56].
The most important finding is that the power-law degree distri-
bution induces a power-law tail in the density of eigenvalues.
This is found generally, irrespective of the specific model used
for the scale-free graph.

From the mathematical point of view, spectra of random
graphs are just spectra of a special type of random sparse
matrices. Analytical approaches exist for the density of
eigenvalues, using the replica trick [57–60] or cavity approach
[44,61,62] (we proved that these two methods are strictly
equivalent in Ref. [63]), or, alternatively, by mapping on a
supersymmetric Hamiltonian [64–66].

Both the replica trick and cavity method provide a grounds
for systematic analytic approximations, like effective-medium
and single-defect approximations, which grasp essential fea-
tures of the spectrum, like in Refs. [57,58,63,67]. Of course,
the cavity equations can be also solved by brute force using
numerical population algorithms [44,61,62,68–74].

On the contrary, it is much harder to find similar analytical
approximations to describe localization. Some of the difficul-
ties encountered in attempts to find analytical approximations
were investigated by us earlier [75]. Therefore, a numerical
solution of the cavity equations is usually used as a reliable
method [14,15,61,68,70]. Of course, it is always possible to
pursue the study by direct numerical diagonalization of sample
random graphs [44,67,71,72,75–80]. We shall resort to the
latter approach here.

In our previous work we investigated localization on
Erdős-Rényi random graphs and on random regular graphs
[75]. As we already indicated above, here we turn to local-
ization on bipartite graphs. Spectra of such graphs, maybe
under various names, were already studied earlier [63,81,82].
We took inspiration from Ref. [83], where the spectrum of a
scale-free bipartite graph was studied by a replica approach

within the effective-medium approximation. The structure of
the graphs we shall construct will follow the algorithm of
Goh et al. [84]. This is a natural generalization of the Erdős-
Rényi graph ensemble to the case of nonuniform probabilities
of placing edges between vertices. Spectra of these graphs
were studied in Ref. [59], and the generalization to bipartite
graphs was investigated in Ref. [83]. Our immediate aim is to
add the aspect of localization to these studies.

II. SCALE-FREE BIPARTITE GRAPH

A. Relevance of the adjacency matrix

We shall deal with localization due to topological disorder,
rather than random on-site potential. In the language of an
electron moving in a random lattice represented by a graph G,
we start with a general tight-binding Hamiltonian

H =
∑

i

εi |i〉〈i| +
∑
i<j

tij (|i〉〈j | + |j 〉〈i|) (1)

with on-site energies εi and hopping terms tij connecting
vertices i and j of the graph. Then we make a special choice
relevant to our case, namely all diagonal elements equal (and
without loss of generality they may be all zero) and hopping
terms having value tij = t if (i,j ) is an edge in the graph G

and tij = 0 otherwise. Such situation occurs, e.g., in metallic
glasses. Indeed, all atoms are equal, but the local structure may
change from one site to another. Then the Hamiltonian of the
particle is proportional to the adjacency matrix of the graph G.
Again, setting the proportionality constant t = 1 just fixes the
energy scale. Therefore, all essential information is obtained
in the spectrum and eigenvectors of the adjacency matrix of
the graph.

On the other hand, in the study of vibration states of
glasses and granular matter we need to diagonalize the
matrix representing the Laplacian on the graph. However,
when we study the localization on random graphs, there is
a disadvantage in using the Laplacian. Indeed, we want to
separate the effect of on-site disorder (random atomic energy
in a tight-binding electronic Hamiltonian or random atomic
mass in a model of vibrations) from the effect of random
graph topology. In the Laplacian, this two effects are mixed,
because the diagonal element is related to the degree of
the node in the graph. This aspect makes the analysis less
transparent. Therefore, we prefer to study the spectrum of
adjacency matrix, where on-site disorder is totally absent.

The third reason for studying adjacency matrix lies in our
previous empirical study of the Amazon network [46], which
was done using an adjacency matrix. Small communities in the
network were successfully found by studying localization. To
make a comparison with a model random graph, an adjacency
matrix is studied also here.

B. Algorithm for graph creation

Now let us turn to our specific type of bipartite graph. The
algorithm for creating instances of our random graph follows
the original idea of Goh et al. [84], further adapted by Nagao
[83]. We have two sets of vertices, the set A containing N , the
set B containing M vertices. We shall assume N � M . Among
these vertices, L edges are distributed, connecting always a
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vertex from A to a vertex from B. In this way, a bipartite graph
is created. The vertices are not statistically equivalent. The
vertex i from A is given an a priori probability PAi , similarly
the vertices from B will have probabilities PBj . To construct
a scale-free graph, the probabilities will have the following
power-law form:

PAi = i−αA∑N
l=1 l−αA

, i = 1,2, . . . ,N,

PBj = j−αB∑M
l=1 l−αB

, j = 1,2, . . . ,M. (2)

The edges are placed in the following way. In each step, a
pair of vertices (i,j ) from A and B, respectively, is chosen
randomly with probability PAiPBj . If an edge connecting i

and j already exists, the choice is canceled and a new pair is
randomly selected. (This may be repeated several times, if the
graph is already rather dense, but as long as L � NM , a pair is
eventually found.) Otherwise, a new edge is placed connecting
i and j . Repeating this procedure L times we obtain a graph
with exactly L edges, and there are no multiple edges. It was
found that the cumulative degree distribution on the A side has
a power-law tail P >(k) ∼ k−γ , where γ = 1/αA for αA < 1,
while γ = 1 for all αA � 1 [84–86]. By symmetry, analogous
formulas hold for the degree distribution on the B side.

The structure of the graph is encoded in the adja-
cency matrix, which has, due to the bipartite character, the
form

R =
(

0 S

ST 0

)
, (3)

where S is an N×M rectangular matrix. The spectrum of the
matrix R was studied using the replica method in Ref. [83]. It
was found that the density of eigenvalues has a power law tail
which depends only on the greater of the two exponents αA,
and αB . This suggests that it is sufficient to study graphs with
both exponents equal, αA = αB = α, which is what we shall
assume in the following.

The matrix R has size (N + M)×(N + M), which can be
huge, as will be the case e. g. in the empirical data studied
in the last section of this paper. However, essentially the
same information on the spectrum and eigenvectors can be
obtained from diagonalization of a smaller matrix C = S ST

of size N×N . Obviously, if e is an eigenvector of C with
eigenvalue λ2, then ( e

ST e/λ
) is an eigenvector of R with

eigenvalue λ (see Appendix B, if unclear). Choosing a plus
or minus sign of λ we find that single eigenvector e of matrix
C corresponds to just two independent eigenvectors of R. If we
are interested only in localization on the A side, knowledge of
eigenvectors of C is just sufficient. If we needed also elements
of the eigenvector on the B side, they can be reconstructed from
the eigenvector e of matrix C. Therefore, all computations in
this article are for the matrix C.

Using the replica method, it was found that the power-law
tail of the density of eigenvalues of the matrix C is D(z) ∼
z−1−τ , where τ = 1/α [83]. Note that the exponent for the
density of eigenvalues is the same as the exponent for the
degree distribution.

III. SPECTRUM AND LOCALIZATION

A. Sample preparation

Size dependence is the key to studying localization.
Therefore, we create artificial sample graphs of four sizes,
N = 103, N = 3×103, N = 104, and N = 3×104. For each
size and each set of parameters α, M/N , and L/N we created
a certain number of independent samples of the random graph
using the algorithm described in the previous section. The
typical number of samples was about 2.5×105, 2×104, 103,
and 50 for N = 103, N = 3×103, N = 104, and N = 3×104,
respectively. For each sample, the matrix C was diagonalized
using the standard MATLAB library. The first thing we
checked was the degree distribution of the graphs produced.
We can see in the inset of Fig. 1 that our algorithm created a
graph in full agreement with analytical predictions.

B. Density of eigenvalues

We show in Fig. 1 a typical example of the density of
eigenvalues. The tail is characterized by a power-law decay,
which again, as with the degree distribution, agrees very
well with the analytic prediction. At the lower edge of the
spectrum, the density of states falls off quickly, and this is
the region where we expect localization to occur. We can see
that the density of eigenvalues is rather smooth there. This is
typical for large enough L/N , i.e., for dense enough graphs.
When the graph goes sparser, singularities accompanied by
apparent delta functions appear at integer eigenvalues, as can
be seen in Fig. 2. The quality of the data does not allow
us to establish the form of the singularities. In Erdős-Rényi
graphs it was found that the singularity at the center of the
spectrum is logarithmic [63]. So, by analogy we expect the
singularities to have a logarithmic form also here. We do
not know of any analytical theory which would describe this
system of singularities sufficiently well. However, the mere
presence of delta functions can be understood by a simple
consideration. Indeed, if L/M < 1, as is the case in Fig. 2,
a macroscopic fraction of vertices in the B set has degree 1,
i.e., it does not provide a path from one A vertex to another
one. This leads to creation of starlike components of the
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FIG. 1. Density of eigenvalues for the graph with α = 1/2,
M/N = 18, L/N = 50, and size N = 30 000. The straight line is
the power ∝ z−3. In the inset, the cumulative degree distribution in
the A set, for the same graph. The straight line is the power ∝ k−2.
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FIG. 2. Detail of the density of eigenvalues for the graph with
α = 1/2, M/N = 18, L/N = 10.

graph, where a single A vertex is linked to m > 0 vertices
from the set B, which themselves are not linked elsewhere.
Such a component contributes to the spectrum of the matrix
C by integer value m. The weight of thus a created delta
function reflects the probability with which these stars appear
in the bipartite graph. This mechanism is analogous to the
appearance of delta functions in the spectrum of Erdős-Rényi
graphs, as shown numerically, e.g., in Refs. [62,63,73,77,78]
and analytically in Refs. [87,88].

For all M/N > 1 the spectrum preserves the same overall
character: there is a power-law tail at large z, with a power
which depends only on α, and there is a bulk of the spectrum
at intermediate z and an area with low density of eigenvalues
at small z. The latter area shrinks as M/N approaches the
critical value M/N = 1, where another power-law depen-
dence develops. We found that for z → 0, the density of
eigenvalues exhibits a singularity D(z) ∼ z−1/2 for M/N = 1,
independently of the other parameters L/N and α. This is
demonstrated in Fig. 3. In fact, this is exactly the behavior
predicted for the case M = N by the Marčenko-Pastur formula
[89], which holds for α = 0 and L/N → ∞.
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FIG. 3. Density of eigenvalues for the graph with α = 1/2, N =
30 000, M/N = 1, L/N = 50. The straight lines are the powers ∝
z−1/2 (dashed) and ∝ z−3 (solid). In the inset, the averaged logarithm
of the inverse participation ratio for the graph with the same values
of α, M/N and L/N and sizes N = 30 000 (◦), N = 10 000 (�),
N = 3000 (	), and N = 1000 (
).

In the interpretation of Refs. [37–39] it corresponds to the
critical point in the jamming transition. The z−1/2 singularity
translates into a flat density of vibrational states in jammed
granular matter, as observed numerically [90,91] as well as
experimentally [92,93]. Our result implies that the singularity
at the jamming threshold is universal, and holds for a broad
range of random bipartite graphs.

C. Localization

As an indicator of localization we calculate the inverse
participation ratio (IPR), defined as I2(z) = ∑N

i=1 e4
iz for the

eigenvector eiz corresponding to the eigenvalue z, normalized
as I1(z) = ∑N

i=1 e2
iz = 1 for all z. Localization is revealed in

the behavior of IPR with increasing N , and we therefore aver-
age the values of IPR for eigenvalues lying within an interval
(z−,z+) centered around z = (z− + z+)/2. Numerically it is
more convenient to average the logarithm of IPR, instead of
IPR itself, although we suppose that at large enough N both
ways of averaging should lead to identical conclusions about
localization. Therefore, we calculate the quantity

〈log10 I2〉z = 1

Nz

∑
z′∈(z−,z+)

log10 Iq(z′), (4)

where Nz is the number of eigenvalues inside the interval
(z−,z+). We use a decadic logarithm for convenience. Local-
ized and delocalized states differ in the dependence on the
graph size for large N . Thus we have 〈log10 I2〉z  c0 for z in
the region of localized states, while 〈log10 I2〉z  c1 − log10 N

for z in the region of delocalized states. Here c0 and c1 are
constants independent of N .

The mobility edge zmob, i.e., the value of z separating
localized states on one side from delocalized ones on the other
side, is extracted from the data by a procedure described in
detail later.

We show in Fig. 4 typical behavior of the averaged log
IPR for α > 0. We can see that the tail of the spectrum does
not exhibit a clearly defined localized regime, contrary to the
situation in Erdős-Rényi or random regular graphs [75]. In the
data, there is no clear mobility edge visible. Instead, the region
of high IPR seems to shift farther in the tail when the graph
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FIG. 4. Averaged logarithm of the inverse participation ratio for
the graph with α = 1/2, M/N = 18 and L/N = 50 and sizes N =
30 000 (◦), N = 10 000 (�), N = 3000 (	), and N = 1000 (
).
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FIG. 5. Detail of the averaged logarithm of the inverse participa-
tion ratio, versus the rescaled eigenvalue z/Nν , with ν = 0.3. The
graph parameters are α = 1/2, M/N = 18 and L/N = 50 and sizes
N = 30 000 (◦), N = 10 000 (�), N = 3000 (	), and N = 1000 (
).
The straight line is the dependence 3 log10(z/Nν) + const.

size increases. In order to quantify this shift, we replotted the
averaged log IPR in the rescaled variable z/Nν . We found that
the best data collapse is achieved for the value of the exponent
ν = 0.3. The rescaled plot is shown in Fig. 5. The observed
data collapse suggests that in the tail the behavior of the inverse
participation ratio is

〈log10 I2〉z = �(z/Nν). (5)

The scaling function �(x) exhibits two regimes, separated
by a crossover at about xcross  30. For x � xcross the scaling
function approaches a constant, �(x)  C>, while for x �
xcross it approaches the function �(x)  μ log10(x) + C< with
coefficient μ = 3. The exact values of the constants C< and C>

are irrelevant, but what counts are the values of the parameters
μ and ν. In fact, the observed scaling implies the behavior
〈I2〉 ∼ (z/Nν)μ. For fixed z in the tail, but within the range
z � xcrossN

ν , we have the dependence 〈I2〉 ∼ N−νμ. The value
of the product μν is close but not quite equal to 1, the
exponent characteristic of extended states. It is not clear from
the available data whether the small difference is significant,
or it is due to statistical noise, or it is a finite-size effect. We
consider probable that the correct value of the product μν is
indeed 1, but currently we are not able to prove it. At the
present stage we can formulate a hypothesis that all the states
in the tail are extended for z � xcrossN

ν . This would mean that
there is no mobility edge at the upper tail of the spectrum.
However, the final verdict must be left for the future.

The fact that localization occurs at small z but, as it seems,
does not appear at large z is in contrast with the behavior of ran-
dom correlation matrices, which in our language corresponds
to the value α = 0. In this case the probabilities PAi , PBj are
uniform, degree distribution of the graph is Poisson, the tail of
the density of eigenvalues is steeper than any power, and there
is a localized regime in the tail. Such graphs therefore exhibit
two mobility edges, while for α > 0 the upper mobility edge
vanishes, or, as we conjecture, is pushed far to infinity.

On the opposite side, for small z, the situation is much more
clear-cut, as we observe unambiguous signs of localization.
This fact is sufficiently evident in the detail shown in Fig. 6.
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FIG. 6. Detail of the averaged logarithm of the inverse participa-
tion ratio for the graph with α = 1/2, M/N = 18, and L/N = 50
and sizes N = 30 000 (◦), N = 10 000 (�), N = 3000 (	), and
N = 1000 (
).

For z lower than about 9 the value of log IPR does not depend
on graph size. However, such an estimate by bare inspection is
not reliable enough. Let us now describe a more sophisticated
procedure for establishing the mobility edge zmob.

Below the mobility edge IPR scales with graph size as
∼N0, while above the mobility edge the behavior is ∼N−1.
However, at finite N the transition region has a finite width
in the variable z. This suggests the following scaling for the
logarithm of IPR:

〈log10 I2〉z = A(z) + σN (z), (6)

where we denoted

σN (z) = σ

[
z − zc(N )

wc(N )

]
log10 N. (7)

In this expression A(z) is a smooth function independent of
N and σ (x) is a sigmoid-like function with asymptotic values
σ (x) → 0 for x → −∞ and σ (x) → −1 for x → ∞. The
size-dependent parameters zc(N ) and wc(N ) are estimates
of the position of the mobility edge and the width of the
transition region for given graph size. The strategy for finding
the mobility edge is to choose the sigmoid function and
the set of parameters zc(N ) and wc(N ) so that the quantity
〈log10 I2〉z − σN (z) shows the best data collapse for each of
the four graphs sizes N studied. We found that the precise
shape of the sigmoid function is not crucial. Therefore,
we used the simplest choice σ (x) = −[1 + tanh(x)]/2. The
optimization of the data collapse was performed using the
simulated annealing procedure. An example of the result is
given in Fig. 7, using the same data as shown in Fig. 6. We can
see that the data collapse looks very good.

From thus obtained estimates zc(N ) the mobility edge
should be extrapolated in the limit N → ∞. We found that
the best fit of the size dependence provides the formula
zc(N ) = zmob + aN−1/4 with some constant a. An example
of the fit is shown in the inset of Fig. 7. In this way we
obtain the mobility edge for all graphs studied. However,
for a range of parameters the estimated mobility edge falls
below zero, which means that localization is not observed
at all. This happens typically for small values of L/N , i.e.,
if the graph is very sparse. An example of such a situation
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FIG. 7. Data collapse of the averaged logarithm of the inverse
participation ratio using the formulas (6) and (7). The data used are
identical to those in Fig. 6. The meaning of the symbols is also the
same. In the inset, extrapolation of the size-dependent estimates zc(N )
to infinite size. In this way the position of the mobility edge zmob is
established.

is shown in Fig. 8, where L/N = 10 and the mobility
edge determined by the above procedure is negative, so we
conclude that localization is absent. However, the presence
of delta functions at integer values of z makes the analysis
delicate, and a more sophisticated procedure would be perhaps
desirable.

The dependence of the critical value zmob on graph
parameters is shown in Figs. 9 and 10. First, we can see
that when the exponent α increases, the value of zmob

moves toward zero, until it disappears before α reaches the
value α = 1.

Dependence on the parameter L/N is shown in Fig. 10.
We can observe more or less linear dependence on L/N ,
and vanishing of zmob at certain value of this ratio, which
is about L/N  10 for α = 1/2, M/N = 18 and L/N  15
for α = 3/4, M/N = 18. The dependence on the ratio M/N ,
as shown in the inset of Fig. 10, shows that the position of the
mobility edge zmob diminishes when the ratio M/N approaches
one.
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FIG. 8. Detail of the averaged logarithm of the inverse participa-
tion ratio for the graph with α = 1/2, M/N = 18, and L/N = 10
and sizes N = 30 000 (◦), N = 10 000 (�), N = 3000 (	), and
N = 1000 (
).
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FIG. 9. Dependence of the estimated position of the mobility
edge on the parameter α, for graphs with parameters M/N = 18 and
L/N = 50.

In fact, it can be clearly observed that at the jamming
threshold, M/N = 1, the mobility edge disappears, as is
demonstrated in the inset of Fig. 3. This is consistent with
the view of jamming threshold as a critical point. When
we approach the critical point, the characteristic length scale
diverges, and as soon as it surpasses the localization length,
localization is gone. At the same time we must be aware of
the fact that jamming in granular matter occurs in three- or
two-dimensional Euclidean space, while the random graph
model of this article is not embedded in any Euclidean
dimension. So the qualitative considerations based on length
scales surely cannot capture the full depth of the localization-
versus-jamming problem.

A question which naturally occurs is how are the localized
states related to other structural properties of the graph. Within
the set of graphs investigated in this work we observed only
quite strong correlation with the degree of nodes on which
localization occurs. If di is the degree of node i, we can average
with respect to normalized eigenvector eiz corresponding to
eigenvalue z as 〈d〉 = ∑

i die
2
iz. We can see typical behavior in

the lower part of the spectrum in Fig. 11. Clearly, the localized
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FIG. 10. Dependence of the estimated position of the mobility
edge on the parameter L/N for α = 1/2 and M/N = 18 (◦), α =
1/2 and M/N = 24 (
), α = 1/2, and M/N = 9 (	), α = 3/4 and
M/N = 18 (�). In the inset, the dependence on M/N for α = 1/2
and L/N = 50.
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FIG. 11. This graph shows correlation between average degree
〈d〉 and inverse participation ratio. Each point corresponds to a single
eigenvector in the lower part of the spectrum, z < 30. The parameters
of the graph are α = 0.5, N = 30 000, M/N = 18, L/N = 50.

modes are centered at nodes with small degrees. We found that
this is generic in the graphs studied here.

IV. MULTIFRACTALITY

A. Motivation

It is now well established that the eigenvectors at the
localization transition exhibit multifractality (for review, see,
e.g., Ref. [5]). This peculiarity makes the localization tran-
sition more complex than usual critical phenomena in the
absence of quenched disorder. Recently studies have hinted
at multifractal statistics of eigenvectors also off criticality
[72]. In the context of many-body localization it was found
that not only the critical, but also the extended, states exhibit
multifractality [94]. It is argued that this has a decisive role
in nonergodicity of extended states. This topic is under hot
debate currently [80,95,96]. It seems that unusual multifractal
behavior is related to the fact that these studies are carried on
graphs containing randomness (Bethe lattices, random regular
graphs, etc.) rather than in Euclidean space of dimensionality
at most three. For example, the many-body localization occurs
in Fock space, which has a complex graph topology, usually
approximated by locally treelike graphs [94]. Therefore, we
find it natural to ask what are the multifractal properties of
eigenvectors on random graphs of the specific type investigated
here.

B. Definitions

We shall use the notion of multifractality in a slightly
modified sense, which we consider more appropriate for the
problem at hand. To keep our language clear, let us introduce
our definitions together with a few trivial examples.

The key quantities will be the moments of the eigenvectors
Iq(z) = ∑N

i=1 e
2q

iz , where q can assume any positive as well as
negative value. For q = 2 we recover the usual inverse partic-
ipation ratio, and for q = 1 we have I1(z) = 1 for all eigen-
values z due to normalization. In order to compare the values
at different graph sizes, we should average over eigenvalues
lying inside a narrow interval (z−,z+) centered at a fixed value
z = (z− + z+)/2, exactly as it was when investigating the

inverse participation ratio. So 〈Iq〉z = ∑
z′∈(z−,z+) Iq(z′)/Nz,

where Nz is the number of eigenvalues inside the interval
(z−,z+).

When studying the multifractal properties of the eigen-
vectors, we suppose that the averages scale with the graph
size as 〈Iq〉z ∼ N−ζ (q), when N → ∞. The function ζ (q)
embodies the information on the multifractal character of the
eigenvectors whose eigenvalues lie close to the point z. Let
us see what the function ζ (q) looks like in a benchmark case,
which is the Gaussian orthogonal ensemble. The distribution
of eigenvector elements is Gaussian [42,97] (also called the
Porter-Thomas distribution in this context), which results
in the following dependence on N [97,98]. For q > −1/2
we have 〈Iq〉z  N1−q �(2q+1)

2q �(q+1) and for q < −1/2 we have

〈Iq〉z ∼ N−3q . Therefore, for GOE

ζ (q) = min(3q,q − 1). (8)

Let us now look at the eigenvectors with eigenvalues close
to a fixed value z from a different perspective. We assume
that the set of N nodes can be divided into G groups of
sizes Ng , g = 1,2, . . . ,G, according to the scaling of the
eigenvectors with the graph size N . We suppose that the
elements of the eigenvectors scale like |ei |  agN

−hg/2 for
all i within the group g, while the size of the group scales like
Ng  bgN

dg . The moments of the eigenvector then behave
as 〈Iq〉z  ∑G

g=1 agbg Ndg−qhg . For very large N this sum is
dominated by a single term with the maximum exponent, hence
〈Iq〉z ∼ N−ζ (q), where

ζ (q) = min
g

(qhg − dq). (9)

Clearly, in a random graph the classification into such
groups is only schematic. But we can introduce the classi-
fication in somewhat more formal way as follows. We fix a
value z and find an eigenvector with eigenvalue closest to z.
Then we order the elements of the eigenvector in ascending
order according to their modulus. Then the smallest has index
1 while the largest has index N . So we obtain a nondecreasing
function. Then we numerically differentiate this function, so
we obtain an estimate of probability density for the modulus
of eigenvector elements. We can plot together such functions
for all graphs sizes N studied, while the value of z remains
fixed. It can be better done on logarithmic scale. Then we try
to rescale the graphs so that they are shifted by (h/2) log N

rightwards and d log N downwards. If all the graphs have a
common intersection, we can conclude that we identified one
group characterized by exponents h and d. The coordinates of
the intersection correspond to the parameters log a and log b.
Of course, we never do such procedure in reality, as we would
need to check an infinite number of possible combinations of
d and h. This description serves the sole purpose to put the
classification into groups on more solid grounds.

We shall call the set of points {(hg,dg)|g = 1,2, . . . ,G}
a multifractal spectrum of the eigenvectors. We can write
it as a function d(h), which can contain isolated points or
continuous part, or both. Of course, it depends on the value
z around which the eigenvalues are taken. To see the point,
let us consider eigenvectors of a complete graph. One of
them (the ground state) is totally delocalized, i.e., ei = N−1/2

and all the others (excited states) are localized, one of them
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being e1 = √
(N − 1)/N , ei = −1/

√
(N − 1)N , i > 1. So the

multifractal spectrum of the delocalized state consists of a
single point (1,1), while the localized states have a pair of
points {(0,0),(2,1)}. In fact, the presence of the point (0,0) is
a fingerprint of localization, as it implies that whole weight of
the eigenvector is carried by a set of sites which remains finite
in the thermodynamic limit.

We can easily see by inspection that the multifractal
spectrum which results in the GOE exponents (8) is also
composed of just two points, {(1,1),(3,0)}. This is another
example of a trivial multifractality. To have a nontrivial
multifractal spectrum, or multifractality in proper sense, we
need a continuous section in the function d(h). We shall see
later that it occurs close to the mobility edge.

C. Numerical results

In our numerical studies, we shall compute the multifractal
spectrum from the calculated exponents ζ (q) by a procedure
which we call, for the sake of brevity, numerical inversion of
the Eq. (9). The procedure goes as follows. We are looking
for the function d(h), which might be composed of a set of
discrete points as well as continuous part(s). First, we should
guess the interval I into which all values of h should fall. As a
first proxy for the function d(h) we calculate, for each h ∈ I ,
the location and value of the minimum

v(h) = min
q

(qh − ζ (q)) = qm(h)h − ζ (qm(h)). (10)

It would be misleading to identify the function v(h) with d(h),
as this would miss the fact that d(h) contains isolated points.
To cure this problem, we identify d(h) = v(h) for each h

except such points where qm(h) is locally constant, i.e., its
first derivative with respect to h exists and is zero. At such
points the function d(h) is undefined. Of course, numerically
we discretize the interval I and check if qm(h) is constant by
comparing its value at neighboring points.

Using this procedure we are respecting the fact that if the
function ζ (q) contains a linear piece, such a piece in its entirety
corresponds to a single isolated point in the multifractal
spectrum.

We calculated the exponents ζ (q) for z above and slightly
below the mobility edge. The density of states deep below
the mobility edge is too small to provide reasonable statistical
error for extracting the exponents from the averages 〈Iq〉z.
We show the results in Fig. 12. We observe that ζ (q) = 0
for q > 1 below the mobility edge, as it should be in the
localized state. Sufficiently far above the mobility edge we
observe ζ (q) = q − 1 for all positive q, i.e., the GOE result.
However, when we proceed from the mobility edge up, we
depart from the localized behavior and approach the GOE
limit rather slowly, indicating a relatively wide interval of
eigenvalues with nontrivial behavior. The strong nonlinearity
of the function ζ (q) is stressed by plotting the detail in the
inset of Fig. 12. Moreover, we should note that for negative
exponents, more precisely for q � −1/2, the exponents obey
the dependence ζ (q) = 3q for all z, i.e., in both the localized
and delocalized phase. This is in fact the same behavior as
found also in GOE. So this segment of the function ζ (q) is
very robust and is not influenced by localization at all.
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−
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FIG. 12. Scaling exponents for the eigenvector moments 〈Iq〉z.
The averages are made over intervals of width 1 with midpoints
at z = 8.5 (◦), z = 11.5 (�), z = 12.5 (	), z = 13.5 (
), and z =
15.5 (�). In the inset, detail of the same data. The term q/2 was
subtracted just for better visibility of the nonlinear dependence on q.

We further analyzed the exponents by numerically inverting
the formula (9). The results are shown in Fig. 13. We can
clearly see that the function d(h) reaches maximum value
d(h) = 1, as it should. In the localized phase it contains also the
point (0,0), which is fully consistent with the considerations
above. The most interesting part is the broad continuous
section of he function d(h), observed in the delocalized phase
[note that the point (0,0) is not included!], not too far from
the mobility edge but certainly above it. This is the nontrivial
part of the multifractal spectrum. The width of the continuous
part shrinks as we go farther from the mobility edge, until it
collapses onto the single point (1,1), characteristic of GOE. We
could speculate that the nontrivial multifractal spectrum in the
delocalized phase describes analogous phenomenon as found
in Ref. [94]. We should also note that the spectrum contains
also the isolated point (3,0), although it is not shown in the
figure. This point originates from the behavior ζ (q) = 3q for
q < −1/2 which is shared with GOE always.

V. EMPIRICAL STUDY

Now we turn to the analysis of an example of a bipartite
scale-free graph taken from reality. We utilize the same data

h
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1.510.50
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0.4

0.2

0

FIG. 13. Multifractal spectrum obtained numerically from the
data shown in Fig. 12, with the same meaning of the symbols.
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collection as already used in our previous work [46], so we only
briefly describe them now. The data were collected in the year
2005, by automatic download from the server amazon.com.
We were interested in the network connecting reviewers and
items offered on Amazon. This is a bipartite graph, the set
A being the collection of reviewers, the set B is the set of
items, and the edges represent the reviews written. First, we
downloaded the list of all 1 714 512 reviewers present in the
system at that time (now the list is hidden for the most part).
The list was ordered by Amazon itself by relevance, which
meant more or less by number of reviews written. Then we
downloaded systematically all reviews written by the first 105

reviewers in this list. We found occasional duplicities in the
data, and after cleaning them we obtained a graph composed
of 99 622 reviewers and 645 056 items. These two sets were
connected by 2 036 091 reviews.

In our study [46] we looked at eigenvectors with largest IPR.
We found that they identify small clusters within the network
with clear semantic content, e.g., groups of publications
about certain globally influential politicians, other groups
centered around popular musical bands etc. It would be
tempting to make such an analysis automatically and rely
on such computer-extracted data. However, the very question
of reliability of these data is highly nontrivial. The first and
essential question is whether the localized states are just casual
products of the randomness of the underlying graph, or if they
are specific to this single empirical network. We are trying
to contribute to solving this question first by comparing the
Amazon network to a model random graph (which was done
in the preceding sections). Second, we proceed by taking the
graph representing the Amazon network as an input and trying
to identify what is generic to this type of graph (which is what
we are about to do in this section).

Therefore, in order to investigate systematic properties
of this graph, rather than properties of this single empirical
sample, we need an ensemble of random graphs with structure
as close as possible to the given empirical sample. We prepare
such random graphs by simply randomly selecting subgraphs
of the empirical graph. So smaller subgraphs were created
by randomly choosing a set of N reviewers and leaving only
items connected to them. In our studies we used three sizes
N = 10 000, N = 16 000, and N = 30 000. For each size we
created 20 independent random realizations of the subset and
averaged the density of eigenvalues and inverse participation
ratio in the same way as it was done for the artificial graphs
examined in the previous sections. Contrary to the artificial
case, here we cannot choose either the size M or the number
of edges L independently. These numbers also have some,
although small, sample-to-sample fluctuation. On average,
we found that M/N  10, for N = 30 000, M/N  11.5 for
N = 16 000, and M/N  13 for N = 10 000. The ratio L/N

is, for all three sizes, L/N  20. As we have already shown
in Ref. [46], the degree distribution is power-law on both the
A and B sides, P >

A,B(k) ∼ k−γA,B , but the exponents slightly
differ: we found γA  1.2 and γB  1.35. The density of
eigenvalues is shown in Fig. 14. We can observe the peaks
at integer values of z and the power-law tail. Comparing
the spectra at increasing graph sizes, we observe that the
convergence is quite slow at small z, which is probably due
to the fact that the ratio M/N is not quite the same for all

z

D
(z

)

6420

0.3

0

z

D
(z

)

1041031001010.1

1

0.1

0.01

10−3

10−4

10−5

10−6

10−7

FIG. 14. Density of eigenvalues obtained in the analysis of the
empirical Amazon network. The size of the subset is N = 30 000
(solid line), N = 16 000 (dashed line), and N = 10 000 (dotted line).
The straight line is the power ∝ z−2.2. In the inset, detail of the same
data.

sizes, but decreases slightly when N increases. However, the
tail seems not to be affected, as it relies only on the power-law
distribution of degrees. According to the general theory [83],
only the smaller of the two exponents γA and γB is relevant
for the tail of the eigenvalue density, so we expect that the
exponent will be τ  1.2. We can see in Fig. 14 that this is
very well confirmed by the data.

In order to see if localized states occur in the spectrum,
we plot in Figs. 15 and 16 the inverse participation ratio. In
fact, no localization is observed in either low or high range
of eigenvalues. At the upper tail, we observe qualitatively
the same behavior as in the model graphs investigated in
previous sections. There seems to be a crossover value zcross

and all states within the tail but with z < zcross are extended. At
the same time, zcross seems to go to infinity with growing graph
size. However, the data are too noisy to see this effect clearly.
Neither the scaling like in (5) can be well observed with the
present data. So the absence of localization in the upper tail
remains on the level of hypothesis, even more so than in the
case of model graphs.

Again, at low eigenvalues the situation is more clear. It
is obvious that there is no region of localized states. The
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FIG. 15. Averaged logarithm of the inverse participationratio, for
the empirical Amazon network. The size of the subset is N = 30 000
(	), N = 16 000 (�), and N = 10 000 (◦).
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FIG. 16. Detail of the data shown in Fig. 15. The size of the
subset is N = 30 000 (solid line), N = 16 000 (dashed line), and
N = 10 000 (dotted line).

seemingly noisy behavior at small z is in fact due to complex
features, which are repeated at all sizes, just shifted downwards
for increased N . This is clearly observable in the detail
shown in Fig. 16. This figure also confirms that the localized
phase is not present here. When we look at the behavior of
the mobility edge in Fig. 9, we indeed expect vanishing of
localization for the parameters relevant for the empirical data,
which is, approximately, M/N = 10, L/N = 20, α = 3/4.
We can finally conclude that both eigenvalue density and
localization behavior of the empirical Amazon network are
well reproduced by the model of Goh et al. [84] adapted for
bipartite graphs in Ref. [83].

VI. CONCLUSIONS

We investigated localization in bipartite graphs with a
power-law degree distribution. Localization is purely due
to topological disorder. The main quantity to characterize
localization was the inverse participation ratio, more precisely
its dependence on the graph size. In comparison with the
localization on Erdős-Rényi graphs, investigated by us earlier
[75], there are several peculiarities. First, states at the upper
tail of the spectrum behave differently, which is demonstrated
both in power-law density of eigenvalues, and in localization
properties. Based on our data, we conjecture that all the
states which are in the upper tail but with eigenvalue below
certain crossover value are extended; and, at the same time, the
crossover value goes to infinity when the graph size increases.
Our current data seem to support this hypothesis, but it would
need better data to qualify it as proved.

At the lower edge of the spectrum, i.e., at eigenvalues
close to zero, the region of localized states remains intact
in a generic situation. However, the position of the mobility
edge zmob depends sensitively on the parameters of the model.
At certain values of the parameters the critical value zmob even
drops to zero, which means that localization disappears. The
general trend is that zmob decreases with decreasing power
in the degree distribution, with decreasing density of edges
in the graph and also drops to zero when the sizes of the
A and B sets (the two sides of the bipartite graph) becomes
equal. The latter case is especially important, because it can be
interpreted as jamming threshold in a man-field version of the

sphere packing problem. This means that one critical point,
the localization transition, is in conflict with another critical
point, the jamming transition. We conjecture that this is due to
competition between length scales characteristic for the two
transitions. When one length scale prevails, the other critical
point is concealed. There remains an important open question
of how the disappearance of low-lying localized states will be
reflected in heat conductance and sound transmission near and
at the jamming threshold. To proceed in solving this question
it would be necessary to adapt the model so that it is embedded
in a three- or two-dimensional Euclidean space.

In the context of many-body localization [99] it is common
to study level-spacing statistics as an indicator for localization
instead of IPR [100]. However, we found that this method is
not very useful here, mainly due to very low density of states
in the tail, where the localization occurs. So we do not use this
method here (see Appendix A for details).

We also analyzed multifractal properties of the eigenvec-
tors. In some sense it is just deepening of the analysis based
on the IPR. It includes the estimate of the position of the
mobility edge as a by-product, as we identified the localized
phase by the presence of the point (0,0) in the multifractal
spectrum. However, the finding we consider interesting is
that the multifractal spectrum is nontrivial next to but in a
relatively broad range above the mobility edge. This may
indicate that the eigenvectors are multifractal in the delocalized
phase, as was found on random regular graphs in Ref. [94]
or with a different approach in Ref. [79], although these
conclusions were questioned in Ref. [80]. In our view this
phenomenon is connected with the topology of the random
graph, more precisely with the distribution of loop lengths in
the graph. Indeed, the graph is locally treelike, typical loops
having length ln N . For computing spectra this is sufficient,
but localization (or rather delocalization) is essentially a
nonlocal phenomeno,n and loops of length ln N cannot be
considered large close to the critical region, where a typical
length scale originating from localization competes with the
typical length scale ln N originating from the topology. In
finite-dimensionality lattices, distribution of loop lengths does
not depend on system size, while in our random graph it
does. Therefore, the scaling of the moments Iq with graph
size may be nontrivial in the delocalized phase. However,
if this hypothesis is true, the range of observed multifractal
states above mobility edge would ultimately shrink when the
system size grows, although for numerically accessible sizes
the ultimate shrinking to a point may never be observable.

As a complement to the study of artificial bipartite graphs,
we analyzed also one empirical bipartite graph, namely the
network of reviewers and items on the amazon.com server. In
our previous study [46] we observed the scale-free nature of
this graph, and by extracting the most localized eigenvectors
we found small communities with sensible semantic informa-
tion. Here we wanted to check if the model of Goh et al.
is useful also in describing the spectra of the graphs and
properties of its eigenvectors. We found that indeed the spectral
and localization properties found in the empirical network are
reproduced well within the Goh et al. model. This makes it a
useful benchmark in spectral studies of empirical networks,
at least the electronic commerce networks investigated in
Ref. [46]. A most important conclusion is that in the empirical
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graph there should be no localization due to purely random
geometry of the network. Therefore, the localized states found
in Ref. [46] are true outliers that bear specific information on
this single instance of the empirical network. This is what we
took as an assumption in Ref. [46] and now we believe it is
more firmly supported by the analysis of this work.
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APPENDIX A: EIGENVALUE SPACINGS

One of the key differences between localized and delo-
calized portion of the spectrum consists in the statistics of
eigenvalue spacings. In GOE, it is very well approximated
by the Wigner surmise P� GOE(x) = π

2 xe−π x2/4, where x is
the eigenvalue spacing normalized to its average value. If
the eigenvalues were placed randomly according to a Poisson
process, the distribution of normalized spacings would follow
the exponential P� Poisson(x) = e−x . The general expectation is
that GOE result should hold in the delocalized regime, while
localized states should correspond to Poisson-level spacing
distribution. Let us see now how this expectation is fulfilled in
the case of our graphs.

We calculated the distribution of eigenvalue spacings within
several intervals across the spectrum. Taking interval (z−,z+),
we normalized the spacing between adjacent eigenvalues zi+1,
zi as �znorm = Nz

z+−z−
(zi+1 − zi), where Nz is the number of

eigenvalues in the interval (z−,z+). Such distributions can be
directly compared with the GOE and/or Poisson result. This is
done in Fig. 17 in the region well above the mobility edge and
in the tail of the spectrum, and in Fig. 18 in the region slightly
below the mobility edge. Deeper below the mobility edge the
analysis is hindered by the very small density of eigenvalues.

We can see that in the interval (20,22), which lies above
the mobility edge in the region of high density of eigenvalues,
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the inset, the same data are plotted in rescaled form, to show the
behavior in the tail. The parameters of the graph are α = 1/2,
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FIG. 18. Distribution of eigenvalue spacings, for eigenvalues
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level spacings follow very well the GOE formula, confirming
the status of delocalized eigenvectors. Farther in the tail, in
the interval (101,111), and even more in (200,210), there are
deviations from the Wigner surmise; large spacings are more
probable than what GOE predicts. But the deviations are rela-
tively small and do not harm the overall picture that all the de-
localized regime is well characterized by GOE-level spacings.

Below the mobility edge the conclusions are much less
clear. The interval (8,9) investigated here lies next to the
mobility edge, while the localized states lying farther are
too rare to obtain reasonable statistics of the level spacings.
The distribution shown in Fig. 18 is certainly much closer
to Poisson than to GOE, confirming the prediction that in
localized regime GOE breaks down. However, we still cannot
claim that the Poisson-level spacing would make a good fit to
the measured data. We assume that the difference from Poisson
is due to closeness of the mobility edge. Farther away the
spacing distribution is expected to correspond to the Poisson
case much better.

Besides the full spacing distribution, there are aggregate
parameters characterizing the spacing distribution in terms of
a single number. The first one we use here is the ratio of two
consecutive spacings �zi = zi − zi−1 and �zi+1 = zi+1 − zi

defined as [100]

r = min(�zi,�zi+1)

max(�zi,�zi+1)
(A1)

and used frequently in the context of many-body localization
[99]. This quantity was averaged over an interval of eigen-
values cantered at z, as was done with inverse participation
ratio. The average 〈r〉z should reflect the transition from GOE
behavior, where 〈r〉z = 0.529 . . ., to Poisson behavior, where
〈r〉z = 2 ln 2 − 1 = 0.386 . . . [100]. We can see the results in
Fig. 19. In the region far above the mobility edge we indeed
observe that 〈r〉z settles at the GOE value. When we approach
the mobility edge, 〈r〉z decreases, indicating the transition.
However, the behavior below the mobility edge is ambiguous.
The density of states is so small that the statistical fluctuations
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FIG. 19. Spacing variation parameter, averaged over eigenvalues
within the interval of width 1 centered at z. The parameters of the
graph are α = 1/2, M/N = 18, L/N = 50 and sizes N = 30 000 (◦),
N = 10 000 (�), N = 3000 (	), and N = 1000 (
). The horizontal
arrows indicate the values which correspond to Gaussian orthogonal
ensemble and to the Poisson placement of eigenvalues.

obscure the trend. Essentially the data are compatible with
the idea that 〈r〉z approaches the Poisson value, but a firm
statement cannot be made on the basis of current data.
Certainly our results in no means prove that the spacing
distribution in localized phase is Poisson, although the results
also do not prove the contrary.

Another single-valued indicator capable in principle to dis-
cern between GOE and Poisson regimes is the relative variance
of the spacing distribution 〈(�z)2〉z/〈�z〉2

z − 1. This quantity
should be equal 1 for Poisson and 4/π − 1 = 0.2732 . . . for
GOE spacing. We can see the numerical results for our graphs
in Fig. 20. The behavior resembles that of the quantity 〈r〉z.
For z sufficiently above the mobility edge, the relative variance
is precisely at the GOE value. When we approach the mobility
edge, the relative variance grows, and at the mobility edge and
below it decreases again. However, instead of approaching the
Poisson limit, it is significantly smaller. This again casts some
doubts at the hypothesis that in the localized phase the spacing

Poisson

GOE

z

(Δ
z
)2

z

Δ
z

2 z
−

1

20181614121086

1.2

1

0.8

0.6

0.4
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FIG. 20. Relative variance of the eigenvalue spacing distribution
within the interval of width 1 centered at z. The parameters of the
graph are α = 1/2, M/N = 18, L/N = 50 and sizes N = 30 000 (◦),
N = 10 000 (�), N = 3000 (	), and N = 1000 (
). The horizontal
arrows indicate the values which correspond to Gaussian orthogonal
ensemble and to the Poisson placement of eigenvalues.

distribution is Poisson. However, the discrepancy may also be
due to finite size effects. As we can see in Fig. 20, the function
does not seem to converge well in the range of graph sizes
studied.

One should ask how to interpret these, rather negative,
results.

Usually it is expected that the statistics corresponds to
the Gaussian orthogonal ensemble in the delocalized regime,
while it is Poisson in the localized one. The hypothesis on
the delocalized state was fully confirmed in our studies, both
by directly plotting the spacing distributions and by using
aggregate quantities, like adjacent spacing ratio and relative
variance. The deviations from GOE, if they exist at all, are
small and restricted to the region of extremely large spacings,
where finite size may play role.

On the other hand, the results in the localized regime
are much less conclusive, mainly because the density of
states is too low to obtain reliable results deep within the
localized region. Below, but close to, the mobility edge, the
spacing distribution is close to Poisson in the sense that it is
purely decreasing function, but decreases more rapidly than an
exponential, as would be expected for Poisson case. Also the
aggregate quantities behave in a similar way; their value clearly
departs from the GOE value when the mobility edge is crossed,
but remains rather far from the value expected by Poisson
spacing. We conclude that the analysis of eigenvalue spacing
is not quite distinctive method for analyzing localization in this
system. This is in contrast with the situation in, e.g., random
regular graphs studied by us in Ref. [75], where the Poisson
distribution in the localized phase was very well visible. We
attribute this difference to the already mentioned scarcity of
eigenvalues in the localized region, which is characteristic for
topological disorder (both in Erdős-Rényi graphs studied in
Ref. [75] and in bipartite graphs studied here). On the contrary,
the random regular graphs are dominated by diagonal disorder
(i.e., random potential), and the topological disorder, which is
also present, has a negligible effect. This has the effect that
in the localized phase there is still quite a large density of
eigenvalues, or even all the eigenstates are localized. This
implies that reliable analysis of localization in topological
disorder is much harder than in diagonal disorder.

The problem may be also formulated in the following way.
Clearly, localization is an effect which cannot be in principle
analyzed without a finite-size analysis. Indeed, localization
means that the extent of the state does not increase when
the extent of the whole system increases. Change in the level
statistics seemingly avoids the necessity of both calculating
IPR and making finite-size analysis. However, level statistics
is only a secondary indicator. It is supposed to change
abruptly when we are already working with infinite system.
For finite systems we do not have any clue of how the spacing
distribution should scale when the system size changes. The
source of the difference between Poisson and GOE spacing
distribution lies in the absence or presence of level repulsion
in localized and delocalized states, respectively. When the
density of eigenvalues is small, level repulsion can be hardly
effective, thus masking the Poisson-to-GOE transition. This
sheds some doubts on the use of aggregate quantities like
the spacing ratio, but more detailed methodological analysis
would be necessary here.
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APPENDIX B: EIGENVECTOR OF R FOLLOWS
FROM EIGENVECTOR OF C

The assumption is
Ce = λ2e. (B1)

Denote

ē =
(

e

ST e/λ

)
. (B2)

Therefore

Rē =
(

0 S

ST 0

)(
e

ST e/λ

)
=

(
SST e/λ

ST e

)

=
(

Ce/λ

λST e/λ

)
= λ

(
e

ST e/λ

)
= λ ē. (B3)
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