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The continuous imaginary-time quantum Monte Carlo method with the worm update algorithm is applied
to explore the ground-state properties of the spin-1/2 Heisenberg model with antiferromagnetic (AF) coupling
J > 0 and ferromagnetic (F) coupling J ′ < 0 along zigzag and armchair directions, respectively, on honeycomb
lattice. It is found that by enhancing the F coupling J ′ between zigzag AF chains, the system is smoothly
crossover from one-dimensional zigzag spin chains to a two-dimensional magnetic ordered state. In absence of
an external field, the system is in a stripe-ordered phase. In the presence of uniform and staggered fields, the
uniform and staggered out-of-plane magnetizations appear while the stripe order remains in the xy plane, and a
second-order quantum phase transition (QPT) at a critical staggered field is observed. The critical exponents of
correlation length for QPTs induced by a staggered field for the cases with J > 0, J ′ < 0 and J < 0, J ′ > 0 are
obtained to be ν = 0.70046(1) and 0.7086(3), respectively, indicating that both cases belong to O(3) universality.
The corresponding dynamic and susceptibility exponent z and γ /ν are fitted to be 1.006572(9), 1.9412(2) and
1.004615(8), 1.96121(9) for the two cases, respectively. The scaling behavior in a staggered field is analyzed, and
the ground-state phase diagrams in the plane of coupling ratio and staggered field are presented for two cases.
The temperature dependence of susceptibility and specific heat of both systems in external magnetic fields is also
discussed. A Kosterlitz-Thouless phase transition is found for the present system in a uniform field.
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I. INTRODUCTION

Since the spin-1/2 antiferromagnetic (AF) Heisenberg
model is believed to be capable of describing the undoped
precursors of high-temperature superconducting cuprates, it
has attracted intensive attention in condensed matter and
statistical physics. Through extensive explorations both the-
oretically and experimentally in the past few decades, many
properties of this model have been exposed, and a great deal
of advances have been achieved. However, as the complexity
occurs intrinsically in many-body systems, there are still a lot
of ambiguities remaining to be investigated. For instance, by
searching for exotic states of matter or studying quantum phase
transitions (QPTs), people usually invoke this model with
different interactions on various lattices as prototypes. To name
but a few, quantum spin liquid is thought to exist in spin-1/2 AF
Heisenberg models on lattices with geometrical frustrations,
but its nature is still under active debate [1–8]; whether exotic
phase transitions beyond the traditional Landau-Ginzburg-
Wilson framework [9] exist was also discussed by introducing
more complex interactions or by tuning the spatial anisotropy
in coupling strength, and so on.

It has been shown that the spin-1/2 AF Heisenberg system
on square lattice displays Néel order in ground state with
the staggered magnetic moment per site ms

∼= 0.3075 by
quantum Monte Carlo (QMC) [10] and ms

∼= 0.3034 by
the spin-wave theory [11], while the one-dimensional (1D)
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spin 1/2 AF spin chain is magnetically disordered with
gapless excitations. The experimental results that the quasi-1D
spin-1/2 AF chains Sr2CuO3 and Ca2CuO3 [12] exhibit low
Néel temperatures and extremely small ordered moments
trigger an interesting question: How does the AF long-range
order in two-dimensional (2D) lattice (like square lattice)
in ground states develop from coupled 1D spin chains with
increasing interchain interactions? Several studies tackle this
issue and the critical interchain coupling ratio Rc = J⊥/J was
determined as follows: The spin-wave theory gives Rc = 0.034
[13], one-loop renormalization group analysis on an effectively
spatially anisotropic nonlinear σ model yields Rc = 0.047
[14], the series expansion numerical techniques bound Rc from
upper to 0.02 [15]; whereas some self-consistent calculations
[16] and exact diagonalization [17] predict it as high as 0.15
and 0.1–0.2, respectively. According to the exact result of
Bethe ansatz or the results of, e.g., spin-wave theory with
random-phase approximation [18] and mean-field approaches
[19], the spin-1/2 AF Heisenberg chain is critical and it
is confirmed by using the multichain mean-field method
associated with a Monte Carlo algorithm [20,21] on AF
square lattices. Here we intend to study this issue on a
honeycomb lattice with ferromagnetic (FM) armchair bonds
(interchain) and AF zigzag chains by tuning the coupling ratio,
as the honeycomb lattice has a smaller coordinate number and
stronger quantum fluctuations than square lattice. We also wish
to further understand the ground-state and thermodynamic
properties as well as the scaling behaviors and topological
phase transitions of the system under interest in uniform and
staggered magnetic fields.
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FIG. 1. The spin-1/2 Heisenberg model on honeycomb lattice
with antiferromagnetic (AF) and ferromagnetic (F) interactions
between nearest-neighbor spins (indicated by arrows) along zigzag
(blue bonds along the y direction) and armchair (red bonds along the
x direction) chains, respectively. The red solid dots and blue open
circles indicate the lattice sites on sublattices A and B, respectively,
and in the two hexagons in the inset the directions of the uniform (h)
and staggered (hs) magnetic fields are shown.

Alternatively, one can study 2D anisotropic Heisenberg AF
models with different bond interactions to observe crossover
behaviors by tuning the bond interactions. For instance, such
attempts were made on honeycomb lattice with the dimer
pairs pinned on the armchair bonds by using the methods
of tensor renormalization group [22] and QMC [23], where
it is found that there is a QPT of classical O(3) universality
from a disordered dimer phase to quantum Néel order at a
critical interdimer AF interaction. In our previous work [24],
we replaced the interdimer AF couplings by ferromagnetic (F)
interactions along zigzag directions on honeycomb lattice and
found that there is also a phase transition from a dimerized
phase to a stripe phase. The scaling behaviors were analyzed,
and the coupling parameters of two compounds were estimated
by comparing our QMC calculated results.

In contrast to this previous work [24], where the interactions
are supposed to be F along the zigzag direction and AF along
the armchair direction, for the completeness of the study, in
this paper we shall consider the spin-1/2 Heisenberg model
with mixing AF interaction (J ) along the zigzag direction
and the F interaction (J ′) along the armchair direction on a
honeycomb lattice (Fig. 1) in magnetic fields. It should be
noted here that the present system (we refer to Case A later)
differs considerably from that considered in Ref. [24] (we refer
to Case B later), and the two systems cannot be transformed
mutually by simply using a unitary transformation. This
observation is confirmed by our QMC studies, where we
observe that a small interchain F interaction could make the 1D
disordered state smoothly crossover to a 2D spin-ordered state.
In the presence of uniform and staggered fields, the uniform
and staggered magnetizations in the z direction appear while
a stripe order remains in the xy plane, and a second-order
QPT at a critical staggered field is observed. Although there
is a zero magnetization plateau in the honeycomb spin ladder
with AF legs and F rungs in mz ∼ h curves [25], no zero
magnetization plateau exists for both cases with J ′ = −J

due to the appearance of spin order. The phase diagram in
a staggered field is also presented.

This paper is organized as follows. In Sec. II, we shall give
the model Hamiltonian, calculational method, and definitions
of several physical quantities. The crossover behavior from
1D to 2D in the absence of a magnetic field is discussed in
Sec. III; the magnetization in the presence of uniform and
staggered external magnetic fields is presented in Sec. IV; and
the finite-size scaling analysis is given in Sec. V. Section VI
shows the phase diagrams of two systems for a comparison;
the temperature dependence of specific heat and susceptibility
in magnetic fields is discussed in Sec. VII; in Sec. VIII
a Kosterlitz-Thouless (KT) transition is presented for finite
temperature conditions; and, finally, a summary is given.

II. MODEL, METHOD, AND DEFINITIONS

A. Model

By using the continuous imaginary-time QMC with worm
update algorithm, we shall study the spin-1/2 Heisenberg
model on a honeycomb lattice with mixing AF and F interac-
tions along the zigzag and armchair directions, respectively, as
depicted in Fig. 1, in the presence of uniform or staggered mag-
netic fields. The AF interactions separate the lattice into sub-
lattices A and B, correspondingly denoted by red solid dots and
blue blank circles in Fig. 1. The Hamiltonian of the system is

H = J
∑
〈ij〉ZZ

Si ·Sj + J ′ ∑
〈ij〉AM

Si ·Sj − h
N∑

i=1

Sz
i − hs

N∑
i=1

(−1)iSz
i ,

(1)

where Si is the spin-1/2 operator at ith site; 〈ij 〉ZZ and 〈ij 〉AM

denote nearest neighbors along the zigzag and armchair
directions, respectively; J > 0 and J ′ < 0 are corresponding
coupling constants; and h and hs are the external uniform
and staggered magnetic fields, respectively. We define the
coupling ratio α1 = J ′

J
for later use. For convenience, we

also mark the armchair and zigzag directions by the x and
y directions, respectively. N = LxLy is the total number of
lattice sites, where Lx(y) is the length of x (y) direction.

From Sec. IV onward, we shall also make comparisons
between the present system and the system with J < 0 and
J ′ > 0 in the previous work [24] in a staggered field, where
the coupling ratio is defined as α2 = J

J ′ .

B. Method

We shall use the continuous-time QMC with worm update
algorithm to study the system under consideration. This
algorithm expands the partition function of system as a
summation of path integrals with continuous loops under Fork
states representation with {|Sz

i 〉} as the basis in interaction
picture by

Z = Tr(e−βH )

= Tr(e− ∫ β

0 dτH )

=
∞∑

n=0

(−1)nTr

{
e−βH0

∫ β

0
dτn

. . .

∫ τ2

0
dτ1[HInHI (n−1) . . . HI1]

}
, (2)
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where β = 1
kBT

, the inverse temperature, acting as the length of
the imaginary time in the simulation; kB = 1 is the Boltzman
constant; H0 stands for the interaction between spins along the
z direction

H0 = J
∑
〈ij〉ZZ

Sz
i S

z
j + J ′ ∑

〈ij〉AM

Sz
i S

z
j

− h
N∑

l=1

Sz
l − hs

N∑
l=1

(−1)lSz
l ; (3)

and HI is the hopping term in the xy plane of spin space

HI = J

2

∑
〈ij〉ZZ

(S+
i S−

j + S−
i S+

j ) + J ′

2

∑
〈ij〉AM

(S+
i S−

j + S−
i S+

j ).

(4)

In this framework, the object sampled during executing
the algorithm is each term in Eq. (2), and the integration is
concretized to several configurations with special localizations
of off-diagonal terms in the imaginary time axis. In lattice
space and imaginary time coordination, such configurations
are graphed as multiple worldlines with only continuous
loops. By introducing the kink pair S+

iτ1
S−

iτ2
, called a worm,

a partition function configuration is switched into a Green
function configuration. The hopping of the worm ends (S+

iτ

or S−
iτ ) along the imaginary time or the real space direction

realizes the sampling of the Green functions and the ends’
annihilation finishes an update from an old Z configuration to
a new one [26,27]. The big difference between the partition
function configuration and the Green function configuration
is that the latter has an extra discontinuous worldline, i.e., the
worm. This method extends the sampling space and could be
used to calculate the winding number directly.

C. Definitions

Before we proceed further, we first give the definitions
of relevant physical quantities that will be used later. As the
calculations based on the QMC method are usually associated
with the finite-size systems, where the spin O(3) rotational
symmetry remains in a finite system, we should determine
the order parameters by calculating the corresponding square
values combined with a size extrapolation. The staggered
magnetization per site is defined via the following expression:

〈
m2

s

〉 =
*{

1

N

[∑
i∈A

(
Sx

i + Sy

i + Sz
i

)

−
∑
j∈B

(
Sx

j + Sy

j + Sz
j

)]}2+

= 3

*{
1

N

[∑
i∈A

Sz
i −

∑
j∈B

Sz
j

]}2+

= 3

2

1

N

N−1∑
r=0

f (r)〈S+
0 S−

r 〉, (5)

where f (r) = 1 if both S+
0 and S−

r are in the same sublattice;
otherwise, f (r) = −1, and r is the distance between lattice
sites i and j .

The staggered magnetization per site in the xy plane in the
presence of a uniform or staggered field can be studied through

〈m2
⊥〉 =

*{
1

N

[∑
i∈A

(
Sx

i + Sy

i

) −
∑
j∈B

(
Sx

j + Sy

j

)]}2+

= 1

N

N−1∑
r=0

f (r)〈S+
0 S−

r 〉. (6)

The uniform magnetization per site is defined by

mz =
〈

1

Nβ

N∑
i=1

∫ β

0
Sz

iτ dτ

〉
. (7)

The uniform magnetic susceptibility is given by

χu = 1

Nβ

⎧⎨
⎩

∑
ij

〈∫ β

0
dτ1dτ2S

z
iτ1

Sz
jτ2

〉

−
〈∫ β

0
dτ1S

z
iτ1

〉〈∫ β

0
dτ2S

z
jτ2

〉⎫⎬
⎭. (8)

The staggered magnetization per site in the z direction will
be calculated by

ms
z =

〈
1

Nβ

Lx,Ly∑
i=1,j=1

(−1)i+j

∫ β

0
Sz

ij (τ )dτ

〉
. (9)

Here i and j denote the lattice site’s index along the x and y

directions. The spin stiffness ρ is obtained by the fluctuation
of winding numbers [28]

ρθ = ∂2�

∂2

= 1

β
〈W 2

θ 〉

= 1

β
〈[(N+

θ − N−
θ )/Lθ ]2〉, (10)

where � is the free energy and 
, Wθ , N+
θ , N−

θ , and Lθ

are twisted angle at the boundaries, the winding number, the
number of lattice sites for spin ↑ along the positive and negative
θ directions, and the lattice width for the corresponding
direction, respectively. It is noted that the spin stiffness ρ

in Eq. (10) has its counterpart in a boson system [29,30],
the superfluid density, which characterizes an off-diagonal
long-range order.

We shall calculate the correlation lengths ξzigzag and ξτ

along the zigzag direction (y direction) and the imaginary time
β direction, respectively, through the canonical correlation
function C(−→q ,iω) [31,32] defined by

C(−→q ,iω) = 1

LxLyβ

*
N∑

j,k=1

∫ β

0
dτ1

∫ β

0
dτ2S

+
j (τ1)S−

k (τ2)

× exp{−i[ω(τ2 − τ1) + −→
q · (−→rk − −→

rj )]}
+
,

(11)

where iω = 2π/β is the lowest Matsubara frequency. The
honeycomb lattice could be mapped to the brick-wall lattice.
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FIG. 2. The size extrapolation of the order parameter 〈m2
s 〉 vs

1√
N

for (a) Lx = Ly = L and (b) Ly = 8Lx . N = Lx × Ly is the
total number of lattice sites, and the inverse temperature is set to be
β = 2 × √

N/J for (a) and β = √
N/J for (b). In (a), 〈m2

s 〉 exhibits
a minimum for every α1. When Ly � Lx , 〈m2

s 〉 decreases almost
linearly against 1/

√
N in (b). The errors that are visible are of order

10−3 and the invisible ones are of 10−4 at least.

The correlation lengths will be calculated in the following way:

ξzigzag = 1

δqzigzag

√√√√ C(−→q0 ,0)

C(−→q0 + −→
δq zigzag,0)

− 1, (12)

ξτ = 1

ω

√
C(−→q0 ,0)

C(−→q0 ,iω)
− 1, (13)

where −→
q0 = (0,π ) and

−→
δq zigzag = (0,2π/Ly).

The transverse susceptibility can be calculated by

χ⊥ = 1

LxLyβ

〈∑
j,k

∫ β

0
dτ1

∫ β

0
dτ2S

+
j (τ1)S−

k (τ2)

〉
. (14)

χ⊥ would exhibit a divergent behavior at the critical point, and
for finite sizes, it shows a power-law behavior,

χ⊥ ∝ Lγ/ν, (15)

where γ is the critical exponent for the susceptibility [33]. We
shall employ this quantity to investigate the critical properties
induced by staggered fields.

III. CROSSOVER FROM 1D TO 2D

Now let us consider the crossover behavior from 1D to 2D
by altering the coupling ratios of the present system. During
the calculations, the coupling ratio is changed to the value as
low as α1 = −0.010.

We first take Lx and Ly to be equal and the inverse
temperature to be size-dependent β = 2

√
N/J . Figure 2(a)

shows the size extrapolation of m2
s versus 1/

√
N for various

coupling ratios α. It is seen that as the system size increases,
〈m2

s 〉 first decreases and then increases, leaving a minimum at a
finite size for each α, and in this case, it shows a nonmonotonic
behavior, and therefore a size extrapolation is impossible.
It is known that the finite-size gap in the zigzag chain is
�(Ly) ∼ 1

Ly
. When energy scales in the two directions are

FIG. 3. ms
⊥ mz and χu vs uniform magnetic field h/J for different

lattice sizes Lx = Ly = 32 with β = 100/J and 36 with β = 108/J

for α1 = −0.3. Inset is the susceptibility χu as a function of h/J .
Around h/J = 2 there is a second-order phase transition between a
canted stripe phase and a polarized phase. Except the points whose
error bar is visible, the rest of the data are calculated with accuracy
of at least 10−3.

compatible, �(Ly) ∼ ρx , where ρx scales the energy in the
armchair direction, the system crossovers from 1D to 2D
[20,21], and in this way, the size extrapolation for the order
parameter square is meaningful. In order to make a reasonable
size extrapolation, we should take Ly � Lx for small |α1|.

We carry out simulations on lattices with Ly = 8Lx for α1

from −0.04 to −0.18, where the inverse temperature is taken
as β = √

N/J . The size extrapolations to the square root of
the total number of lattice sites N = Lx × Ly are shown in
Fig. 2(b). It can be observed that 〈m2

s 〉 decreases almost linearly
against 1/

√
N . By doing a polynomial fitting of order two to

the data for α = −0.04, the size extrapolation of 〈m2
s 〉 gives

0.0100(3), suggesting that the system is magnetically ordered.
In Fig. 2(a), the fitting curves for α1 = −0.02 is very

close to that for α1 = −0.01 until the thermodynamic limit is
reached, where the two curves do not have crossings, implying
that the system is in a spin-ordered state when |α1| is larger than
0.01. The result limL→∞〈m2

s 〉 → 0.0100(3) for α = −0.04
confirms the above observation. Therefore, on tuning a very
small interchain F interaction between the AF zigzag spin
chains, the system immediately undergoes a crossover from a
disordered 1D state to a 2D spin-ordered state.

IV. MAGNETIZATION IN MAGNETIC FIELDS

We now consider the effects of external uniform and
staggered fields on magnetization and susceptibility of the
system under interest.

A. Presence of a uniform field

In the presence of a uniform field h, the uniform magneti-
zation mz, the staggered magnetization in the xy plane ms

⊥ =√
〈m2

⊥〉, and the uniform magnetic susceptibility χu have been
calculated for α1 = −0.3 on lattices with Lx = Ly = 32,36,
and β = 100/J for Lx = 32 and 108/J for Lx = 36.

Figure 3 shows the field dependence of mz, ms
⊥, and χu for

α1 = −0.3. One may see that, in a weak field, mz increases
from zero slowly and goes to saturation when h/J approaches
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FIG. 4. The transverse staggered magnetization square 〈m2
⊥〉

(〈m̃2
⊥〉) and longitudinal staggered magnetization mz

s versus the
staggered field hs in the present system with coupling ratio (a)
α1 = −1.0 (Case A) and (b) α2 = −1.0 (Case B). Here we take
Lx = Ly = L. Most of the data are as accurate as 10−4.

to 2.0, while ms
⊥ enhances from a finite value to a peak and

then declines sharply around h/J = 2.0 and reaches zero
when h/J > 2.0. The susceptibility χu in the inset displays
a sharp peak at h/J = 2.0, indicating a second-order in-plane
phase transition and being consistent with the observation
in magnetic curves. When h is applied, the z component
(out-of-plane component) of magnetic moments begins to
develop with the decay of the in-plane ms

⊥; when h/J � 2,
the system is fully polarized and the transverse component is
totally suppressed. We call such a phase before fully polarized
the canted stripe phase, in which ms

⊥ > 0 and mz > 0.
In contrast, for the system considered in Ref. [24] where

J < 0 and J ′ > 0, there is a phase transition at α2 = J
J ′ �

−0.93 from a disorder dimer phase to an ordered stripe phase,
where the spin alignments are parallel along the same zigzag
line and antiparallel along the armchair direction. mz, m̃s

⊥ (the
staggered magnetization in xy plane for the system explored in
Ref. [24]) and χ for the ordered phase look like the ones of this
present system. When it is in the dimer phase for α2 = −0.6,
the zero magnetization plateau appears in mz, m̃s

⊥, and χ .
Since the present system has an in-plane long-range order
(ms

⊥ �= 0) in the ground state, the excitation is gapless with
Goldstone bosons, and there is no zero magnetization plateau
in the magnetic curve (Fig. 3).

B. Presence of a staggered field

In this subsection, we shall investigate the magnetic curves
in the present system (Case A) and the system discussed in
Ref. [24] (Case B) in a staggered field hs (while keeping
h = 0). We study the staggered magnetization ms

z [Eq. (9)]
and the magnetization square in the xy plane 〈m2

⊥〉 under a
field hs for α1 = −1.0 and 〈m̃2

⊥〉 for α2 = −1.0, respectively.
The simulations are performed on lattices with Lx = Ly = 30,
36, 42, 48 and β = 100/J (J ′) for Lx < 30 and 3 × Lx/J (J ′)
for Lx > 34.

Figure 4 presents the transverse staggered magnetization
square 〈m2

⊥〉 (〈m̃2
⊥〉) and longitudinal staggered magnetization

mz
s as a function of staggered field hs/J (J ′) of the system for

α1 = −1.0 [Case A in Fig. 4(a)] and α2 = −1.0 [Case B in
Fig. 4(b)], where both are spin ordered in the ground state in the
absence of a magnetic field. It is observed that for both cases,
with increasing the staggered magnetic field, 〈m2

⊥〉 (〈m̃2
⊥〉)

decreases from a finite value (around 0.1 for Case A and 0.06
for Case B) to sharply vanishing at a critical field hs/J � 0.45
and hs/J

′ � 0.50 for Case A and Case B, respectively, where
the in-plane QPT at critical fields appears to be of second
order, while mz

s increases almost linearly in the region of weak
fields. This is understandable, as the staggered magnetic field is
applied along the z (out-of-plane) direction, with the increase
of the field, the transverse magnetization in the xy plane will
be gradually suppressed, while the longitudinal magnetization
grows until saturation, as manifested in Fig. 4. Recall that in
the absence of an external field, the system with mixing F and
AF bond couplings has a spin-ordered ground state.

For the two cases, the behaviors of 〈m2
⊥〉 and 〈m̃2

⊥〉
look qualitatively similar, but the in-plane critical fields
differ somewhat; mz

s behaviors slightly in a different way:
Case A goes to magnetic saturation faster than Case B,
because the former can be viewed as the antiferromagnetic
zigzag spin chains coupled ferromagnetically, whereas the
latter is formed by ferromagnetic zigzag spin chains coupled
antiferromagnetically. In addition, the finite-size effect in Case
B appears to be more obvious than in Case A.

V. SCALING BEHAVIOR IN A STAGGERED FIELD

Binder ratios [34–36] and spin stiffness [28] are proper
quantities for investigating the critical features of the system.
As hs breaks the O(3) spin rotating symmetry, and the in-plane
order parameter disappears at the critical point, we consider
only the spin stiffness ρ for simplicity. As mentioned in
Sec. III, ρ could be directly related to the superfluid density
of a superconductor or superfluid [29,30,37,38], marking the
occurrence of off-diagonal long-range order. According to
the previous study [39], at the critical point it scales as
ρ ∼ L2−d−z, where d is the spatial dimension of the system,
and z is the dynamical exponent. Here we set z as 1 (we would
prove it later) and measure ρL which is size independent at
the critical point.

For Case A with α1 = −1.0, a staggered field hs/J in
[0.4145, 0.435] has been applied to the system on lattices
Lx = Ly = 20, 24, 28, 32, 36, 40, 44, and 48 with β = 100/J

for Lx < 34 and 3Lx/J for Lx > 34. Figures 5(a) and 5(c)
present the field dependence of ρxLx and ρyLy , showing that
the curves for different lattice sizes do intersect at about 0.424,
which must be a critical point. To confirm this, we perform a
finite-size scaling (FSS) by making a data collapse analysis, as
shown in Figs. 5(b) and 5(d), where all curves fall on a single
almost-straight line (see below for details).

For Case B with α2 = −1.0, we calculate ρxLx and ρyLy

as a function of a staggered magnetic field on lattice sizes from
L = 12 to L = 42 with β = 100/J ′ for Lx < 34 and 3Lx/J

′
for Lx > 34, as shown in Figs. 6(a) and 6(c), from which one
may see that there is a crossing point at about hs/J

′ � 0.495,
demonstrating that it may be a quantum critical point. The
corresponding data collapses confirm this observation that all
curves for different lattice sizes go to a single line [Figs. 6(b)
and 6(d)]. It is also consistent with the vanishing points for
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FIG. 5. (a) ρxLx and (c) ρyLy as function of hs/J of the system
with coupling ratio α1 = −1.0 near the critical point for various
lattice sizes L = 20, 24, 28, 32, 36, 40, 44, and 48; panels (b) and (d)
are the corresponding data collapses for the finite-size scaling, where
the data fall on a line, respectively, giving a critical staggered field
hsc/J � 0.42373(4) and an exponent ν = 0.677(2), which indicates
that this may be an O(3) universality transition. The errors for ρx are
mostly of 10−4 and for ρy of 10−3.

〈m̃2
⊥〉 shown in Fig. 4, confirming the second-order QPT

triggered by a staggered field. Here we would like to point
out that in Ref. [24] we discussed the scaling behaviors of
ρxLx and ρyLy against the coupling ratio (here |α2|), where
the QPT occurs at a critical coupling ratio, and the transition
induced by the staggered magnetic field is left for our present
study.

In the framework of the renormalization group, the finite-
size scaling plays as an essential role in studying the critical
behavior near the transition point in finite-size systems
[27,40–42]. In the vicinity of a critical point, the correlation

FIG. 6. (a) ρxLx and (c) ρyLy as function of hs/J
′ of the system

considered in Ref. [24] with α2 = −1.0 for various lattice sizes
from L = 16 to 42, where a crossing point is seen at the staggered
field hs/J

′ � 0.495; panels (b) and (d) show the corresponding
data collapse for the FSS fit, which gives hsc/J

′ � 0.497266(3)
and ν � 0.6947(2). This result along with ν = 0.7086(3) for lattice
sizes of L = 24 ∼ 42 indicates that this QPT belongs to the classical
Heisenberg O(3) universality. The errors are at least 10−3.

TABLE I. The critical staggered magnetic field hsc, the exponent
ν of correlation length in Case B for different sets of lattice sizes and
the respective χ 2/DOF.

hsc/J
′ ν χ 2/DOF

L = 14 ∼ 36 0.49997(2) 0.661(1) 15.3912
ρxLx L = 16 ∼ 42 0.497483(3) 0.6982(3) 3.6933

L = 24 ∼ 42 0.496974(6) 0.7112(4) 3.57886

L = 14 ∼ 36 0.49883(2) 0.667(1) 11.5542
ρyLy L = 16 ∼ 42 0.497266(3) 0.6947(2) 2.9307

L = 24 ∼ 42 0.496884(4) 0.7086(3) 2.76738

length ξ is divergent and, as the lattice size obeys L � ξ ,
some quantities exhibit power-law divergent behaviors with
ξ and could be expressed by a scaling function of the form
Q(t,L) = Lκ/νg(tL1/ν), where κ is the critical exponent of Q

and ν of ξ , t is the reduced phase transition tuning parameter,
and g(x) is a smooth function which asymptotically behaves
as g(x) ∼ x−κ for x → ∞. Here for ρL, κ is zero and
t = (hs − hsc)/hsc.

In Case A, the intersection points for different pairs [L,L′],
where L′ > L, shift as L enlarges, and a general scaling
function under such conditions with extra corrections to tL1/ν

and Q(t,L) [43] can be taken,

(1 + cL−ω)Q(t,L) = g(tL1/ν + dL−φ). (16)

The following scaling form will be more convenient:

(1 + cL−ω)Q(t,L) = a0 + a1tL
1/ν + a2(tL1/ν)2, (17)

where c, ω, a0, a1, and a2 are constants to be determined. For
Case A only the correction (1 + cL−ω) [23] for ρx(y)Lx(y) is
included in the scaling functions.

For Case B, the form Q(t,L) = Lκ/νg(tL1/ν) works very
well, and the scaling function is supposed to be polynomial of
order two:

Q′(t,L) = a′
0 + a′

1tL
1/ν + a′

2(tL1/ν)2, (18)

where a′
0, a′

1, a′
2, and ν are constants independent of L.

The data are analyzed following the lines in Ref. [39].
We take thousands of copies of bootstrap resamplings of the
raw data as the fitting data and prepare the same amount of
sets of initial fitting parameters in the above functions as the
input in fitting procedures, which are based on the nonlinear
Levenberg-Marquardt optimization algorithm (LMOA) [44].
For Case A, hs/J in the interval of [0.4230, 0.4245] for lattice
sizes Lx = Ly = 32,36,40,44,48 is taken in the optimization
procedure, while for Case B, all the data in Figs. 6(a) and 6(c)
are considered. The corresponding collapsed curves are shown
in Figs. 5(b) and 5(d) and then Figs. 6(b) and 6(d), respectively.

Based on the criteria of the lowest χ2/DOF [e.g., the
weighted sum of squares residual per degree of freedom
(DOF)] for each single LMOA fitting, in Case B, it gives
hsc/J

′ = 0.497266(3) and ν = 0.6947(2). We also checked
the size effect [45] on the scaling by doing the finite-size
scaling on lattices of L = 14, 16, 18, . . . , 36 and L = 24,
26, 28, . . . , 42, respectively. The corresponding fitting results
are shown in Table I. The lowest χ2/DOF in ρyLy for
L = 24 ∼ 42 gives ν � 0.7086(3) and hsc/J

′ � 0.496884(4).
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The exponent ν for case B is close to ν = 0.7112(5) [33],
showing that its QPT belongs to the classical Heisenberg O(3)
universality; while for Case A, it gives hsc/J = 0.42373(4)
and ν = 0.677(2), showing that ν lies in the interval of
[0.67155(27), 0.7112(5)], where ν = 0.67155(27) is the 3D
xy universality [46]. To determine the type of universality, in
the following we utilize another method in Ref. [32] to study
the exponent for Case A.

For the finite-size lattices at the critical point, the correlation
length ξθ would scale monotonically to the lattice width Lθ

at θ direction in the real space or in the imaginary time axis
[28,32]:

ξθ/Lθ = ξ̃θ (tL1/ν,Lz/β), (19)

where ξ̃θ is an asymptotic scaling function of tL1/ν and Lz/β.
As mentioned above, the correlation length ξθ diverges with
the reduced staggered field, |t | ∼ ξ

−1/ν

θ , and ξτ ∼ Lz. When
tuning the staggered field hs and the imaginary time β to keep
ξ̃θ = Rθ constant, the size-dependent critical point hsc(L) and
the corresponding β(L) scales with lattice width L as

hsc(L) − hsc ∼ L−1/ν (20)

and

β(L) ∼ Lz. (21)

The following relation holds:

hsc(R,L) = hsc + c(R)L−1/ν . (22)

The Robbins-Monro stochastic (RMS) approximation
method [32] is applied to the iterative tuning process for
hsc(R,L) and β(L). For each set of (L,R), hundreds of
hsc(L,R) and βL,R convergence are achieved. For Case A,
we carried out simulations for Rzigzag =Rτ = R = 0.3, 0.4,
and 0.5 on lattices with Lx = Ly = 24,28,32, . . . ,100. Here
thousands of bootstrap resampling of raw data were also
performed for the LMOA fitting procedures with data of Lx =
Ly � 40, and each R is supposed to share the same hsc and ν.

FIG. 7. (a) hsc(L) ∼ 1/L1/ν curves at constant ratios of R = 0.3,
0.4 and 0.5 in Case A for L = 24,28, . . . ,100; (b) β(L) ∼ L at
different ratios R for Case A and R = 0.5 for Case B. Solid lines
indicate the fittings of data. Curves in (a) share the same exponent
ν and hsc, and thousands of LMOA fittings give ν = 0.70046(1)
and hsc = 0.423831(2). β(L) increases linearly with the lattice size,
indicating that the exponent z is 1.

FIG. 8. The size-dependent transverse susceptibility χ⊥ at differ-
ent ratios R for Case A with α1 = −1.0 and Case B with α2 = −1.0
in logarithmic plots. The curves behavior linearly, and the slopes are
fitted to be 1.9412(2) for Case A and 1.96121(9) for Case B.

hsc, ν, and z are fitted to be 0.423831(2), 0.70046(1) [47], and
1.006572(9), respectively, and χ2/DOF is about 1.5. For Case
B, we applied the calculations on lattices with Lx = Ly = 24,
28, 32, . . . , 64, and the dynamic exponent z is fitted to be about
1.004615(8). So the assumption of z = 1 in calculations of
ρL is reasonable. Considering the lowest χ2 and large-enough
lattice sizes, the correlation length exponent ν for Case A can
be determined to be 0.70046(1), showing that the quantum
phase transition is also of Heisenberg O(3) universality.

Figure 7 presents the curves of hsc(R,L) ∼ L−1/ν at
different R for Case A and β(L)L at the same ratios R in
Case A and R = 0.5 for Case B. The fitting results show that
the raw data are scaled quite well by the scaling functions with
proper parameters.

In addition, we also calculated the transverse susceptibility
χ⊥ at each of critical points hsc(R,L) gained by RMS method
for Case A and Case B. Along with the resamplings mentioned
above, χ⊥ is prepared with thousands of copies in the fitting
procedures. For a finite-size system, χ⊥ ∝ Lγ/ν . We plot the
χ⊥ ∼ L curves in logarithmic plots, as shown in Fig. 8, which
shows that the curves behavior linearly and the slopes are
obtained to be 1.9412(2) for Case A and 1.96121(9) for Case
B, respectively.

Table II presents the critical staggered magnetic field hsc,
the exponent ν of correlation length, the dynamic exponent z,
and γ /ν of susceptibility for both cases.

VI. PHASE DIAGRAM IN A STAGGERED FIELD

As shown in Fig. 4, when hs < hsc both systems exhibit
a staggered magnetization in the z direction and keep the
corresponding stripe order in the xy plane, that is, ms

z > 0 and
〈m2

⊥〉(〈m̃2
⊥〉) > 0. We coin the so-defined phase for hs < hsc as

the canted phase I for Case A and the canted phase II for Case
B. As hs > hsc, only the out-of-plane staggered magnetization
remains in both cases, say, ms

z > 0, and 〈m2
⊥〉(〈m̃2

⊥〉) = 0. We
call such a phase for hs > hsc the Néel phase in a staggered
field.

To draw a phase diagram, we inspect various coupling ratios
for the two cases and make use of the transition points in the
curves of ms

z, 〈m2
⊥〉, 〈m̃2

⊥〉, and ρL vs hs for each α1 or α2,
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TABLE II. The critical staggered magnetic field hsc, the exponent ν of correlation length, the dynamic exponent z, and the exponent γ /ν

of susceptibility are determined for the present system (Case A) and the system (Case B) considered in Ref. [24].

hsc/J (J ′) ν z γ /ν

ρxLx 0.4233(1) 0.686(3) — —
Case A ρyLy 0.42373(4) 0.677(2) — —

RMS 0.423831(2) 0.70046(1) 1.006572(9) 1.9412(2)

ρxLx 0.496974(6) 0.7112(4) — —
Case B ρyLy 0.496884(4) 0.7086(3) — —
L = 24 ∼ 42 RMS — — 1.004615(8) 1.96121(9)

forming the phase boundaries. In doing so, a schematic phase
diagram in the plane of hs/J (J ′) vs −α1(2) is thus depicted
in Fig. 9.

For Case A, as shown in Fig. 9(a), there are three phases,
the stripe phase I (where ms

z = 0 but 〈m2
⊥〉 > 0), the canted

phase I, and the Néel phase. The stripe phase I always remains
in the absence of a staggered field. When hs is increasing, the
system immediately first enters the canted phase I and then
enters the Néel phase when hs > hsc.

For Case B, as shown in Fig. 9(b), there are four phases,
a dimerized phase, the stripe phase II, the canted phase II,
and the Néel phase. Our previous study [24] shows that in
the absence of a magnetic field, there is a phase transition
at the critical point α2c � −0.93 from a dimer phase to a
stripe phase II with a nonvanishing 〈m̃2〉 = 3

2 〈m̃2
⊥〉 but ms

z = 0.
When the staggered field is increasing, the system in Case B
immediately enters the Néel phase for −α < −α2, while for
−α > −α2, the system first enters the canted phase II (where
ms

z > 0 and 〈m̃2〉 > 0), and then enters the Néel phase (ms
z > 0

but 〈m̃2〉 = 0) when hs > hsc.

VII. TEMPERATURE DEPENDENCE OF SUSCEPTIBILITY
AND SPECIFIC HEAT IN MAGNETIC FIELDS

In this section, we study the temperature dependence of
the susceptibility χu and specific heat Cν under different
magnetic fields. The results are given in Figs. 10, 11, and
12, respectively. The simulations were carried out on lattices
with Lx =Ly = 30.

FIG. 9. Phase diagram for the present system (Case A) and the
system (Case B) considered in Ref. [24] in the plane of the coupling
ratio α1,2 versus staggered magnetic field hs .

In subsection IVA, it shows that for α1 = −0.3 the system is
polarized when h/J � 2.0, and when h/J < 2.0, the system
stays in a canted stripe state with ms

⊥ > 0 and mz > 0. In
Fig. 10, one may see that for h/J < 2.0, χu increases from a
finite value with increasing temperature, which becomes larger
with the increase of the magnetic field, and after undergoing
a maximum it decreases quickly at low temperature; when h
gets higher, the peak is sharper; as h is close to the critical
point, χu decays almost exponentially. When h/J = 2.0, χu

diverges as T decreases. For h/J > 2.0, χu(T ) is suppressed
by the magnetic field, leading to all curves being below those
of h/J <= 2.0, showing that the system enters a different
state. At high temperature, all curves coincide with each
other due to the domination of thermal fluctuations. At low
temperature, when the system is partially polarized, χu is
influenced mainly by the transverse quantum fluctuations in
the xy plane and, closer to the critical point, the stronger the
quantum fluctuations and higher χu.

Figure 11 shows the temperature dependence of the specific
heat Cν of the system with α1 = −0.3 under uniform fields.
It can be observed that besides a round peak as that for

FIG. 10. Temperature dependence of the susceptibility χu of
the system with α1 = −0.3 under various uniform magnetic fields.
The inset shows χu(T ) for h < hc and T/J < 0.34. χu be-
haves differently in a low-temperature region: When h/J < 2.0,
χu first goes to sharp peaks and then decreases quickly; when
h/J = 2.0, χu diverges as T/J decreases, characterizing a critical
point; and when h/J > 2.0, χu starts from a vanishing point
at T/J = 0 and forms a round peak. We find that as hc −
h > 0 gets smaller, the peaks of χu get larger at small tem-
peratures, and at a given temperature, χu(h < hc) > χu(h > hc).
The accuracy here is as small as 10−4.
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FIG. 11. Temperature dependence of specific heat Cν for the
system with α1 = −0.3 under different uniform fields. The inset is
the low-temperature part. Before the system is polarized, Cν exhibits
an extra peak at low temperature besides the round peak at relatively
high temperature. Errors here are of 10−3, and the system size is set
to be Lx = Ly = 30.

h/J > 2.0, in the range of 1.4 < h/J < 2.0, Cν exhibits a
sharp peak at a lower temperature Tp, as shown in the inset
of Fig. 11. When h increases, Tp and Cν(Tp) decrease. This
could be understood in the following way. As indicated in
Fig. 1, the spins along the zigzag chain form a continuous
antiferromagnetic arrangement, dividing the system into two
sublattices and producing two sets of degenerate spin-wave
spectra: h̄ωk = f (J,J ′,S,γk), where S is the spin on each
site, and γk is the static structure factor. A uniform field
h would split this overlapping spectra with a shift, h̄ω±

k =
f (J,J ′,S,γk) ± h, resulting in that two modes of low-lying
excitations cause two minimums [48,49] in Cν . The part of
Cν contributed by the lower-frequency mode increases faster.
h enlarges the difference of the increasing tendency between
h̄ω+

k and h̄ω−
k , making Cν steeper and Tp smaller for larger

h < hc at low temperature. When h > hc, the system enters
the polarized state, and Cν versus T/J exhibit only one round
peak at a relatively higher temperature.

FIG. 12. Temperature dependence of susceptibility χu of the sys-
tem with (a) α1 = −1.0 and (b) α2 = −1.0 under various staggered
magnetic fields. The order for the error bars are 10−3. The lattice size
is Lx = Ly = 30.

FIG. 13. Finite-temperature spin stiffness (a) ρx and (b) ρy of
the present system with α1 = −1.0 under a uniform field hu = 1.8J

on lattices with Lx = 24,28, . . . ,52. The errors for most of the data
are of scale 10−4. As T is larger than around 0.06, both ρx and ρy

decrease rapidly for larger sizes, indicating that a KT phase transition
occurs.

In Fig. 12, it depicts the temperature dependence of
susceptibility χu for systems with α1 = −1.0 and α2 = −1.0
under different staggered magnetic fields, which differ from
those in a uniform magnetic field. We showed that a staggered
field can induce a quantum phase transition in Sec. V, which
eliminates the off-diagonal long-range order in the xy plane at
hsc/J � 0.423 for α1 = −1.0 and hsc/J

′ � 0.5 for α2 = −1.0.
Figures 12(a) and 12(b) illustrate that, as hs < hsc, χu would
start from a nonvanishing value, while, as hs � hsc, the
susceptibility χu goes to zero at T → 0, revealing that the
system in this situation enters distinct phases under different
staggered magnetic fields, consistent with the observation
in Fig. 9.

VIII. FINITE-TEMPERATURE KOSTERLITZ-THOULESS
PHASE TRANSITION IN A UNIFORM FIELD

The Kosterlitz-Thouless (KT) transition at a critical tem-
perature TKT happens when the vortex-antivortex pairs are
unbounded by thermal fluctuations without breaking any
symmetry of the original system [50]. As T < TKT, the
correlation function with a power-law decay maintains a
nonzero spin stiffness with a weaker finite-size effect, and
when T > TKT, ρ(T ,L) shows a discontinuity to zero as L

increases. For α1 = −1.0 under a uniform field hu = 1.8J at
finite temperature, we measured the spin stiffness ρx and ρy

on lattices of different sizes. We found that there is indeed a
KT phase transition by observing that, when temperature T

increases, ρx(y) drops from a finite value to vanishing. As the
lattice size Lx = Ly = L increases, such a rapid decrease is
more obvious.

Figure 13 presents the results of ρx and ρy at finite
temperature of the present system with α1 = −1.0 under a
uniform field for different lattice sizes. At low temperature,
ρx(y) decreases slowly with the increase of T , and when
T is larger than about 0.06J , ρx(y) drops rapidly to zero,
demonstrating that a KT phase transition might happen at
temperature TKT ≈ 0.06J . Instead of the methods introduced
in Ref. [37] or Ref. [51], we here deal with the scaling relation
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FIG. 14. Data collapse with trial parameters for ρx and ρy

according to the scaling relation between [ln(L) − a/(T − TKB)1/2]
and ρx(y)[1 + 1

2×ln(L)+c
]−1. All curves collapse onto a single curve

for both ρx and ρy . Because of the anisotropy of the lattice,
ρx(T ,L) �= ρy(T ,L) and the fitted parameters differ.

of [ln(L) − a/(T − TKB)1/2] ∼ ρx(y)[1 + 1
2×ln(L)+c

]−1 directly
and tune the parameters a, TKB , c to make all data for T �
0.066 to collapse onto one curve as much as possible. Figure 14
shows the collapsed curves with the suitable parameters. For
ρx , a and c are about 0.75 and 0.6, respectively, and a′ and c′ are
0.63 and 0 for ρy . TKT for both ρx and ρy is about 0.0623J . By
combining the facts of the rapid dropping behaviors of ρx and
ρy and the corresponding data collapse onto one single curve
for both ρx and ρy , we believe that the KT phase transition
occurs at about TKT

∼= 0.0623J .

IX. SUMMARY

The spin-1/2 Heisenberg model with AF and F mixing
interactions on a honeycomb lattice has been studied by means
of the continuous imaginary-time QMC with the worm update
algorithm in uniform and staggered magnetic fields. It is found
that so long as the F coupling on armchair bonds is tuned, the
system (Case A) immediately crosses over smoothly from 1D
disordered AF zigzag spin chains to a stripe-ordered 2D phase
with 〈m2

s 〉 > 0. This is in contrast to the system considered
in Ref. [24] where the F interactions are presumed on zigzag
bonds and AF interactions on armchair bonds. In this latter
system (Case B), on tuning the F interactions on zigzag
bonds, the system shows a phase transition from a disordered
dimerized phase to a stripe-ordered 2D phase.

In the presence of uniform or staggered magnetic fields,
it is shown that for a given coupling ratio (e.g., α1 = −0.3
in a uniform field and α1,2 = −1.0 in a staggered field),
with increasing the external magnetic fields, the system enters
smoothly into a spin-canted phase from a stripe-ordered phase
and then undergoes a QPT into an out-of-plane polarized phase
or Néel phase. This is also true for the system in Case B for the

coupling ratio beyond a critical value (satisfying −α2 > 0.93).
The whole phase diagrams in the plane of coupling ratio and
staggered magnetic field for the systems in Case A and Case
B are obtained. In Case A, there are three phases, including a
stripe-ordered phase, a canted phase, and a Néel phase, while
in Case B, there are four phases, say, the dimerized phase,
stripe phase, canted phase, and Néel phase.

In addition, by exploring the spin stiffness, the scaling
behaviors in a staggered field for both systems are also
discussed. The finite-size scaling analysis gives that the
exponent ν of correlation length is 0.7086(3) for Case B, and
the Robbins-Monro method gives ν = 0.70046(1) for Case
A, both of which are close to ν = 0.7112 of the classical
Heisenberg O(3) universality, indicating that both systems fall
into the O(3) universality. Besides, the scaling functions differ
from the two systems. The dynamic exponent z for Case A
and Case B are calculated to be 1.006572(9) and 1.004615(8),
respectively, confirming the reliability of the assumption of
z = 1 when calculating ρL in scaling analysis.

The temperature dependence of susceptibility χu and
specific heat Cν have been studied for the system with α1 =
−0.3 under various uniform fields. When the system stays
in the canted stripe phase as h/J < 2.0, at low temperature
the partially polarized spins have a nonzero value of χu in
the ground state and a sharp peak of χu(T ) appears at low
temperature; meanwhile, the specific heat Cν also presents a
sharp peak starting from a vanishing value when T/J → 0.
As h/J � 2.0, the polarized ferromagnetic state does not
display such features because of nondegenerate spin-wave
spectra which could be separated by the uniform magnetic
field. The behaviors of χu versus T/J (J ′) for α1 = −1.0 and
α2 = −1.0 under different staggered fields are consistent with
the phase diagram presented in Sec. V. Through measuring the
spin stiffness for α1 = −1.0 under a uniform field hu = 1.8J

at finite temperature, a KT phase transition is discovered at
temperature TKT ≈ 0.0623J .

The present study shows that the competition among mixing
interactions, external probes such as staggered magnetic field
and temperature, as well as the topology of the lattice
together result in more complex phenomena in quantum
many-body systems. Our results would also be helpful for
further understanding the physical properties and scaling
behaviors in 2D magnetic materials with mixing AF and F
interactions.
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