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Origin of the inverse energy cascade in two-dimensional quantum turbulence
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We establish a statistical relationship between the inverse energy cascade and the spatial correlations of
clustered vortices in two-dimensional quantum turbulence. The Kolmogorov spectrum k−5/3 on inertial scales
r corresponds to a pair correlation function between the vortices with different signs that decays as a power law
with the pair distance given as r−4/3. To test these scaling relations, we propose a forced and dissipative point
vortex model that captures the turbulent dynamics of quantized vortices by the emergent clustering of same-sign
vortices. The inverse energy cascade developing in a statistically neutral system originates from this vortex
clustering that evolves with time.
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I. INTRODUCTION

The condensation of energy into large-scale coherent
structures and the prevailing flow of energy from small to large
scales referred to as the inverse energy cascade [1] are two
important signatures of two-dimensional (2D) classical flows.
The inverse energy cascade is associated with the statistical
conservation laws of energy and enstrophy (mean-square vor-
ticity). This is in stark contrast to three-dimensional turbulence
where energy cascades towards small dissipative length scales
by the proliferation of vorticity. Quantum turbulence (QT) in
highly oblate Bose Einstein condensates (BECs) provides a
close experimental realization of 2D turbulence through the
dynamics of quantized vortices and a well-defined theoretical
framework to study turbulence from the statistical properties
of a quantized vortex gas. In recent years, there have been
indirect experimental evidence [2] and tantalizing numerical
results [3–5] of the existence of an inverse energy cascade that
follows the Kolmogorov scaling analogously to the classical
turbulence. The condensation of energy on large scales has
also been investigated in decaying quantum turbulence [6–8].
A crucial link between these two phenomena is that there is
a net transport of energy from small to large scales and this
happens in quantum turbulence due to the spatial clustering
of quantized vortices of the same circulation. Here we show
that this vortex interaction leading to clustering implies that
the energy spectrum is directly related to spatial correlation
functions, in particular to the vorticity correlation.

Large-scale vortices were first predicted by Onsager [9]
as the negative temperature equilibrium configuration of point
vortices in a statistical description of 2D turbulence bounded in
a finite domain. These vortex condensates are formed by clus-
tering of vortices of the same sign and occur through an SO(2)
symmetry-breaking phase transition with negative critical
temperature [10]. Recent studies of decaying QT propose that
such negative temperature states can be achieved dynamically
by an evaporative heating process through the annihilation
of vortex dipoles (effective heating of vortices by removing
the coldest ones, i.e., the smallest dipoles) [6]. Clustering of
vortices is also at the origin of an inverse energy cascade in
driven QT [3,5,11], but in this case the mere existence of vortex
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clusters is not enough; their structure is crucially important and
different from the equilibrium Onsager vortices emerging in
decaying turbulence. Novikov [12] showed that, in principle,
an inverse energy cascade with the Kolmogorov spectrum can
be produced by a single cluster of same-sign vortices when
there are long-range correlations in their spatial distribution
such that the pair distribution function decays as a power law
r−4/3 with the separation distance r . The dependence of the
energy spectrum on the vortex configuration was further ex-
plored in this idealized case of same-sign point vortices [4,13].
However, any realistic model of driven QT needs to include
both vortex signs, which complicates this idealized picture.

Our aim is to show that the inverse energy cascade in driven
QT is the result of the interaction between diverse clusters of
corotating and counterrotating vortices. The largest of these
clusters will be the nonequilibrium analog of Onsager vortices,
in the sense that they will dominate the large-scale rotating
flow. However, there is a spectrum of vortex clusters of various
sizes and their interactions and internal structures lead to per-
sistent long-range fluctuations in the vorticity field, measured
by the weighted pair correlation function. Moreover, we show
that the Kolmogorov spectrum is related to scale-free two-point
statistics of quantized vorticity 〈ω(0)ω(�r)〉 ∼ r−4/3, similar to
Novikov’s prediction for the idealized same-sign vortices. This
would be analogous to the Kraichnan-Kolmogorov scaling ar-
gument for the classical coarse-grained vorticity on an inertial
scale r , ωr ∼ vr/r , with the eddy velocity vr ∼ r1/3 [1]. To
investigate the origin of the inverse energy cascade in driven
quantum turbulence without having to concern ourselves with
the compressibility effects in quantum fluids [2], we propose a
driven and dissipative point vortex model as described below.

The structure of the paper is as follows. In Sec. II
we describe the point vortex model as applied to quantum
turbulence. In Sec. III we give a statistical argument relating the
energy spectrum to the vorticity correlation. This connection
is further explored numerically within a driven and dissipative
point vortex model, which is introduced in Sec. IV. We
show that this model develops a turbulent steady state in
Sec. V. In Sec. VI we discuss the numerical results on the
vorticity correlation function and in Sec. VII we show that
this is associated with a negative spectral energy flux and
a Kolmogorov k−5/3 energy spectrum. Conclusions and a
discussion are presented in Sec. VIII.
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II. POINT VORTEX MODEL

Point vortices in BECs are realized as codimension-2
topological defects in the complex order parameter repre-
senting the many-particle wave function. These vortices have
a characteristic core structure determined by the balance of
kinetic energy and distortion energy, leading to a core size
on the order of the healing length ξ [4,14]. Vortices with
overlapping cores have complicated dynamics that couple the
vortex gas to phonon excitations in the BEC and lead to the
annihilation of vortex-antivortex pairs. On the other hand,
well-separated vortices will move according to the point vortex
model. A collection of vortices with circulation signs {qi} and
positions {�ri} in a bounded container of size R set up a velocity
field characterized by the stream function ψ(�r,t), given by a
superposition of contributions from each vortex [15]

ψ(�r,t) = −
N∑

j=1

qj ln |�r − �rj | +
N∑

j=1

qj ln
(∣∣�r − �r v

j

∣∣rj

)
. (1)

The second sum gives the contributions from image vortices
located at �r v

j = R2

r2
j

�rj , which are necessary in order to ensure

the no-flux boundary condition at r = R, as well as image
vortices located at the origin giving the extra factor of rj = |�rj |
in the logarithm. Note that the winding number qj = ±1
is constant for quantized vortices in 2D QT, unlike the
continuously varying circulation of classical vortices subjected
to merging rules in vortex models for 2D CT [16]. Well-
separated vortices follow this velocity field passively,

�̇ri = �∇⊥ψ (i)(�ri), (2)

where �∇⊥ = (−∂y,∂x) and the (i) superscript indicates that we
omit the singular self-interaction from the i = j term of the
stream function (although we keep the i = j term in the image
sum, which gives a nonsingular interaction between a vortex
and its image). This is equivalent to a conservative dynamics
described by the Hamiltonian

H = 1

2

∑
i

qiψ
(i)(�ri)

= −1

2

∑
i �=j

qiqj ln |�ri − �rj | + 1

2

∑
i,j

qiqj ln
(∣∣�ri − �r v

j

∣∣rj

)
,

(3)

reflecting the conservation of kinetic energy in the velocity
field.

Although we can always make sure that the initial vortex
positions are well separated from each other, the dynamical
evolution might cause pairs of vortices to get close enough
that the coupling to the phonon field becomes important. It is
therefore necessary to include phenomenological rules such
as dipole annihilation in order to properly represent BEC
dynamics in a point vortex model.

The Hamiltonian point vortex model, describing conserva-
tive dynamics, cannot capture dynamical aspects of turbulence
such as the energy cascade or the buildup of large-scale
coherent structures. It is however useful for investigating
equilibrium statistical properties for inertial turbulent fluctu-
ations [17]. The phase space of the point vortex Hamiltonian

coincides with the configuration space and hence is finite
for a bounded domain. This implies that the microcanonical
entropy has a maximum at finite energy, giving rise to negative
temperature T states at higher energies. Onsager [9] predicted
that these negative-T states correspond to spatial clustering of
same-sign vortices, resulting in large-scale vortices. Recently,
it has been proposed that the Onsager vortices in the strongly
coupled regime undergo a condensation similar to the Bose-
Einstein condensation, but this requires much higher energies
than those present in decaying turbulence or in the inverse
energy cascade [18].

For dynamical exploration of these vortex clustered con-
figurations from initial conditions with positive T , one needs
to include phenomenological dissipation mechanisms, such as
dipole annihilation rules [6] and/or thermal friction [19]. In
Ref. [20] it was proposed that the annihilation of the smallest
vortex dipoles acts as an effective viscous dissipation in QT.
However, as pointed out in Ref. [6], this effective viscosity is
not constant, but instead depends on the spatial configuration of
vortices and vanishes for clusters of same-sign vortices. By re-
moving the smallest vortex dipoles, the total energy will slowly
decrease with decreasing number of vortices. Since the energy
of the smallest dipole is smaller than the mean energy per
vortex, the net energy per vortex keeps increasing. Hence it acts
like an evaporative heating mechanism and leads to the emer-
gence of same-sign vortex clusters in decaying turbulence [6].

III. ENERGY SPECTRUM AND
VORTICITY CORRELATION

The kinetic energy spectrum of N point vortices is deter-
mined by their spatial configuration and charges as derived
by Novikov [12] and in more recent studies of BEC vortices
with a characteristic vortex core structure [4]. For a given
vortex configuration, the energy spectrum of N vortices in an
unbounded plane is given as [12]

EN (k) = π

k

⎛
⎝N +

∑
i �=j

qiqjJ0(krij )

⎞
⎠, (4)

where J0(x) is the zeroth-order Bessel function and rij =
|�rij | = |�ri − �rj |. To study this statistically, Novikov considered
a cluster of same-sign vortices and introduced the pair corre-
lation g(�r) = 1

ρ〈N〉 〈
∑

i �=j δ(�r − �rij )〉 with the vortex number
density ρ = 〈∑i δ(�r − �ri)〉. For vortices inside the given
cluster the sign factors qiqj will equal 1, so averaging the
kinetic energy spectrum we find

〈EN (k)〉 = π

k

⎛
⎝〈N〉 +

∫
J0(kr)

〈∑
i �=j

δ(�r − �rij )

〉
d2�r

⎞
⎠

= 〈N〉π
k

(
1 + ρ

∫
J0(kr)g(�r)d2�r

)
. (5)

A scaling g(�r) ∼ 1 + Cr−α will then give rise to two new terms
∼δ(k) and ∼kα−3 in the energy spectrum, in addition to the
∼k−1 term from the single-vortex solution. This is Novikov’s
statistical relationship between the scalings in energy and pair
correlation of the same-sign vortex gas.

However, even if the vortices organize into clusters with
a characteristic pair correlation g(r), it is not clear that the
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clusters would be decoupled sufficiently from each other for
the energy spectrum to be a simple superposition of the spectra
of each cluster. We therefore argue that simply performing
the average inside a given vortex cluster does not give the
complete statistical description of turbulence with two vortex
signs. Instead, one should perform this derivation accounting
for all the different vortex signs.

Averaging Eq. (4) and keeping all the sign factors, we find

〈EN (k)〉 = π

k

⎛
⎝〈N〉 +

〈∑
i �=j

qiqjJ0(krij )

〉⎞
⎠

= π

k

⎛
⎝〈N〉 +

∫
d2�r J0(kr)

〈∑
i �=j

qiqj δ(�r − �rij )

〉⎞
⎠

= 〈N〉π
k

(
1 +

∫
d2�r J0(kr)ρgw(�r)

)
, (6)

where the weighted pair correlation ρgw(�r) is defined as

ρgw(�r) = 1

〈N〉

〈∑
i �=j

qiqj δ(�r − �ri + �rj )

〉
. (7)

This function can be interpreted as the probability of finding
two same-sign vortices at a separation �r , minus the probability
of finding two opposite-sign vortices at the same separation.
For vortices of the same sign, we recover the simple pair
correlation ρg(�r), which decreases monotonically such that
limr→∞ gw(r) = 1, reflecting that the vortex positions are
uncorrelated at large distances. However, for the neutral system
the two probabilities will cancel out, giving limr→∞ gw(r) =
0, reflecting the fact that there should be no excess of one sign
over the other at large distances.

At intermediate distances the gw(r) function indicates the
predominance of vortex clusters, giving positive values, and
vortex dipoles, giving negative values. A characteristic scale
might indicate the typical size of clusters, while a scale-free
behavior might indicate either the coexistence of clusters
of different sizes or a scale-free spatial structure of each
cluster. Similarly to Novikov’s argument, the Kolmogorov
k−5/3 energy scaling corresponds to a Cr−4/3 scaling in the
weighted pair correlation, by the relation

〈E(k)〉
〈N〉 ∼ π

k
+ 2π2 ρC

k5/3

∫
dx J0(x)x−1/3. (8)

The vanishing limit of the weighted pair correlation means
that there is no singularity ∼δ(k) in the energy spectrum. The
dimensionless integral equals

√
π


(5/6) in an unbounded system,
but may introduce corrections in a finite-size system.

The weighted pair correlation function is related to corre-
lations in the vorticity field ω(�r) = ∑

i qiδ(�r − �ri). Assuming
a statistically homogeneous system, two-point correlations in
vorticity can be found as

〈ω(�r)ω(�r ′)〉 =
〈∑

i,j

qiqj δ(�r − �ri)δ(�r ′ − �rj )

〉

= ρδ(�r − �r ′) +
〈∑

i �=j

qiqj δ(�r − �ri)δ(�r ′ − �rj )

〉

= ρδ(�r − �r ′) + ρ2gw(�r − �r ′). (9)

Hence the r−4/3 scaling in the weighted pair correlation
relates to a similar scaling in the vorticity correlation. Such
a scaling in the vorticity is analogous to the Kraichnan-
Kolmogorov scaling in classical turbulence, which follows
from dimensional analysis based on statistical self-similarity
of turbulence.

IV. DRIVEN AND DISSIPATIVE POINT VORTEX MODEL

In order to numerically investigate the relationship between
the energy spectrum and vorticity correlations, we propose
an extension to the point vortex model that can capture
driven quantum turbulence, by adding driving and dissipation
mechanisms to the equations of motion. A natural source of
dissipation in QT is the nonconservative vortex motion due
to thermal friction. This adds a longitudinal component in
the vortex motion, with repulsion between same-sign vortices
and attraction between opposite-sign vortices. Hence, the
point vortices follow a non-Hamiltonian equation of motion
given as

�̇ri = �∇⊥ψ (i)(�ri) − γ qi
�∇ψ (i)(�ri), (10)

where γ is the dimensionless thermal friction coefficient and
the sign factor qi is necessary in order to give different motion
for same- and opposite-sign vortices. As discussed in Ref. [19],
γ quantifies the main source of dissipation in the system and is
directly related to the damping coefficient commonly used in
Gross-Pitaevskii dynamics to account for thermal dissipation
[3,4].

This dissipative evolution will cause vortex-antivortex pairs
to collapse into ever tighter dipoles. To avoid a singularity we
introduce a phenomenological annihilation rule for such pairs
when the distance is closer than a constant la . This constant
can, for example, represent a length scale on the order of the
healing length ξ in a BEC. Vortices in a bounded disk will also
be attracted to the boundary, so we need a similar rule causing
vortices close to the boundary to annihilate with their image.
Although same-sign vortex pairs also behave differently in
BECs when they get close enough together, we do not add any
phenomenological rules for this case, as we do not expect any
such pair to come within a distance much smaller than la in
our dynamics.

To generate forced turbulence, we include a small-scale
stirring mechanism by spawning vortex-antivortex dipoles
with a fixed separation ls > la . This is different from the
stirring mechanism with an effective negative-viscosity pro-
posed by Siggia and Aref [21] and more relevant for QT. Our
stirring mechanism is consistent with the setup for 2D QT
in BECs [3,5,11], where a moving obstacle causes dipoles
to be spawned into the system at a distance ls bigger than the
coherence length ξ and with annihilation occurring on the scale
ξ due to phonon emission from the Gross-Pitaevskii dynamics.
When the dipole spawning and evaporation happen at equal
rates, the total energy will increase roughly by ln(ls/ la) with
each event. The increase in mean energy per vortex causes
the spawned dipoles to decouple into free vortices, which then
form clusters of same-sign vortices. Moreover, this driving
occurs on a length scale ∼ls , so by choosing this distance to be
small compared to the system size, we can achieve small-scale
stirring. In the Supplemental Material [22] we have included
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TABLE I. Parameters used in the simulations, along with some
measured quantities.

Parameters Measured quantities

103γ c 〈N〉 10−3 Re 〈εtot
d 〉

10 10 144 1.20 6.59
3 10 227 5.02 5.77
1 1 100 10.0 0.541
1 2 131 11.4 1.13
1 5 187 13.7 2.79
1 10 246 15.7 5.33
1 20 320 17.9 10.5

two movies with the vortex dynamics during the transition
to the steady state versus that in the statistically stationary
turbulent regime.

We solve the system of ordinary differential equations given
by Eq. (10) using the symplectic, fully implicit fourth-order
Gauss-Legendre method for the conservative part [23]. After
each time step of the symplectic method, we evolve the
dissipative part using a simple forward Euler scheme, which
is sufficient because γ 
 1, so the dissipative evolution is
slow compared to the conservative evolution. We use an
adaptive time step based on the minimum distance d between
vortices and vortex-image pairs. Since the maximum velocity
is v ∼ 1/d, the typical time until a collision 
t ∼ d/v ∼ d2

is a reasonable choice for the adaptive time step. With each
time-step increment, we remove all vortex dipoles with dipole
moments less than la and any vortex within a distance less than
la from its image vortex. Finally, we pick a random number n

from a Poisson distribution with the rate parameter c
t (with
c being the dipole injection rate) and spawn n dipoles with
dipole moment ls at random positions and dipole orientations
such that neither of the spawned vortices is within ls of another
vortex.

During these simulations, we set R = 10, ls = 0.4, and la =
0.2. The thermal friction coefficient γ and the spawning rate
c were varied to generate different regimes of turbulence. The
values are given in Table I, along with measured values for the
mean vortex number 〈N〉 with the resulting Reynolds number
(see Sec. V) and the time-averaged total energy dissipation
〈εtot

d 〉 (see Sec. VII).

V. STEADY-STATE TURBULENT REGIME

As a consequence of spawning and evaporation of vortex
dipoles, the total number of vortices fluctuates in time. Starting
from zero vortices, the number of vortices increases by spawn-
ing events dominating over dipole evaporation events. After a
transient time, the number fluctuations reach a statistically
steady-state regime as shown in Fig. 1 for different Re. By
a rescaling of time with the crossover time tc and of number
fluctuations with their mean value 〈N〉, we find that all data
collapse onto a universal curve that is nicely fitted by the
tanh(x) function, i.e., the solution of the mean field kinetic
equation Ṅ = −N2 + 1, written in rescaled units of t/tc and
N/〈N〉. The first term is the leading-order contribution due to
dipole annihilation and the last term is the constant spawning

10 -2 10 -1 10 0 10 1 10 2 10 3

t/t
c

10 -2

10 -1

10 0

N
/<

N
>

3

3.2

3.4

3.6

3.8

4

4.2

lo
g 10

(R
e)

0 100 200 300

t

0

100

200

300

N

FIG. 1. Collapsed data in rescaled units plotted against tanh(x).
The inset shows the temporal evolution of the total vortex number
for different Re numbers. We extract the mean number 〈N〉 and the
crossover time tc by fitting each curve with the tanh function.

rate. Small deviations from this mean-field trend are the effect
of higher-order terms due to collective interactions in dipole
evaporation [24], but also because we neglected the small effect
of a linear decay term corresponding to the evaporation of
single vortices near the boundary of the disk.

After the vortex number has stabilized, the energy of the
system [as measured by Eq. (3)] keeps increasing as dipoles
decouple into free vortices, which then form clusters. Higher
energy leads to a higher energy-dissipation rate from the
dissipative evolution, eventually balancing the small-scale
forcing, so the energy eventually also stabilizes. By carefully
balancing the spawning and dissipation rates we can make
sure that the steady-state energy is such that the system is
dominated by clusters.

For the statistically stationary regime (a snapshot of the
vortex configuration is illustrated in Fig. 2 and a video
corresponding to this regime is included in the Supplemental
Material [22]), we can define a Reynolds number Re by the
balance between inertial forces (where the typical distance is

Positive Vortex
Negative Vortex
Streamline
Boundary

FIG. 2. Snapshot of a vortex configuration.
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the disk’s radius R and the typical field velocity is U ∼ 1/〈l〉
with 〈l〉 ∼ R/

√〈N〉) and dissipative forces (thermal friction
characterized by γ ), hence Re ∼ √〈N〉/γ .

VI. WEIGHTED PAIR CORRELATION
FUNCTION IN A DISK

In a statistically homogeneous and isotropic system, the
weighted pair correlation function defined in Eq. (7) is also
isotropic and therefore is equivalent to

ρgw(r) = 1

2πr

∫ 2π

0
ρgw(�r)r dθ

= 1

2πr〈N〉
∑
i �=j

〈qiqj δ(r − rij )〉, (11)

where rij = |�ri − �rj |. For a numerical estimate of this expecta-
tion value, we can discretize the δ function into bins of width d,
by δd (r) = [H (r + d

2 ) − H (r − d
2 )]/d, where H (x) is the step

function. This gives the contribution gs
w(r) to the correlation

function from a given realization as

〈N〉ρgs
w(r) = 1

2πrd

∑
i �=j

qiqjdδd (r − rij ). (12)

Thus we can estimate the weighted correlation function by
iterating over each vortex, counting the number of vortices
that fall within a shell of radius r and width d, weighting them
by whether they have equal or opposite sign, and dividing
by the area of the shell. By time averaging over many vortex
configurations in the statistically stationary regime, we can
divide by the mean vortex number and density, giving an
estimate of the correlation function.

A complication to this method arises from the fact that
our system is finite with a circular boundary of radius R. This
breaks homogeneity and isotropy, especially when considering
particles close to the boundary. We will however still assume
that the system is as homogeneous and isotropic as possible,
by which we mean the following: Considering a vortex close
to the boundary, the system is assumed to look the same in all
directions as it would look from the center, as long as we do
not see the boundary. Taking the contribution from each vortex
separately,

〈N〉ρgs
w(�r) =

∑
i

qig
i
w(�r),

gi
w(�r) =

∑
j �=i

qj

1

r
δ(r − rij )δ(θ − θij ), (13)

we assume that gi
w(�r) is equal for all directions θ such that

�r + �ri does not cross the boundary.
These directions go from θ+

i = θi + 1
2
θi to 2π + θ−

i =
2π + θi − 1

2
θi (as illustrated in Fig. 3) and by the law of
cosines we have

R2 = r2 + r2
i + 2rri cos

(
1

2

θi

)
,


θi = 2 arccos
R2 − r2 − r2

i

2rri

. (14)

FIG. 3. Directions not crossing the boundary for a given vortex at
�ri (black point). The solid circle gives the boundary, while the dashed
circle gives the shell of radius r .

By our assumption of near isotropy we can integrate over the
allowed directions

gi
w(r) = 1

(2π − 
θi)r

∫ 2π+θ−
i

θ+
i

gi
w(�r)r dθ

= 1

(2π − 
θi)r

∑
j �=i

qj δ(r − rij ), (15)

where we used that θij certainly lies within the integration
range if r = rij ; otherwise �rj would be outside the boundary.
Thus we can account for the boundary effects by estimating
the correlation function in the same way as for an unbounded
system, only reducing the area of the shell of radius r around
vortex i from 2πrd to the area given by the directions not
crossing the boundary,

Ai =
(

2π − 2 arccos
R2 − r2 − r2

i

2rri

)
rd.

We measured gw(r) taking into account this boundary
effect and time averaging over 103–104 statistically stationary
realizations outputted at regularly spaced time intervals (about
the typical time scale it takes an injected dipole to cross the
disk). The resulting distribution is shown for different Re in
Fig. 4, where we removed the spurious contributions of single
(unclustered) vortices, using the same clustering analysis as
in Ref. [11]. For the smallest Re, gw(r) < 0 for most of its
range, indicating that the system is dominated by dipoles. At
larger Re it develops a peak around a characteristic cluster
size rc and falls off rapidly after this, which indicates that
the system is dominated by small vortex clusters with similar
sizes. However, at sufficiently large Re, we observe instead
a scaling regime developing and approaching the power law
Cr−4/3, indicating a diverse range of different cluster sizes.

VII. ENERGY SPECTRUM IN A DISK

For N vortices, the energy spectrum from Eq. (4) can be
computed in O(N2) steps straightforwardly. However, with
the imposed circular boundary at radius R, there are additional
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FIG. 4. Weighted pair correlation function for different Re
numbers, ignoring isolated vortices. The case with the lowest Re
Re ∼ 1000 is excluded because this system is dominated by dipoles,
so gw(r) < 0 in most of its range.

contributions due to image vortices. With these contributions
worked out in Ref. [25], the energy spectrum is given as

E(k) = π

k

⎧⎨
⎩N + 2

∑
i<j

qiqjJ0(krij )

+
∞∑
l=0

εlJl(kR)
∑
i,j

qiqj

(
ri

R

)l[
Jl(kR)

(
rj

R

)l

− 2Jl(krj )

]
cos(lθij )

⎫⎬
⎭, (16)

where ε0 = 1, εl = 2 for l � 1, and θij = θi − θj is the angle
between vortices i and j .

Numerically, these extra sums are expensive to compute
because they involve N2L terms, where L is the number of
terms we use in the l summation. However, the extra terms can
be transformed into products of single sums over the number
of vortices, decreasing the cost to NL and making it simpler
to implement.

The key insight is that both the finite-size sums can almost
be factored into independent sums over i and j , if not for the
cosine terms coupling them. This allows us to split the sum
into two new sums, which can then be decoupled,

E(k) = π

k

⎧⎨
⎩N + 2

∑
i<j

qiqjJ0(krij )

+
∞∑
l=0

εlJl(kR)

⎡
⎣∑

i

ail cos(lθi)
∑

j

bjl cos(lθj )

+
∑

i

ail sin(lθi)
∑

j

bjl sin(lθj )

⎤
⎦

⎫⎬
⎭, (17)

where

ail = qi

(
ri

R

)l

, bil = qj

[
Jl(kR)

(
rj

R

)l

− 2Jl(krj )

]
. (18)
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FIG. 5. Energy spectrum per vortex for different Re numbers,
ignoring single vortices. The vertical lines correspond to a typical
intervortex spacing 〈l〉 and the spawning length scale ls . In the inset
we compare two different energy spectra for the highest Re, where
we ignore the contribution from the image vortices: including all
vortices (dashed line) and excluding isolated vortices (solid line).
Clearly, excluding isolated vortices is necessary to show Kolmogorov
scaling.

Here all the finite-size sums over N vortices are independent,
giving much faster numerical evaluation.

In Fig. 5 we show the energy spectrum per vortex
〈E(k)〉/〈N〉 for the different Re, time averaged in the same
way as with the correlation function. We notice that the energy
spectrum transitions from the 1/k scaling attributed to the
self-energy of a single vortex to the Kolmogorov −5/3 scaling
law on wave numbers smaller that 2π/〈l〉 at high Re. As can
be seen from Eq. (8), both contributions will be present in
the energy spectrum and even though the −5/3 contribution
should in principle dominate the scaling at low k, the finite-size
effects may prevent this.

In order to clearly see this inertial scaling regime for both
gw(r) and 〈EN (k)〉, we removed from the statistical analysis the
contribution of single (unclustered) vortices, which can hinder
the collective effects for small system sizes. The inset of Fig. 5
shows the spectral analysis for the highest Re, when we include
or exclude the effects of single vortices. The best inertial
scaling seems to follow when we take out these effects and only
look at the spectrum induced by clustered vortices. Including
the contribution of the vortex images in the statistical analysis
did not significantly change this picture, but merely introduced
some minor oscillations around the trend line, which are visible
in the main part of Fig. 5. The presence of an inverse energy
cascade indicates that the energy dissipation introduced in Eq.
(10) mostly acts on large scales, so energy needs to transfer
from the small injection scale to the larger dissipation scale.
We now turn to measuring whether this is true.

Spectral energy flux and dissipation rate

The energy fluxes can be found by time differentiating the
energy spectrum from Eq. (4), giving

dE(k)

dt
= −2π

∑
i<j

qiqjJ1(krij )
�rij

rij

· (�vi − �vj ). (19)

052144-6



ORIGIN OF THE INVERSE ENERGY CASCADE IN TWO- . . . PHYSICAL REVIEW E 95, 052144 (2017)

10 0 10 1

k

-12

-10

-8

-6

-4

-2

0

2

〈

∋
∋ ∋

d
(k

)
〉/
〈

dto
t
〉

2π/l s2π/〈 l 〉π/R

(a)

3

3.2

3.4

3.6

3.8

4

4.2

10 0 10 1

k

-25

-20

-15

-10

-5

0

5

〈Π
(k

)
〉/
〈

dto
t
〉

2π/l s2π/〈 l 〉π/R

(b)

3

3.2

3.4

3.6

3.8

4

4.2

lo
g 10

(R
e)

lo
g 10

(R
e)

FIG. 6. (a) Normalized spectral dissipation rate and (b) spectral flux for different Reynolds numbers. At high Re the dissipation rate
concentrates at large scales. The spectral flux is negative in the inertial range, especially for high Re.

Splitting the velocities into a dissipative part and a conservative
part �vi = �vc

i + �vd
i , we have that

dE(k)

dt
= −2π

∑
i<j

qiqjJ1(krij )
�rij · �vd

ij

rij

− 2π
∑
i<j

qiqjJ1(krij )
�rij · �vc

ij

rij

= εd (k) + εc(k). (20)

The second term is due to conservative evolution and can
therefore only serve to redistribute energy in the spectrum

∫ ∞
0 εc(k)dk = 0. Integrating this up to a given wave number k

gives the spectral flux across k, �(k) = − ∫ k

0 εc(k)dk. While
this integral can be carried out analytically, the finite-size
contributions will make numerical integration necessary, as
discussed below. The energy dissipated at a given wave number
is measured by εd (k).

The spectral quantities εc,d (k) can be measured at a given
time step by explicitly inserting the conservative or dissipative
velocities and the vortex positions into Eq. (20). One can then
average the quantities over different realizations or time steps.

So far, this calculation does not include the contribution
from image vortices in Eq. (17). By a time differentiation of
Eq. (17), we find that the finite-size correction to the spectral
energy flux in Eq. (19) is

dEf (k)

dt
= π

k

∞∑
l=0

εlJl(kR)

⎧⎨
⎩

∑
i

[ȧil cos(lθi) − lail θ̇i sin(lθi)]
∑

j

bjl cos(lθj ) +
∑

i

[ȧil sin(lθi) + lail θ̇i cos(lθij )]
∑

j

bjl sin(lθj )

+
∑

i

ail cos(lθi)
∑

j

[ḃj l cos(lθj ) − lbjl θ̇j sin(lθj )] +
∑

i

ail sin(lθi)
∑

j

[ḃj l sin(lθj ) + lbjl θ̇j cos(lθj )]

⎫⎬
⎭, (21)

where the remaining derivatives can be found as

ȧil = lail

ṙi

ri

, (22)

ḃj l = lbjl

ṙj

rj

+ 2kJl+1(krj )ṙj , (23)

ṙi = �ri · �vi

ri

, θ̇i = �r⊥
i · �vi

r2
i

. (24)

Equation (21) is still linear in the velocities, so it can
be decomposed into a dissipative and a conservative part.
However, the products of several Bessel functions makes the
integral �(k) = − ∫ k

0 εc(k)dk analytically intractable. One can
still measure the time-averaged 〈εc(k)〉 and then perform the
integral numerically by the trapezoidal rule.

The time-averaged spectral energy flux 〈�(k)〉 and the
spectral energy dissipation rate 〈εd (k)〉, normalized by the total
dissipation rate 〈εtot

d 〉 = −〈 dH
dt

〉 for comparison, are shown
for different Re in Fig. 6. We see that for sufficiently high
Re, the dissipation is mainly localized on the largest scales,
while the spectral energy flux is negative in the inertial range
corresponding to an inverse energy cascade towards the large
scales.

VIII. CONCLUSION

By generalizing Novikov’s theory for the energy spectrum
of a neutral vortex gas, we found that the Kolmogorov scaling
law of the turbulent energy spectrum corresponds to the −4/3
scaling law of the vorticity correlation function on inertial
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length scales. This is analogous to the Kraichnan-Kolmogorov
scaling of the vorticity correlation in classical turbulence.

In order to explore this statistical correspondence, we
proposed a forced and dissipative point vortex model that is
able to produce a statistically steady-state turbulent regime,
where there is a coexistence between the large-scale Onsager-
like vortices of various sizes and the inverse energy cascade.
We showed that in a system of two-sign vortices, the inverse
energy cascade originates from the vortex clustering, which
also results in persistent correlations in the vorticity field.
Hence, the Kolmogorov −5/3 scaling law is directly connected
to the scale-free statistics of vorticity, measured by the
weighted pair correlation function gw(r) ∼ r−4/3. To unify our
data obtained for different values of stirring and dissipation
parameters, we defined a dimensionless Re analogously to
its classical definition and found that this Re for a vortex gas
depends solely on the mean vortex number and thermal friction
coefficient.

We studied vortex dynamics in a disk similar to the
experimental setup of the highly oblate BEC, so that our results
could be compared with future experiments. In particular, with
the recent experimental advances in in situ imaging of vortices
in BECs [26], it may be possible to compute the pair correlation
function from experimentally obtained vortex configurations
and infer the presence of an inverse energy cascade. Because
of the boundary effects, we also had to carefully take into
account the finite-size corrections. This way, we showed that
the vortex-image interactions do not affect the scaling laws, yet
they can limit substantially the scaling range, i.e., the spectral
gap between the scales where energy is injected and where it
is dissipated.
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