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Phase transitions at high energy vindicate negative microcanonical temperature
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The notion of negative absolute temperature emerges naturally from Boltzmann’s definition of “surface”
microcanonical entropy in isolated systems with a bounded energy density. Recently, the well-posedness of
such construct has been challenged, on account that only the Gibbs “volume” entropy—and the strictly positive
temperature thereof—would give rise to a consistent thermodynamics. Here we present analytical and numerical
evidence that Boltzmann microcanonical entropy provides a consistent thermometry for both signs of the
temperature. In particular, we show that Boltzmann (negative) temperature allows the description of phase
transitions occurring at high energy densities, at variance with Gibbs temperature. Our results apply to nonlinear
lattice models standardly employed to describe the propagation of light in arrays of coupled wave guides and
the dynamics of ultracold gases trapped in optical lattices. Optically induced photonic lattices, characterized by
saturable nonlinearity, are particularly appealing because they offer the possibility of observing states and phase
transitions at both signs of the temperature.
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I. INTRODUCTION

Since the pioneering work of Purcell, Pound, and Ramsey
on nuclear spin systems [1,2], negative absolute temperature
has been an established concept in statistical physics [3,4].
The ever-growing control of ultracold atoms recently allowed
the preparation of negative-temperature states for motional
degrees of freedom of a bosonic gas loaded in an optical lattice
[5]. Despite this remarkable result, the very notion of negative
temperature has been challenged in a recent article [6], on
account that the Boltzmann “surface” entropy it stems from
would be inconsistent, and the only consistent picture would be
based on the Gibbs “volume” entropy. This criticism spurred
a lively and ongoing debate [7–23].

Here we address the consistency of Boltzmann microcanon-
ical temperature, focusing on a class of nonlinear lattice models
standardly employed in the description of the propagation
of light through arrays of wave guides, and the dynamics
of ultracold bosons trapped in optical lattices. Our most
interesting results apply to the case of optically induced
photonic crystals [24–27]. We find that, at variance with
standard nonlinearity, the saturable nonlinearity characterizing
these models supports both positive- and negative-temperature
states in the same system. Even more interestingly, we show
that the same physical system can undergo phase transitions for
critical energies both in the lower and in the upper portion of
the (bounded) energy spectrum. A finite-size scaling analysis
shows that the Boltzmann picture provides a consistent
description in both cases. While the former correspond to the
standard situation, the critical temperature of the latter turns
out to be finite and negative. Despite they typically manifest
themselves in a clear ordering of the system, phase transitions
at high energy densities are not consistently captured by the
Gibbs picture. More in general, the Gibbs temperature does
not appear to be a measurable quantity for the systems under
concern.

As to the standard “cubic” nonlinearity typical of ul-
tracold lattice bosons, we confirm that it does support
negative-temperature states, as proposed in Refs. [28,29] and
experimentally demonstrated in Refs. [5,30]. Owing to a
pathological scaling of the energy density, states with positive

or negative temperature turn out to be unstable for attractive
or repulsive interactions, respectively. Nevertheless, phase
transitions at negative temperatures should be observable in the
former case, as heralded by the ordering phenomena observed
experimentally [5,30].

We support our conclusions with analytic arguments and ex-
tensive (microcanonical) numerical simulations. In particular,
we provide independent and concordant tests of the fact that
the considered dynamical states correspond to thermal equilib-
rium. We measure their (Boltzmann) temperature, which can
be either positive or negative depending on the (conserved)
energy density, either as a (time-averaged) function of the
instantaneous configuration of the dynamical variables [31] or
through a fit of the average distribution of the relevant modes
of the system. Also, we show how, irrespective of the sign of
the temperature, a large lattice acts as a thermostat for a small
sublattice, thus confirming the equivalence between isolated
and thermostated systems that is crucial for a consistent
definition of temperature. From a different point of view, being
able to support negative temperature states, the sublattice can
be in principle used as a thermometer for the whole lattice.

The plan of this paper is the following. We briefly survey
the concept of negative (Boltzmann) temperature in Sec. II
and introduce the nonlinear lattice models we focus on in
Sec. III. After briefly addressing ensemble equivalence in
Sec. IV, we discuss phase transitions—at both positive and
negative temperatures—in Sec. V. The results of our numerical
simulations are presented in Sec. VI. More detail about our
results can be found in the appendix sections.

II. NEGATIVE ABSOLUTE TEMPERATURES

In the microcanonical ensemble, the inverse temperature of
the system is defined as

β = 1

kB

∂s

∂h
, (1)

where s(h) is the entropy density corresponding to the energy
density h, and kB is Boltzmann’s constant. In general, two
choices for s(h) are possible, corresponding to Boltzmann’s

2470-0045/2017/95(5)/052135(12) 052135-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052135


P. BUONSANTE, R. FRANZOSI, AND A. SMERZI PHYSICAL REVIEW E 95, 052135 (2017)

and Gibbs’ definitions. According to the former, s(h) =
V −1kB ln [ω(h) �h], where V is the number of degrees of
freedom in the system, ω(h) is the density of microstates
at energy density h, and �h is a constant having the
same dimension as h. The Gibbs entropy is obtained by
replacing ω(h) with �(h) = ∫

h′<h
dh′ ω(h′), i.e., the number

of microstates having an energy density up to the chosen one.
As it is well known, in the thermodynamic limit these two
definitions are equivalent in “standard” systems lacking an
upper bound to the energy density, for simple geometrical
reasons (see, e.g., Ref. [32]). This comes about because ω(h)
is an increasing function of h. However, some systems exist
where the energy density has an upper bound and ω(h) is a
(non-negative) concave function featuring a maximum at some
finite energy density h∗. The logarithm of ω(h) clearly has the
same properties, which entails that β(h) is positive for h < h∗,
negative for h > h∗, and vanishes at h = h∗. A simple version
of the lattice models introduced in Sec. III is employed to
exemplify this behavior in Appendix A.

The key ingredient for the occurrence of negative Boltz-
mann temperatures is the existence of an upper bound to the
available energy densities. Furthermore, the elements of the
thermodynamical system must be in equilibrium, so that a
temperature can be consistently defined. Finally, the system
must be thermally isolated from any system that do not meet
the previous requirements [2]. In most cases the first condition
fails because of the unboundedness of the kinetic energy
term. The first experiments demonstrating negative Boltzmann
temperatures [1] involved spin systems, which are not affected
by this problem owing to the lack of kinetic degrees of
freedom. The kinetic energy density of a gas of particles
can be effectively bounded from both above and below in
the presence of a periodic potential inducing an energy gap
sufficiently large that the physics of the system is dominated by
states in the lowest energy band. Building on this observation,
negative-temperature states for motional degrees of freedom
in an ultracold bosonic gas have been demonstrated in a recent
experiment [5].

However, as observed in Ref. [6], ω(h) � 0 ensures that
�(h) is a nondecreasing function of h, and hence the Gibbs
temperature is non negative even in systems with a bounded
energy density. Therefore, plugging the Boltzmann or Gibbs
entropy in Eq. (1) can produce very different temperatures,
and the question arises as to which picture is the correct one.

The appearance of a negative sign in an absolute temper-
ature might look disturbing enough to discard the Boltzmann
framework at first glance. It should be noted, however,
that a state at negative temperature is not colder than “the
coldest possible state,” i.e., the ground state. Since its energy
density exceeds h∗, it is in fact hotter than the state attaining
the maximum Boltzmann entropy, which has an infinite
temperature. The fact that the concept of “hotter that T = ∞”
sounds still somewhat disturbing can be merely ascribed to the
traditional use of T = (kBβ)−1 in the scale of temperatures.
Using −β instead of T restores the “correct order” of cold and
hot in the whole range of Boltzmann temperatures [2].1

1Here we do not introduce a minus sign in front of β, to avoid
confusion.

In the following, we produce analytical and numerical
evidence that the Boltzmann entropy does in fact provide
a consistent thermodynamic picture. As we mention in the
introduction, Ref. [6] advocates that only the Gibbs entropy
results in a consistent thermostatics, and dismisses all previous
claims about negative absolute temperatures. These arguments
are further elaborated in Refs. [13,22]. While we refer the
reader to a different publication [33] for a more systematic
discussion of the points raised in Refs. [6,13,22], in the
following we occasionally comment on some of them.

We start by observing that disturbing features also lurk
behind the instinctively appealing non-negative temperatures
characterizing the Gibbs formalism. Indeed, for lattice systems
such as the ones we are going to address shortly, the
Gibbs temperature corresponding to energy densities h � h∗
increases arbitrarily with the number of degrees of freedom
in the system. Hence, in the thermodynamic limit, it is
identically infinite on the whole finite interval of energy
densities exceeding the one attaining the maximum Boltzmann
entropy.2 Correspondingly, the Gibbs heat capacity would be
identically zero. We observe that, while this might be to some
extent internally consistent, it presents at least two problems,
as we illustrate in more detail in Sec. V and Appendix A. In the
first place, it clearly makes the Gibbs temperature incapable
of describing phenomena involving states with h > h∗. Also,
the Gibbs temperature cannot be measured as a microcanonical
average by exploiting the usual formulation of the equipartition
theorem advocated in Refs. [6,13].

We remark that the convexity properties of the density of
states ω(h) of the systems under investigation are a typical
consequence of the large number of degrees of freedom
and short-range interactions. The oscillating density of states
discussed in Refs. [13,22] can crop up in systems with a
small number of degrees of freedom or long-range interactions.
Standard thermodynamic relations can be—at least formally—
used in such cases, although at the expense of features that
appear crucial for a sensible definition of temperature [20].
For instance, the equivalence of isolated and thermostated
systems is lost. Also, when joined, two systems having the
same temperature could equilibrate to a completely different
temperature. The well-posedness and usefulness of the concept
of temperature in such situations is at least arguable.

We finally note that some of the arguments against the
existence of negative-temperature equilibrium states are based
on the failure of one or more of the key conditions listed above
[2]. For instance, it has been argued that such states would
not be stable if the system in which they occur is brought
into contact with a system that is unable to sustain negative-
temperature states, e.g., due to the lack of an upper bound to the
energy density [6,13,34]. This, however, is due to the fact that
the composite system clearly does not meet the requirements
[2] for sustaining negative-temperature equilibrium states.

The model we are going to address in the following
has no doubt been devised as an extreme idealization of

2This is the main criticisms leveled by Ref. [10] against the Gibbs
picture advocated by Ref. [6]. We note that this weird feature of the
Gibbs temperature is mentioned in Ref. [6] itself, albeit only in the
Supplementary Information.
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real physical systems, as remarked in Refs. [13,22]. On
the other hand, over the last few years enormous steps
towards the faithful experimental simulation of similarly ideal
models have been made, the trailblazer being ultracold-atom
physics [35,36]. Lattice Hamiltonians originally conceived
as rough yet extremely challenging toy models have been
experimentally realized with an high degree of fidelity by
loading a cold atomic gas into a “crystal of light.” As we
mention, evidence of negative-temperature states has already
been reported for these systems [5]. The observation of phase
transitions occurring at negative critical temperature, such as
the ones we discuss in Secs. V and VI involves a similar effort
towards the faithful experimental simulation of the single-band
lattice model described in the following section. On a related
note, we mention that a Mott insulator-superfluid quantum
phase transition has been observed at negative temperature
in the experimental realization of a Bose-Hubbard model
with attractive interactions [30]. We once again remark that
significant steps in the realization of synthetic nonlinear lattice
models have been likewise made in the field of optical wave
guides. These include an analysis of the effects of nonlinearity,
the Anderson localization [37], and the observation of a
Berezinskii-Kosterlitz-Thouless phase transition at positive
critical temperature [38] in optical systems obeying the
discrete nonlinear Schrödinger (DNLS) equation.

III. THE MODEL

We focus on nonlinear lattice models [39] of the form

H = U
∑

r

u(|zr|2) − J
∑
rr′

z∗
rArr′zr′ , (2)

where r = (r1,r2, . . . ,rd ) denotes a site in a d-dimensional
(dD) lattice and Arr′ is the relevant coordination matrix. The
coordinates of the sites are integer numbers, rj = 1,2, . . . ,Lj ,
so that the total number of sites in the lattice is V = ∏d

j=1 Lj .
Periodic boundary conditions are assumed, i.e., zr+Lj ej

= zr,
where ej is the versor along the j th direction. We set the
hopping amplitude to J = 1, so that the units for energy and
time are J and h̄J−1, respectively. As to the nonlinear term,
we consider two cases:

u1(n) = − ln(1 + n), u2(n) = 1
2n2. (3)

The former corresponds to the saturable nonlinearity typical
of the equations describing the propagation of a light probe in
an optically induced nonlinear photonic lattice [24–27], while
the latter produces the cubic nonlinearity of standard DNLS
equations. These are employed in the description of diverse
phenomena [39,40], including the dynamics of ultracold atoms
loaded in optical lattices [41–53] and the propagation of light
in waveguide arrays [37,40,50–55].

The equations of motion generated by Hamiltonian (2)
via the Poisson brackets {zj ,z

∗
�} = −ih̄−1δj� have two first

integrals, the energy and “particle” density:

h = V −1H, a = V −1
∑

r

|zr|2. (4)

The presence of a conserved quantity other than the en-
ergy density is important for the occurrence of negative

temperatures, because it makes the configuration space of any
finite system compact.

In the noninteracting limit U → 0 the Hamiltonian be-
comes linear, and the (thermo)dynamics is described ex-
actly by the single-particle “plane-wave” eigenmodes z

(q)
r =√

a ei(q·r−εqt), where Lj

2π
qj = 0, 1, 2, . . . Lj − 1 is the quasi-

momentum along direction j . The corresponding single-
particle energies εq = −2

∑d
j=1 cos qj form a band bounded

by ±2d.
It is easy to check that the “plane-wave” states are

normal modes for the nonlinear equations as well, provided
that the single-particle energy is replaced by the frequency
νq(a) = Uu′(a) + εq. The corresponding energy density is
hq(a) = Uu(a) + a εq. For repulsive interactions, U > 0, i.e.,
defocusing nonlinearity, the energy densities are bounded from
below by h0(a) = Uu(a) − 2da. On finite lattices the energy
densities also have an upper-bound, which however diverges
in the thermodynamic limit for the standard nonlinearity, u2.
Note indeed that the energy density of a state where only an
individual site is occupied is V −1u2(aV ) = U/2a2 V . This
means that negative-temperature equilibrium states are prob-
lematic for the standard defocusing nonlinearity [50], although
metastable states at β < 0 can persist for astronomically long
times on 1D lattices [52,53].

In the case of saturable nonlinearity, u1, the upper bound
of the energy density remains finite in the thermodynamic
limit and tends to hmax = aεπ = 2da. That is, the energy per
particle is of the order of the maximum single-particle energy.

The situation for attractive interactions U < 0, i.e., for self-
focusing nonlinearity, is related to the previous case through
the mapping

H (U,J,{zr})=−H (−U,J,{eiπσrzr}), σr =
d∑

j=1

rj . (5)

This means that negative temperatures are well defined for the
standard nonlinearity, u2, and positive ones are problematic.
Note that switching the interaction strength to negative values
is a crucial step for obtaining negative-temperature states in a
bosonic gas loaded in an optical lattice [5]. The nonlinearity
is typically self-focusing also in the case of waveguide arrays.
Although the sign of U can be reversed in photorefractive
crystals [24,55], the defocusing case does not seem to lend
itself to a tight-binding approach in current experimental
realizations [24]. For these reasons, unless otherwise specified,
in the following we fix our attention mainly on the self-focusing
case, U < 0.

IV. ENSEMBLES

In general, the details of an experimental system determine
the most appropriate choice for the statistical ensemble to
be adopted in the description of its thermodynamic properties.
The natural choice for an isolated system is the microcanonical
ensemble. For ergodic systems, one expects that microcanoni-
cal thermodynamic quantities can be equivalently obtained as
ensemble or temporal averages.

In the canonical and grand canonical ensembles, β is a
Lagrange multiplier fixing the total energy. It is possible to
prove that in the thermodynamic limit this multiplier coincides
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with the microcanonical definition of temperature, Eq. (1) [33].
Also, canonical—or, in the presence of additional conserved
quantities, grand canonical—time averages can be obtained by
considering a sufficiently macroscopic subset of an isolated,
microcanonical system. In the absence of pathologies, one
expects that the subsystem has the same thermodynamical
properties as the whole system. More in general, one expects
that all ensembles provide a consistent description of a given
system.

In the noninteracting limit, U = 0, a detailed analysis of
the statistical ensembles for the model in Eq. (2) can be
carried out, at both the semiclassical and quantum level. In
both cases, the relation between the energy density and the
inverse temperature turns out to be the same for all the three
ensembles [33]. The easiest way of obtaining such relation
is through the grand-canonical ensemble. The grand partition
function for the model in Eq. (2) is

Q =
∫ ∏

r

dzre
−βV [h({zr})−μa({zr})], (6)

where μ is the chemical potential, i.e., the Lagrange multiplier
selecting the average density a, and we omitted the dependance
of the energy density on the parameters. In the noninteracting
limit, the integral in Eq. (6) can be easily carried out. It is
likewise easy to obtain the average occupation of the single-
particle modes3

nq(β,μ) = 〈|z̃q|2〉 = 1

β

1

εq − μ
, (7)

where z̃q = V −1 ∑
r eir·qzr is the Fourier transform of the

configuration of the system. For fixed β, a, and h = aκ , where
κ denotes the kinetic energy density per particle, the chemical
potential μ(β,a,κ) can be found by inverting the relations

a =
∑

q

nq, h =
∑

q

εqnq. (8)

On a sufficiently large one-dimensional (1D) lattice this
calculation can be carried out analytically, and gives

β = −1

a

2κ

4 − κ2
, μ = κ2 + 4

2κ
. (9)

Thus, for an equilibrium thermodynamic state, β > 0 if −2 <

κ < 0, and β < 0 if 0 < κ < 2.
As we mention, the first of Eqs. (9) accurately describes the

relations between β, and κ and a that are found in the canonical
and microcanonical ensembles [33]. This means that, in the
limit of a large number of sites L,ω(h,a) ∼ [4 − (h/a)2]L.
Using the Laplace method it is possible to evaluate �(h,a),
and the Gibbs entropy thereof. As illustrated in Appendix A, it
turns out that the Gibbs inverse temperature is the same as in the
Boltzmann picture in the lower energy interval and vanishes
identically on the whole upper interval. This causes the failure
of the standard equipartition theorem, which underlies the

3This is the “classical version” of the Bose-Einstein distribution
nq = [eβ(εq−μ) − 1]−1, that comes about because the occupation of
the single-particle modes of Eq. (2) is not restricted to integers.
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FIG. 1. Relation between the grand-canonical β and the kinetic
energy per particle in a 1D lattice, as provided by the transfer-
matrix approach (symbols). Panels (a) and (b) refer to saturable
and standard nonlinearities, respectively. Despite the non-negligible
interaction strengths, the data points closely follow the corresponding
noninteracting result, Eq. (9).

measurability of the Gibbs temperature as a microcanonical
average (see Sec. VI).

The thermodynamics of model4 (2) on 1D lattices has
been addressed in Refs. [56] and [57] for defocusing standard
and saturable nonlinearity, respectively. There, the grand-
canonical partition function, Eq. (6) is calculated using a
transfer-matrix approach, which allows the identification of
the the region in the (a,h) plane corresponding to positive
temperatures. This is bounded from below by the ground-state
energy, h(∞) = Uum(a) − 2a, and from above by a critical
line h(0)

m (a) that, in the case of standard nonlinearity, assumes
the simple form h

(0)
2 (a) = 2Uu2(a) = Ua2 (the superscript in

the energy densities here refers to the grand canonical inverse
temperature). In Ref. [56] the region h > h

(0)
2 (a) is argued to

correspond to negative temperatures, based on the change in
the concavity of the probability distribution function of the
amplitudes |zr|2, as obtained from microcanonical dynamical
simulations. Reference [57] repeats basically the same analysis
as in Ref. [56], but the only new insight it provides about the
region h > h(2)(a) is the observation that initial states picked
in that region end up having one single very mobile localized
excitation. This is contrasted with the larger number of pinned
localized excitations characterizing the standard nonlinearity
[50,52,56].

We find that, in view of the boundedness of the available
energy densities, the transfer-matrix approach applies also for
β < 0 for the defocusing saturable nonlinearity considered in
Ref. [57]. Specifically it can be applied for β > βL, where
βL < 0 in general depends on U and a. This is illustrated in
Fig. 1, where we analyze the relation between β and the kinetic
energy per particle κ in the interacting case, as provided by the
transfer matrix approach. In particular, it is clear from Fig. 1(a),
that solutions exist at negative β for the saturable nonlinearity.
The leftmost symbol of each kind marks the largest negative

4Our choice for the Poisson brackets {zr , z
∗
r′ } corresponds to

the standard bosonic commutation rules when the C-number zr is
interpreted as the expectation value of an on-site boson operator, e.g.,
in the Bose-Hubbard model. References [56,57] make a different
choice for the same Poisson brackets. The two choices are connected
by a simple mapping. We illustrate the results of Refs. [56,57] in the
light of our choice.
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β we were able to analyze for the corresponding parameter
choice. The failure of the transfer-matrix approach for larger
negative β is related to a phase transition between an extended
and a localized state, occurring at a finite negative β. Indeed, as
we discuss in the following, states with5 h > h

(∞)
2 (a) exhibit a

persistent and mobile localized excitation only for sufficiently
large energies, i.e., for sufficiently small negative temperatures
[58]. Figure 1(b) illustrates similar results for the case of
standard nonlinearities, where the transfer matrix approach
clearly fails as soon as β < 0 [56]. It is interesting to note
that, despite the non-negligible effective interaction, the data
points closely follow the analytical relation derived in the
noninteracting case, Eq. (9). Our microcanonical simulations
confirm that this is the case also for two- and three-dimensional
(3D) lattices [58]. We once again remark that the above
described situation is reversed for self-focusing nonlinearities.

V. PHASE TRANSITIONS

In the noninteracting limit, the model in Eq. (2) is known
to undergo Bose-Einstein condensation on a 3D lattice. If
β > βC > 0, that is if the energy density is sufficiently small,
a macroscopic fraction of the particle density occupies the
ground state of the system, i.e., the kinetic-energy eigenstate
corresponding to quasimomentum q = (0,0,0). On a finite-
size lattice this second-order phase transition manifests itself
as a crossover. For this transition to occur, it is crucial that
the density of states in the vicinity of the ground state has
a suitable behavior. Since this behavior is literally mirrored
by the density of states in the vicinity of the highest-energy
state,6 it seems fair to expect that the system condenses into
the highest-energy eigenstate for sufficiently large energy
densities, i.e., at small negative temperatures. Specifically,
one expects that for β < −βC a macroscopic density of
particles occupies the state q = (π,π,π ). In fact, this is what
results from a simple grand-canonical calculation (see Fig. 5
in Appendix B). We mention that clear signatures of phase
transitions at high energies have been recently discussed for
short-range ferromagnets [59]. Also, the emergence of order
at small negative temperature in an isolated planar superfluid
has been recently discussed in Ref. [60], thus confirming an
early prediction by Onsager [61].

The condensation transition occurring at large β > 0 is
expected to survive the introduction of a defocusing standard
nonlinear term, u2 (see, e.g., Ref. [62]). As we observed earlier,
such nonlinearity has a dramatic effect on high-energy states.
The upper bound to the energy density, and the negative
temperatures thereof, are lost in the thermodynamic limit.
In view of the mapping in Eq. (5), a condensation into

5We have verified that the energy thresholds h(∞)
m (a) [56,57] also

apply to two- and three-dimensional lattices [58].
6We remark that this symmetry in the system spectrum and

in the relevant Boltzmann entropy does not imply the physical
or thermodynamical equivalence of states having opposite energy
density, as argued in Refs. [13,14]. In fact, for one, the states are
distinguished by the sign of the derivative of the Boltzmann entropy,
and of the temperature thereof.

the highest-energy state is expected at a negative critical
temperature in the case of self-focusing standard nonlinearity.

The saturable nonlinearity, u1, produces less dramatic
effects. It is not hard to check that for U < 0 the ground state
is localized. Specifically, the corresponding particle density
features a single peak of finite width (corresponding to a
breather), on top of a uniform background.7 The highest-
energy state is instead extended and coincides with the uniform
“plane-wave” state with q = (π,π,π ). It is therefore tempting
to envisage two phase transitions for this system: a conden-
sation into the extended highest-energy state for β < βE < 0,
and a self-trapping transition, i.e., a “condensation” into the
localized ground state, for β > βL > 0. In the defocusing case
the localization properties of the extremal states are swapped,
and hence one expects a condensation into an extended
ground state for β > βE′ = −βE, and a condensation into a
localized highest-energy state for β < βL′ = −βL. According
to the Mermin-Wagner theorem, condensation into an uniform
state is not expected to occur for d � 2 at a finite critical
temperature, since it involves the breaking of the continuous
symmetry in the phases of the dynamical variables zr. The
localized ground state instead breaks the discrete translational
symmetry of the lattice, and does not exhibit long-range order.
Therefore, the corresponding localization transition is not
excluded for d < 3.

Also, the model in Eq. (2) is strictly related to the
classical XY model, and it is therefore expected to undergo
a Berezinskii-Kosterlitz-Thouless (BKT) transition at a finite
temperature on a two-dimensional (2D) lattice [45,51]. Thus
a particularly intriguing scenario opens up for 2D optically
induced nonlinear photonic lattices, which realize model (2)
for self-focusing saturable nonlinearity [24,25]. One could
observe a localization transition at finite positive temperatures,
and a BKT transition at finite negative temperatures. In fact,
signatures of the latter transition have been reported for
defocusing nonlinearity at positive temperatures [38].

VI. THERMALIZATION AND THERMOMETRY

The numerical integration of the dynamical equations
generated by Hamiltonian (2) reveals that, after a possibly long
transient, the system reaches a stationary state in which the
instantaneous value of observables characterizing the system
performs small oscillations about an asymptotic value (see
Appendix D). The observables we typically consider are for
instance the kinetic and interaction energy per particle,

κ = − 1

V a

∑
r, r′

z∗
rAr, r′zr′ = 1

a

∑
q

|z̃q|2εq, (10)

I = a−1h − κ = U

V a

∑
r

u(|zr|2), (11)

where z̃q denotes the Fourier transform of zr. More importantly
and interestingly, it is possible to give an estimate of the
instantaneous microcanonical Boltzmann temperature as a

7This self-trapped state can be centered at any lattice site, and hence
it is not unique. This simmetry breaking is a well-known feature in
nonlinear systems.
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function of the instantaneous configuration of the system
[31,63,64] (see Appendix D for details). A time average
excluding the initial transient,

〈O〉 = 1

�t

∫ t0+�t

t0

dt ′ O({zr(t ′)}), (12)

provides a “measure” of the generic observable O, where we
stress once again that this includes the Boltzmann temperature.
Plotting 〈κ〉 versus a〈β〉 reveals that the relation between these
quantities remains remarkably close to the one applying in
the noninteracting limit also for non-negligible nonlinearity,
although some small deviations appear for the symmetry-
broken phases [58].

An additional evidence of thermalization is provided by the
observation that the prediction in Eq. (7) is fulfilled by the
“relevant modes” in the system, which we generically denote
ζq. That is, a plot of 〈|ζq|2〉−1 versus the corresponding energies
εq results into a straight line whose slope coincides with
the time-averaged measure of the microcanonical Boltzmann
temperature 〈β〉. In the absence of condensation the relevant
modes are the single-particle modes, i.e., ζq = z̃q and εq = εq.
In the condensed phase the linear relation is fulfilled by the
Bogoliubov quasiparticle modes (see Appendix D for details;
Figs. 7 and 8 contain examples of this behavior). Therefore, the
interactions not only drive the system to equilibrium but, when
this is reached, maintain it by acting as a “heat bath” for the
relevant, effectively noninteracting modes of the system. One
could argue that the above slope represents a sort of canonical
or (even grand-canonical) measure of the temperature, since,
while the total population of the modes may be strictly
conserved (in the case of the kinetic modes), the relevant total
energy is not. A grand-canonical description is also obtained
by considering only the dynamical variables zr belonging to
a sufficiently large sublattice of the whole lattice. Indeed, the
first integrals of the motion, h and a, are not conserved when
restricted to a portion of the whole sample. The fact that the
relevant modes of the sublattice behave as those in the whole
lattice (as apparent in Fig. 7 in Appendix D), is a further
proof that the system is in equilibrium, and that the Boltzmann
temperature has the properties expected of a temperature. If
the whole lattice is much larger than the sublattice, then the
former acts as a thermostat (and a “chemostat”) for the latter.
We also checked that a grand-canonical Langevin approach
generalizing the one introduced in Ref. [65], where β is an
external parameter, produces results in agreement with the
above described observations for both positive and negative
temperatures [58].

A further fundamental test for a well defined temperature
concerns the equilibration of two systems that are separately
at equilibrium at different temperatures. One expects that,
when these are brought into contact, energy—and, in our case,
particles—flows in agreement with the intuitive notion of cold
and hot, in such a way that eventually the inverse temperature
of the composite system is intermediate between the two initial
values. As discussed in Ref. [33], this is exactly the case for
the Boltzmann temperature, irrespective of the sign it initially
has in the separate systems. Note that some care must be
taken when using a small system as a thermometer for a
larger system. Indeed, both energy and particles will be in
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FIG. 2. Phase transition in a 2D lattice model with saturable
self-focusing nonlinearity (a = 1, U = −0.75); (a) BKT transition
at negative Boltzmann temperature. The horizontal gray line signals
the expected critical point; (b) condensation into the localized ground
state at positive temperature. The dashed lines are guides to the eye.

general exchanged to attain equilibrium [33,58]. Of course, in
a thermalization experiment where two systems with opposite
signs of the temperature are brought into contact, the resulting
composite system should support both positive and negative
temperature states. For instance, if one of the two initially
separate systems only supports positive temperatures and the
other supports both, there is no chance that the equilibrium
state of the composite system be negative, irrespective of the
initial temperature of the latter subsystem [2]. In this respect,
in view of its ability to support both positive and negative
temperature states, a nonlinear lattice system characterized by
saturable nonlinearity seems to be an ideal setting for this kind
of experiments, at least in principle.

The descriptive power of the Boltzmann microcanonical
temperature becomes fully evident in the presence of phase
transitions, as demonstrated in Figs. 2 and 3. Figure 2 refers to
the 2D lattice system with self-focusing saturable nonlinearity
modeling the propagation of light through an optically induced
photonic lattice [24–26]. As we anticipated in Sec. V, two
phase transitions occur in such a system. A suitably defined
exponent η, sensitive to the decay properties of the radial
correlations, signals a BKT transition in the system [51]
(see Appendix C). The data we obtain for different lattice
sizes shown in Fig. 2(a), strongly suggest a transition at
negative critical temperature, and cross at the value η = 3/4
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FIG. 3. Condensation transition at negative Boltzmann tempera-
ture in a 3D lattice model with standard self-focusing nonlinearity
(U = −0.75, a = 0.5). The solid line is the prediction from the
Bogoliubov approximation.
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expected at the critical point [51,66] (see Appendix C for more
detail). As we observed earlier, for sufficiently large β > 0
the microcanonical state of the system develops a density
peak. This suggests that the system is partially condensed
into its ground-state, which is also characterized by a (taller)
density peak. We quantify this condensation through the
time-averaged projection of the microcanonical state of the
system onto the ground state.8 As illustrated by Fig. 2(b),
a plot of such quantity against the Boltzmann temperature
of the corresponding microcanonical state clearly signals the
occurrence of a phase transition.

Finally, Fig. 3 shows the average occupation of the highest-
energy state in a three dimensional lattice system with standard
self-focusing nonlinearity. The data points, obtained as tem-
poral microcanonical averages according to Eq. (12), clearly
signal a (condensation) phase transition, and nicely follow the
(solid gray) curve obtained from a grand-canonical calculation
based on the Bogoliubov approximation (see Appendix D).
The same behavior is obtained for the saturable nonlinearity
on a three dimensional lattice. In the self-focusing case one
observes the condensation into the localized ground state at
small positive temperatures, and the condensation into the
extended highest-energy state for small negative temperatures.
Again, the relevant critical temperatures are finite [58].

In the same physical situations the limitations of the
Gibbs picture become evident. Although the microcanonical
dynamics takes place in the phase-space “sheet” corresponding
to a given value of the energy density (and, possibly, of other
conserved quantities), the Gibbs entropy requires information
about all energies below such value. It is therefore not
immediately clear how the Gibbs (inverse) temperature βG

could be obtained as a microcanonical ensemble average (and
hence a time average). It is often argued [6,13] that this is made
possible by the “equipartition theorem”

β−1
G =

〈
ζj

∂H

∂ζj

〉
, (13)

where ζj denotes any element of the set of dynamical
variables describing the microstate of the system, and the
angle brackets denote the standard microcanonical average.
However, Eq. (13) typically fails for system admitting neg-
ative Boltzmann temperatures. For instance, for a negative-
temperature state of the self-focusing case of Eq. (2), the r.h.s.
of Eq. (13) with ζj = z∗

j is of the order of a[〈κ〉 + Uu′(a)].
As we have discussed, the corresponding βG tends instead to
vanish as the system size increases, so that Eq. (13) cannot be
possibly satisfied, since its l.h.s. diverges. This failure of the
“equipartition theorem” stems from ignoring a surface term
in the derivation of Eq. (13), which is legitimate only for
systems that do not admit negative Boltzmann temperatures
[20,33,58] (where the Boltzmann and Gibbs pictures are
equivalent, as we discussed before). Even if βG(h) were
actually measurable, its usefulness would be of very limited

8The occurrence of a density peak breaks the (discrete) symmetry
of the lattice. Thus, we calculate the overlap of the instantaneous
dynamical state and the ground state after centering the relevant peaks
at the same lattice site.

value in describing the phenomena involving the upper part
of the spectrum, such as the phase transitions illustrated in
Figs. 2 and 3. Indeed, while the critical energy density (and
Boltzmann temperature) for such transitions becomes size-
independent for sufficiently large systems, the corresponding
Gibbs temperature indefinitely increases with the system size.

VII. DISCUSSION

We have addressed the statistical physics of nonlinear lattice
models relevant in the description of the propagation of light in
nonlinear media and the dynamics of ultracold atoms trapped
in optical lattices. We have discussed how the Boltzmann
picture provides a consistent description of equilibrium and
equilibration processes, and that the absolute temperature char-
acterizing the equilibrium states can have either sign. Negative
temperatures correspond to high energy states, and come about
due to the presence of an upper bound to the available energy
density, and from the decreasing character of the entropy
(density) in the vicinity of such bound. These features are
already apparent in the noninteracting limit of the considered
lattice models [33] and survive the introduction of interactions,
provided that these do not give rise to pathological scaling in
the thermodynamic limit. Interactions act as a heat bath for
the relevant, effectively non interacting modes of the system,
driving the system towards equilibrium. A large system can
act as a thermostat for a smaller system, bringing it to a
negative-temperature (i.e., higher-energy) state, provided that
such a state can be supported by the composite system. Such a
process might not fit the definition of “conventional heating”
[6], but it is consistently described in terms of Boltzmann
(inverse) temperature. A likewise consistent description is
instead problematic in the Gibbs picture, where the whole
upper interval of available energy densities corresponds to
zero heat capacity and infinite temperature (which, in addition,
is not measurable as a microcanonical average through the
standard equipartition theorem). For the same reason, the
description of the phase transitions taking place in the system
at high-energy densities is similarly problematic. As illustrated
in Figs. 2 and 3, Boltzmann temperatures provide a consistent
description of such transitions.

Optical systems represent an ideal testbed for our con-
clusions. Ordering phenomena related to the self-trapping
transition discussed above have been observed in 1D [26]
and 2D [25] lattices. Signatures of a BKT transition have
been observed in a 2D optically induced photonic lattice [38],
although they have been analyzed in terms of an “equiparti-
tion” effective temperature [51]. Optically induced nonlinear
photonic lattices [24–26,38] are particularly intriguing, in that
the relevant saturable nonlinearity preserves both the upper and
lower bound characterizing the corresponding (single-band)
linear lattice model, allowing the exploration of both positive-
and negative-temperature states in the same system. Even
more interestigly, the realizability of 2D lattices [25,38] opens
up the possibility of observing phase transitions with critical
temperature of both signs in the same (synthetic) physical
system. States in the upper portion of the kinetic energy band
can be excited by suitably tilting the input beam, as described in
Refs. [37,55]. Phase transitions on lower dimensional systems
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could be engineered through the introduction of suitable
“on-site” or topological defects [67,68].

The measure of the instantaneous microcanonical tempera-
ture requires the knowledge of the instantaneous configuration
of the field, zr(t). A more feasible measure is obtained through
Eq. (7). Indeed, as discussed above and demonstrated in Figs. 7
and 8 in Appendix D, a linear fit of the inverse average
mode occupation versus the corresponding energy provides an
estimate of the temperature that is in remarkable agreement
with the time-average of the instantaneous microcanonical
value.
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APPENDIX A: BOLTZMANN ENTROPY

Figure 4 illustrates the concepts discussed in Sec. II, in
the case of a uniform 1D lattice model comprising L sites
and containing aL noninteracting bosons, (U = 0, a = 1, L =
20). The circles in the main panel correspond to the analytically
calculated [33] volume of the phase space relevant to the
chosen energy and particle density

ω(h,a) =
∫ ∏

q

dzq δ(Lh − H )δ(La − N ), (A1)

where H is the Hamiltonian in Eq. (2) and

N =
∑

q

|zq|2. (A2)

Although the number of sites is not very large, the micro-
canonical result is very well described by the approximation
ω ≈ C(4 − κ2)L derived from the grand canonical result in
Eq. (9), where κ = a−1h. The data in the inset refer to the
Bose-Hubbard model obtained by changing the C-numbers
zq and z∗

q in Hamiltonian (2) into the lattice boson operators

âq and â
†
q, respectively. In view of the lack of interaction, a

generic eigenstate of the system is a Fock state listing the
number of bosons occupying each of the single-particle states.
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FIG. 4. Boltzmann entropy density for a 1D noninteracting lattice
model comprising L = 20 sites. Main plot: semiclassical case,
Eq. (2). The inset shows the situation for the corresponding quantum
(Bose-Hubbard) model. In all cases a = 1.

The behavior of ω can be therefore estimated by listing all
the Fock states compatible with the chosen boson population
and binning the corresponding energy densities. We divided
the energy density interval [−2a,2a] into 183 bins but, for
graphical reasons, plotted only a few of the corresponding
numbers of microstates. The result is remarkably smooth
owing to the very large number of Fock states (approximately
6.89 × 1010).

As discussed in Sec. II, the Boltzmann entropies are con-
cave functions, and feature a maximum at h∗ = 0. Therefore,
according to Eq. (1) the corresponding Boltzmann inverse
temperatures are positive for h < h∗ and negative for h > h∗.
Note that, owing to the small particle density, the classical
and quantum results are quantitatively different, although
qualitatively similar.

As we repeatedly mention, in the thermodynamic limit the
Gibbs inverse temperature equals Boltzmann’s for h < h∗ and
is identically zero for energy densities exceeding h∗. This can
be appreciated by plugging analytic function obtained from
the grand canonical picture into

�(h,a) =
∫ h

−2a

dh′ ω(h,a). (A3)

Using the Laplace method, for ε not too close to 0 we get

�(h,a) ≈
{

Ca2

2|h| [4 − (a−1h)2]L+1, h ∈ [−2a, 0)√
π C 22L+1a, h ∈ (0, 2a]

, (A4)

which, plugged into Eq. (1), gives

βG(h,a) ≈
{

L+1
L

−2a−2h
4−(a−1h)2 ≈ βB(h,a), h ∈ [−2a, 0)

0, h ∈ (0, 2a]
,

where the subscripts in the inverse microcanonical tempera-
tures refer to the Gibbs and Boltzmann pictures. Entirely sim-
ilar results can be obtained numerically for higher dimensions
or for the quantum case considered in the inset of Fig. 4.

APPENDIX B: BOSE-EINSTEIN CONDENSATION

As we mention in Sec. IV, the calculation of the grand
partition function, Eq. (6), for the noninteracting version of the
lattice model in Eq. (2) can be easily carried out analytically.
The result is

Q =
∏

q

π

β(εq − μ)
, (B1)

which gives rise to the average occupation distribution in
Eq. (7). Despite the function in Eq. (7) is not the standard
Bose-Einstein distribution, but rather its classical limit,9 it
still gives rise to condensation. The first of Eqs. (8) and
Eq. (7) can be used to find the chemical potential μ(β,a)
corresponding to a given choice of the particle density a and
inverse temperature β. Plugging the result into Eq. (7) gives
the average occupation of each single-particle state. Note that
the chosen β can have either sign and, in view of the fact that
nq � 0, it must be μ < minq εq for β > 0 and μ > maxq εq
for β < 0. This discontinuity in μ does not necessarily mean

9See note 3.
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FIG. 5. Occupation of the ground and highest-energy state for a
64 × 64 × 64 noninteracting lattice model with a = 1, as provided
by a grand-canonical calculation.

that the system undergoes a phase transition at β = 0, as
argued in Ref. [56]. Indeed, limβ→0± μ(β,a) = ∓∞, so that
limβ→0± −βμ(β,a) = a−1. Thus the grand partition function
Q = πL

∏
q[β(εq − μ)]−1 is not singular for β = 0. The same

is true in the presence of a non pathological interaction
term, such as u1, as it is clear e.g. from the results of the
transfer-matrix approach in Fig. 1 [58].

The above sketched calculation can be easily carried out
numerically. Figure 5 shows the behavior of the relative
occupation of the extremal (kinetic) modes of a noninteracting
discrete model on a 3D lattice, as the inverse temperature
ranges from negative to positive temperatures. Expectedly,
there exists a critical value βC > 0 above which the ground-
state of the system is macroscopically occupied. As we
discussed in Sec. V, owing to the symmetry of the energy
spectrum, the highest-energy state is macroscopically occu-
pied for β < −βC.

In the presence of nonlinear interactions, only one of the
extremal state maintains its extended character, while the other
becomes localized. Since it corresponds to the breaking of
a continuous (phase) symmetry, the condensation into the
extended state occurs at finite β only for d > 2, in agreement
with the Mermin-Wagner theorem. As demonstrated in panel
b) of Fig. 2, for saturable10 nonlinearities the self-trapping
transition occurs at finite β also for d < 3.

The Bogoliubov approach allows the analysis of the
condensation transition at finite interactions. In the following
we sketch the simplest and most standard case, i.e., the
condensation into the uniform ground state for defocusing
nonlinearity and arbitrary interaction term. A more detailed
and general calculation, including the stability of the excited
plane-wave solutions, can be found elsewhere [58]. As usual, in
view of the decoupling of quasimomenta expected in a uniform
system, we consider a perturbation of the ground-state of the

10The analysis of the energy and temperature region in the vicinity of
the extremal localized state is problematic in the case of the standard
nonlinear term u2, because of the pathological scaling of the energy
densities.

form

zr(t) = e−iε0t

{√
aβ + 1√

V

∑
q =0

[bq Uqe
i(q·r−�qt)

+ b∗
q V∗

qe−i(q·r−�qt)]

}
(B2)

and plug it into the equation of motion, retaining only the
linear terms in Uq and Vq. The branch of the resulting exci-
tation spectrum fulfilling the expected normalization relation,
|Uq|2 − |Vq|2 = 1, corresponds to

�q =
√

(εq − ε0)[(εq − ε0) + 2Uaβu′′
j (aβ)] (B3)

and

Uq = Uaβu′′
j (aβ)√

2�q[Uaβu′′
j (aβ) + εq − ε0 − �q]

. (B4)

When the Bogoliubov approximation applies, the interac-
tion strength U is incorporated into the spectrum in Eq. (B3),
and the system is governed by the effectively free Hamiltonian
HB = ∑

q �q|bq|2. One therefore expects that using �q in
place of εq in Eq. (7), the average occupation of the Bogoliubov
modes is obtained, i.e., nq = 〈|bq|2〉. A procedure similar to the
one sketched above for the noninteracting case allows to study
the population aβ of the macroscopically occupied (ground)
state. This is how the solid curve in Fig. 3 has been obtained.
Note that when aβ ≈ 0 the Bogoliubov spectrum coincides
with the single-particle spectrum.

Fourier transforming the perturbed state in Eq. (B2) we get

z̃q = 1√
V

∑
r

eir·qzr

= bqUqe
−i(ε0+�q)t + b∗

−qV∗
−qe

−i(ε0−�−q)t (B5)

and

〈|z̃q|2〉 = 〈|bq|2〉(|Uq|2 + |Vq|2), (B6)

where we assumed that the time average of the terms contain-
ing the phase factors cancel out and that 〈|bq|2〉 = 〈|b−q|2〉, on
account that �q = �−q.

APPENDIX C: BKT TRANSITION

On 2D systems the BKT transition is signalled by a
change in the decay properties of the radial correlations.
Denoting Cr r′ = 〈zrz

∗
r′ 〉, in the defocusing case one expects

a power law decay, Cr r′ ∼ |r − r′|−αβ , for β > βBKT > 0 and
an exponential decay, Cr r′ ∼ e−|r−r′ |/ξβ , for β < βBKT, with
the decay exponent tending to αβ = 1

4 as the critical point
is approached [51,66]. The quantity ξβ is a temperature-
dependent correlation length. The quantity

A�(β) =
∫

|r−r′|<√
�

dr dr′|Cr r′ |2 ∼ �1+σβ , (C1)

where

σβ =
{

1 − αβ β > βBKT

0 β < βBKT

can be used as an indicator for the transition [51].
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In view of the square modulus in the integrand of Eq. (C1)
one expect an entirely similar behavior in the self-focusing
case,

σβ =
{

1 − αβ β < β ′
BKT

0 β > β ′
BKT

,

where β ′
BKT = −βBKT.

This indeed is what we obtain in Fig. 2(a) for self-focusing
saturable interactions. Note in particular that the exponent at
the crossing point of the curves corresponding to different sizes
is very close to the expected value σβ = 3/4.

We analyzed also the defocusing standard nonlinearity
considered in Ref. [51], qualitatively confirming the findings
therein discussed [58]. We recall that the temperature β−1

is expected to diverge as the energy density approaches the
upper bound of the positive-temperature region. We observe
that, conversely, the effective temperature defined in Ref. [51],
TSmall = 2h + aκ − [2Uuj (a) − 8a] tends to a finite value.
For the considered standard nonlinearity we get TSmall =
2Ua2 − (Ua2 − 8a) = Ua2 + 8a.

APPENDIX D: THERMALIZATION AND THERMOMETRY

On sufficiently ergodic systems, the microcanonical (Boltz-
mann) inverse temperature can be obtained as the time average
of a suitable function of the dynamical variables. When the
only first integral of the motion is the total energy, such
function is related to the curvatures of the “energy sheet”
involved in the dynamics [69]. Generalizing this approach to
equations having one further first integral [31], the instanta-
neous microcanonical inverse temperature is obtained as

β(t) = ‖n∧h‖
∇ ·v̄

[
∇ ·

(
v̄

‖n∧h‖
)

− n̄ · (n̄ · ∇)v̄
‖n∧h‖

]
, (D1)

where ∇ is the gradient in the 2V -dimensional Euclidean space
of the real and imaginary parts of the complex dynamical
variables zq and the boldface variables are vectors in the same
space. Specifically

v = h̄ − (h̄ · n̄)n̄, h = ∇H, n = ∇N, (D2)

where H and N are defined in Eqs. (2) and (A2), respectively,
and an overbar denotes a versor, i.e., n̄ = n/‖n‖ and v̄ =
v/‖v‖(‖ · ‖ is the standard Euclidean norm). Clearly, all the
quantities in the r.h.s. of Eq. (D1) depend on the instantaneous
value of the field, so that β(t) = β({zq(t)}). This approach
can be further generalized to equations having more than one
additional first integral [70]. See Refs. [63,64] for similar
approaches.

As we mention in Sec. VI, we find that the dynamics
dictated by the lattice Hamiltonian in Eq. (2) brings the system
to an asymptotic equilibrium state, characterized by well-
defined values of observables such as the interaction or kinetic
energy per particle, or the above-described instantaneous
microcanonical temperature. Specifically, we observe that,
after a transient whose duration depends on the initial state
and the Hamiltonian parameters, the instantaneous value of
said observables oscillates about an asymptotic value. This
allows the definition of time averages as in Eq. (12). Figure 6
shows some instances of the described equilibration process.
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FIG. 6. Instantaneous value of the microcanonical inverse tem-
perature and kinetic energy per particle. Left: 128 × 128 lattice with
saturable nonlinearity at a negative temperature. Figure 7(a) has
been obtained by time averaging the same data in the time window
4 × 104 < tJ h̄ < 8 × 104. Right: 64 × 64 × 64 lattice with standard
nonlinearity at a positive temperature. The rightmost green circle in
Fig. 3 has been obtained by time averaging the same data in the time
window 4 × 104 < tJ h̄ < 8 × 104. In both cases U = 0.75, a = 1.

Typically, we initialize the dynamics on a suitably perturbed
“plane-wave” state, zr = Z(

√
a + ηδδr)ei(r·q+πηϕϕr), where δr

and ϕr are random numbers uniformly chosen in [−1,1], ηδ

and ηϕ control the magnitude of the random perturbations and
Z is a normalization constant enforcing the desired particle
density. It should be noted that unperturbed “plane wave” states
can be either linearly stable or unstable depending on q [43,58].
Plane-waves having an energy close to that of the ground
state are typically stable, and hence the relevant dynamics can
be non ergodic. We checked that a suitable amount of noise
destroys stability, so that equilibrium can be reached also for
small energies. This may require long equilibration times.
Conversely, for unstable plane-wave modes, a vanishingly
small noise is sufficient to trigger a modulational instability
that drives the system away from the initial state very quickly.
We remark that these modulationally unstable states do not
necessarily end up having a negative microcanonical tem-
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FIG. 7. Time-averaged distribution for the occupation of the
single-particle modes in equilibrium states at small |β|. The green
dots refer to the whole lattice, and the yellow dots refer to a
sublattice whose volume is 1/16 of the whole lattice; the slope
of the dashed black (straight) line is the time-averaged value of
the instantaneous microcanonical inverse temperature. The density
plots in the upper insets show the average distribution according to
quasimomentum. The lower insets contain histograms of the values
assumed by the instantaneous inverse temperature in the considered
time window of �t = 4 × 104h̄J −1. In both cases a = 1, U = 0.75,
and the nonlinearity is of the saturable kind. Panels (a) and (b) refer
to 2D 128 × 128 and 256 × 256 lattices, respectively.
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a 128 × 128 lattice with standard nonlinearity, U = 10.0, a = 1.0.
Green dots refer to the single-particle modes: ξq = z̃q and εq = εq −
ε0. We translated the energy spectrum for better comparison with
the orange dots, which refer to the Bogoliubov quasiparticle modes:
ξq = bq and εq = �q. The slope of the black straight line corresponds
to the average microcanonical temperature. The insets are obtained
as in Fig. 7, except that we used a logarithmic scale in the density
plot of the quasimomentum distribution.

perature. Actually, for suitably large densities (or interaction
strengths), the whole band of “plane-wave” modes can give
rise to positive-temperature asymptotic states [56,58].

As we mention in Sec. VI the asymptotic average occu-
pation distribution of the relevant modes of the dynamics
provides a further proof that the system has reached equi-
librium. This is demonstrated in Figs. 7 and 8. The histograms
in the lower insets show that the instantaneous microcanonical
temperature performs small oscillations around an asymptotic
value, while the density plot in the upper insets show
the quasimomentum average distribution. The scatter plots
in the main figure show the average occupation of the
lattice modes. In Fig. 7 the temperature is comparatively
large, and neither extremal state is macroscopically occupied.
Therefore, the prediction of Eq. (7) is fulfilled by single-
particle states. As we discuss in Ref. VI, it is as if the
interaction term simply acts as a heat bath maintaining the
temperature noninteracting system. Note that the prediction of

Eq. (7) applies for both positive and negative microcanonical
temperatures.

Figure 8 illustrates a case where Eq. (7) seems to fail.
It refers to a 2D lattice with strong defocusing nonlinearity,
U = 10.0. The green scatter plot, obtained as in Fig. 7, shows
that the occupation of the single particle modes is “larger than
it should” at small energies, and bends towards the expected
slope, i.e., the slope of the straight black line, only at high
energies. This is because the system is in the condensed phase.
Specifically, the average density is a = 1, while the condensate
fraction is aβ = 〈|z̃0|2〉/(aV ) ≈ 3/4. As apparent from the
orange scatter plot, the prediction of Eq. (7) is recovered
when the Bogoliubov modes are considered. The same results
are obtained for smaller interaction strengths, although the
difference between the two scatter plots is not as dramatic as
in the case presented in Fig. 8.

We observe that the scatter plot of 〈|z̃q|2〉−1 versus εq
deviates from a straight line also when the system condense
into a localized state (not shown). The deviation is significant
for energies close to that of the extremal localized state, while
the scatter plot matches the expected linear behavior at the
opposite end of the spectrum [58]. We expect that the linear
behavior can be recovered on the whole energy spectrum if
Bogoliubov modes are used instead of single-particle modes.
However, owing to the localized character of the extremal state,
the Bogoliubov approach is significantly more involved in this
case. The localized character of the dynamical state might pose
some problem with respect to the thermalization of the whole
lattice and its subsystems. It is indeed clear that a large number
of sublattices can be found which do not feature a localized
density peak. In fact, most of the sublattices would have an
average particle density much smaller than that of the whole
system. We verified that the average distribution for the mode
occupation agrees with Eq. (7) when calculated in a sublattice
not containing the density peak [58].

Finally, we checked that generalizing the grand-canonical
Langevin approach introduced in Ref. [65], where β is an
external parameter, produces results in agreement with the
prediction of Eq. (7) for both positive and negative temper-
atures [58]. This is one further evidence of the equivalence
of the micronanonical and grand canonical ensemble for both
signs of the temperature.
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