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The “double diffusivity” model was proposed in the late 1970s, and reworked in the early 1980s, as a
continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as
grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results
on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary
junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion
equations to represent “regular” and “high” diffusivity paths with “source terms” accounting for the mass
exchange between the two paths. The model remit was extended by analogy to describe flow in porous media
with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature
baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered
diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar
equations could also be derived within an “internal length” gradient (ILG) mechanics formulation applied to
diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics
based formulation of diffusion theory. While being remarkably successful in studies related to various aspects
of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in
the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case
of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time
that is only about one-tenth of the actual experimentally verified time scale. This article provides the “missing
link” in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into account
all boundary layer fluctuations. Our stochastic-ILG diffusion calculation confirms rapprochement between theory
and experiment, thereby benchmarking a new generation of gradient-based continuum models that conform closer
to real-life fluctuating environments.
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I. INTRODUCTION

The subject of material science has traditionally dealt with
hard and soft matter based objects, typically at observable
macroscopic, mesoscopic, and microscopic scales. Until very
recently, most branches of traditional science used to be
expressible within such length scales for which appropri-
ate phenomenological theories have been well established
over time. Atomistic or lattice based approaches have also
been developed and related to molecular dynamics and
quantum mechanical simulation codes have been advanced.
However, the regime between the microscopic and atomic
scale, i.e., the nanoscale regime, especially the length scale
between 5 and 100 nm, still remains a major modeling
challenge.

In particular, the advent of nanocrystalline and ultrafine
grain nanocomposite materials, along with their tremendous
possibilities in material engineering implementations have
challenged all existing conventional and well established
theoretical and experimental realizations. The cause of this
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can be easily attributed to the fact that at manometric
scales, most materials, both soft and hard, often have widely
different physicomechanical and thermochemical properties to
their macroscopic counterparts that prove elusive to existing
scientific analyses.

A simple case in hand is that of diffusion in nanocrystals,
and more generally, in nanocomposites, for which it has
been shown that the diffusivity could be many orders of
magnitude larger than the diffusion constant for bulk lattice
diffusion of mesoscopic and microscopic scale materials [1].
This is in line with other mechanical, electrical, magnetic, and
chemical properties of nanoscopic objects where nanoscale
moduli differ significantly from their macroscale and mi-
croscale equivalents. A compromise between the atomistic and
conventional continuum mechanical engineering modeling
approaches for nanopolycrystals is reviewed in [1], within a
Laplacian based internal length gradient (ILG) generalization
of classical deformation (elasticity, plasticity) and diffusion
theories. A more thorough analysis, including size effects in
chemomechanics and electromechanics, as well as the role of
stochasticity, due to internal stress fluctuations, can be availed
in detail from [2]. This article refrains from explicit discussion
of the role of stochasticity in diffusion at nanoscales, a task
earmarked for the present article.
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Nanoscale diffusion or diffusion in nanopolycrystals in
particular, is viewed as a two-phase process: one through the
bulk and the other across the grain boundary (GB) space. In
the case representing an admixture of two families of grain
boundaries (low and high GBs), depending on the proportion
of the two types of GBs, it may be necessary to account for a
third type of diffusion, a variant of the paradigmatic stochastic
nanodiffusion [3] dynamics. For decreasing grain size, the
density of the triple grain boundary junction (TJ) increases
significantly and then, TJ has also to be identified as a separate
family of high diffusivity paths. In any case, independently of
how one will identify the types of the families of paths available
for diffusion, the mathematical model that we discuss here
distinguishes between only two types of paths: fast and slow.
These two paths with varying rate kinetics are differentiated
by assigning two different diffusivities, thereby allowing mass
transfer of diffusion species between them. For example, in the
case of very small grain sizes (∼10 nm), where a large number
of triple junctions is present, the two types of diffusion may
be identified with GB and TJ, while bulk diffusion may be
neglected as being comparably at a much slower rate. For
severe plastic deformation fabricated polycrystals with larger
grain sizes (∼100 nm), the two types of high diffusivity paths
may be identified with low-angle (equilibrium) and high-angle
(nonequilibrium) grain boundaries which are densely popu-
lated with dislocation and disclination defects. For microscale
polycrystals with even larger grain sizes (∼1 μm), the two
families of diffusion paths are represented by the bulk grain
interior and the surrounding grain boundary space. With the
above interpretation, we focus on modeling a stochastically
enhanced counterpart of the deterministic continuum model
proposed and analyzed in [4–15].

More specifically, we elaborate on the coupled system of
the two partial differential equations proposed in [4], solved
in [6], and thereafter extended in [7,8] to explain double
porosity in media and through [9,10] to describe heat transport
in materials with two temperatures. All of these theoretical
enclaves were eventually implemented in [11–13] to interpret
experimental measurements of diffusion in polycrystals and
nanocrystalline aggregates. Some thermodynamic aspects of
the deterministic double diffusivity model have been relatively
recently discussed in [14], where the approach is probability
based. Phenomenological coefficients have recently been
provided in [15].

From the above discussion, it follows that a vital con-
tributing factor that has remained unattended in the legion
of double diffusivity studies is that of thermally induced
fluctuations arising out of the structural difference between
lattice and grain boundary spacings, especially close to the
boundary layers as also arising out of material imperfections
and structural randomness. In line with the well estab-
lished legion of stochastically forced flow models [16–19]
representing archaic dynamical randomness generated close
to the sheared boundary layers, as also due to structural
imperfections, like crack propagation, this article will explore
this realistic limit of double diffusion, thereby accounting
for all modes of randomness. This will be structured within
the well-knit Langevin formulation of stochastic dynamics
[20,21]. Phenomenologically, this can be seen as an external
stochastic force that is randomly redistributing the relevant

spatial structure, for example, that of the high-diffusivity
paths, in which a stochastic increase (decrease) in temperature
extends (contracts) the interlayer grain boundary distance
between two nanosized grains and thus alters the configuration
of the structural defects (dislocations, disclinations). Such a
multiensembled stochastic reorganization of the lattice space
distribution is sometimes known to create new universality
classes [21,22] as well.

II. THE MODELS

Crack-fracture propagation through wave fronts and dif-
fusion in complex media have long been known to be
complementary physical realizations that can be addressed
using a combination of continuum mechanics and numerical
simulation [21]. ILG, on the other hand, has been established as
a powerful theoretical tool to address stress-strain deformation
aspects in materials, as well as in related thermomechanical,
electromechanical, and chemomechanical processes as also
in complex heterogeneous media [1,2,23]. The role of ran-
domness and some combined deterministic gradient-stochastic
models have been considered in [2,21,23] for “higher-ordered”
deformation models. In contrast, the role of stochasticity
has not been considered appropriately for higher-ordered
diffusion models where uncoupling the two-variable ILG
scheme automatically leads to fourth-ordered (stochastic)
double-diffusivity equations.

Our theoretical structure will combine two models sepa-
rately in which Model 1 will define the spatiotemporal dynam-
ics of each individual phase with respect to the concentration
of the diffusing species in the phase concerned. With reference
to [1], where the deterministic version of this model referred
to bivariate dynamics, we will call this the “nonconserved
double diffusive model” (NDD). Model 2, on the other hand,
will focus on the higher-ordered diffusion equations resulting
from uncoupling the NDD equations which also hold for the
total concentration,i.e., the sum of the two concentrations in
the “slow” and “high” diffusivity paths. Once again, keeping
in mind the origin of its deterministic analog, we will call this
the “conserved double diffusive model”.

A key outcome of this analysis is the fundamentally differ-
ent dynamical structure functions (two-point spatiotemporal
functions) estimated for these two classes of models. This is
highly nontrivial, and a consequence of symmetry violation
due to the stochastic forcing term in these models, since
the deterministic versions of these two classes of models
converged to the same “universality class.”

A. Forced non-conserved double-diffusion (NDD) model

In line with the narrative presented earlier, we will arrive at
the first stochastic gradient nanomechanics (SGNM) model of
nanodiffusion starting from a deterministic Fick’s diffusionlike
model (Model 1, as referred to in [1]). Defining ρ1 and ρ2

as the concentrations of the diffusing species, for example,
in the intercrystalline (IC) and TJ space, respectively, the
stochastically forced Fick’s diffusion model can be written as

∂ρ1

∂t
= D1∇2ρ1 − κ1ρ1 + κ2ρ2 + η1(x,t), (1a)

∂ρ2

∂t
= D2∇2ρ2 + κ1ρ1 − κ2ρ2 + η2(x,t). (1b)
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In Eqs. (1a) and (1b) above, D1 and D2 refer to the diffusion
constants in the IC and TJ phases, respectively, with κ1 and κ2

denoting the respective formation or depletion rate of diffusive
substances at these phases. A negative sign before κi ρi (i =
1,2) would indicate depletion, i.e., loss of diffusion species
“jumping” to the other “phase” while a positive sign would
indicate replenishment of that particular phase. In the given
form above, the deterministic concentration abides a certain
conservation law (detailed below) with ηi(x,t) (i = 1,2) being
the white thermal noise perturbing this dynamics and is defined
as follows:

〈ηi(x,t)〉 = 0, (2a)

〈ηi(x,t) ηj (x′,t ′)〉 = 2δij γi δd (x − x′)δ(t − t ′), (2b)

where d represents the spatial dimension and γi (i = 1,2) are
the noise strengths corresponding to η1 and η2, respectively.

B. Forced conserved double diffusion model

Using a series of transformations, τ = 1
κ1+κ2

, D =
τ (κ1D2 + κ2D1), c∗ = τ (D1 + D2)/D and c = −τD1D2/D,
as detailed in [1], the deterministic model corresponding to
Eqs. (1a) and (1b) (for the noiseless case ηi = 0) can be easily
shown to abide by a conservation law in a scaled variable set
defined as follows:

∂tρ + τ∂t
2ρ = D∇2ρ + c∗D∂t∇2ρ + cD∇4ρ. (3)

This fourth-order equation containing, in addition to the
classical Fick’s law, a second time derivative inertial or
“telegrapher” term (τ∂t

2ρ), a third-order mixed spatiotemporal
or pseudoparabolic term (c∗D∂t∇2ρ), and a fourth-order
spatial or biharmonic term (cD∇4ρ) is obtained by uncoupling
Eqs. (1a) and (1b) with η2 = 0. It holds for both individual
concentrations ρ1 and ρ2, as well as for its sum ρ = ρ1 + ρ2,
i.e., the total concentration. The boundary layer fluctuation
and random structural imperfection perturbed stochastic model
can be derived from the deterministic model defined in
Eq. (3) as a stochastically forced model with an additive
(uncorrelated white) noise. The corresponding root-mean-
square spatiotemporal “width” will define the spatiotemporal
evolution of the interface separating the two phases. The
resultant model (Model 2, as referred to in [1]) is defined
below:

∂tρ + τ∂t
2ρ = D∇2ρ + c∗D∂t∇2ρ + cD∇4ρ + η(x,t),

(4)
where ρ(x,t) is the mass density of the separation width of the
two phases, in which τ = 1

κ1+κ2
, D = τ (κ1D2 + κ2D1), c∗ =

τ (D1+D2)
D

, c = −τ D1D2
D

, and η(x,t) is the stochastic fluctuation.
For the special case for which D1 = D2 = D in Eqs. (1a)

and (1b) give

∂tρ = D∇2ρ, (5)

that is a simple diffusion equation in the variable ρ = ρ1 +
ρ2. One must note that both spatiotemporal and reflection
conservation as inherent to Eq. (4) will be lost in the presence of
a nonzero noise which is our starting model. Instances of such
general applications of a double diffusion model in analyzing

the heterogeneous growth process have also been explored
[24,25].

In the following sections, we will separately analyze the
single phase dynamics of the respective IC and TJ concen-
trations (Model 1) by estimating autocorrelation functions
of the variables ρ1 and ρ2, respectively, from Eqs. (1a) and
(1b). These individual autocorrelations will then be compared
against the autocorrelation evaluated from Eq. (4) that defines
the dynamics of the total concentration. The following sections
will then estimate the spatiotemporal dynamics of the interface
in the presence of noise from estimation of the spatiotemporal
correlation functions. This later part of the analysis will be
compared against separate “thin”-and “thick”-film conditions
as detailed in [1] to establish the importance of the stochastic
contribution.

III. PHASE EVOLUTION DYNAMICS OF THE
NDD MODEL

The primary focus in this section will be the evaluation of
the individual phase dynamics of the IC and TJ phase variables
ρ1 and ρ2 of the NDD model. Our starting point here will be the
Fourier transformation of the core model presented in Eqs. (1a)
and (1b), defined by variables (k,ω) of Eqs. (1a) and (1b) to
arrive at the following matrix form:

M
(

ρ̂1

ρ̂2

)
=

(
η̂1

η̂2

)
, (6)

where the matrix M is defined as

M =
(−iω + D1k

2 + κ1 −κ2

−κ1 −iω + D2k
2 + κ2

)
.

Here ρ̂1 and ρ̂2 represent the Fourier transformed version of
the (ρ1,ρ2) variables in the (k,ω) space [(3+1) dimensional]
while the Fourier transforms themselves abide by the following
generic form:

ψ(x,t) =
∫

ddk
∫

dω ψ̂(k,ω)e(ik.x−ωt), (7)

where ψ generically represents either ρi or ηi . From Eq. (6),
we get (

ρ̂1

ρ̂2

)
= M−1

(
η̂1

η̂2

)
. (8)

This inverse of the matrix M takes the form

M−1 =
(

M1 M2

M3 M4

)
,

where

M1 = −iω2 + k2D2 + κ2

−κ1κ2 + (−iω2 + k2D1 + κ1)(−iω2 + k2D2S + κ2)
,

M2 = κ2

−κ1κ2 + (−iω2 + k2D1 + κ1)(−iω2 + k2D2S + κ2)
,

M3 = κ1

−κ1κ2 + (−iω2 + k2D1 + κ1)(−iω2 + k2D2S + κ2)
,

M4 = −iω2 + k2D1 + κ1

−κ1κ2 + (−iω2 + k2D1 + κ1)(−iω2 + k2D2S + κ2)
.
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As like in any stochastically driven model [17,19], in
the stochastically ensemble-averaged state, the measurables
will be the (Brownian) root-mean-square averaged quanti-
ties of their deterministic equivalents. The corresponding
mean energy dissipation rate in such an ensemble-averaged
state is thus defined as the time-averaged kinetic term
1
2 〈∂tρi(x,t) ∗ ∂tρi(x,t)〉 (i = 1,2) that necessitates evaluation
of the following two autocorrelation functions:

ρrms
1 =

√〈
ρ2

1 (x,t)
〉
, (9a)

ρrms
2 =

√〈
ρ2

2 (x,t)
〉
, (9b)

and a complementary set of cross-correlation functions given
by

ρrms
12 =

√
〈ρ1

∗(x,t)ρ2(x,t)〉 = √〈ρ1(x,t)ρ∗
2 (x,t)〉. (10)

In the above, the superscript “rms” stands for the root
mean squares of the respective quantities under consideration
post the stochastic (Brownian) average that is indicated by
the “〈·〉” sign, while ρ∗

i is the complex conjugate of ρi .
The cross-correlations of the quantities with their complex
conjugates emphasize the importance of the attenuation term in
the dynamics (complex quantity); the fluctuation-dissipation
theorem is always implicitly assumed in such analyses. In
this work, we will assume noise cross-correlation to be zero
(that is, uncorrelated) and hence ρrms

12 = 0. The rms quantities
are the ones of our interest, as this is what an experimental
measurement will see, an allusion to the classical Brownian
dynamics [21].

Equations (9a) and (9b) can be explicitly written as

(
ρrms

1

)2 =
∫

ddk
∫

dω〈ρ1(k,ω)ρ∗
1 (−k, − ω)〉,

(
ρrms

2

)2 =
∫

ddk
∫

dω〈ρ2(k,ω)ρ∗
2 (−k, − ω)〉. (11)

A. Phase autocorrelation and cross-correlation

Equation (8) can be solved to obtain the autocorrelation
functions in the k − ω space:

〈ρ1(k,ω) ρ∗
1 (−k,−ω)〉 = 2γ1[ω4 + (D2k

2 + κ2)
2
] + 2γ2κ

2
2

ζn

,

(12a)

〈ρ2(k,ω) ρ2
∗(−k,−ω)〉 = 2γ2[ω4 + (D1k

2 + κ1)
2
] + 2γ1κ

2
1

ζn

,

(12b)

where the quantity ζn = (ω4 + D2
2k

4)[ω4 + (D1k
2 + κ1)

2
] +

2{κ1ω
4 + D2k

2[ω4 + D1k
2(D1k

2 + κ1)]}κ2 + (ω4 + D2
1k

4) κ2
2

defines the pole structure and hence possible discontinuities
in the spectral dynamics.

The Fourier transformed cross-correlation is even more
interesting in that it shows a complex form in which the
complex part represents attenuation. The structure looks as
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FIG. 1. Variation of the autocorrelation function ρrms
1 or ρrms

2

against the average scaled diffusivity D (assumption D1 = D2 = D,
scaling factor 10−10). The dots represent the actual data points
obtained from a numerical solution of Eq. (15b) for the parameter
set κ1 = 1, κ2 = 0.001 for identical noise strengths γ1 = γ2 = 1
(coefficient values are all scaled dimensionless numbers, based on
[11]). Results indicate a monotonic decay with D.

follows:

〈ρ1(k,ω)ρ∗
2 (−k, − ω)〉

=
[

2γ1κ1(D2k
2 + κ2) + 2γ2κ2(D1k

2 + κ1)

ζn

]

+ i

[
2γ1ω

2κ1 + 2γ2ω
2κ2

ζn

]
. (13)

For γ1 = γ2, as shown in Fig. 1, the ρ1 and ρ2 plots merge
with each other.
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FIG. 2. Variation of the autocorrelation function ρrms
1 (represented

by circles) or ρrms
2 (represented by squares) against the average scaled

diffusivity D (assumption D1 = D2 = D, scaling factor 10−10) for
anisotropic noise case: γ1 = 1 and γ2 = 2. Results are obtained from
a numerical solution of Eqs. (15a) and (15b), respectively, for ρrms

1

and ρrms
2 for κ1 = 1 and κ2 = 0.001. Coefficient values are all scaled

dimensionless numbers, based on [11].

052134-4



DOUBLE DIFFUSIVITY MODEL UNDER STOCHASTIC FORCING PHYSICAL REVIEW E 95, 052134 (2017)

The following section alludes to the derivation of the
spectral dynamics in the Fourier transformed space that
could be easily encapsulated with the descriptions of the
autocorrelation and cross-correlation functions, the former
representing the “self-energy” structure while the latter relates
to the “spatiotemporal” interaction of sites.

In order to solve for both auto- and cross-correlation
functions, we will need to evaluate Eqs. (12b) and (13)
around the poles which are defined through the eighth
degree polynomial equation ζn(ω) = 0, where the roots of
the equation will be given by ω = �i (i = 1,2, . . . ,8). These

poles are given in detail in the Appendix. The nature of the
complexity of the analytical structure can be gauged even from
the simplified special case of D1 = D2, represented by the
equation ζn = (ω + i�0)4(ω − i�0)4 = 0, where

�0 ≈ 1

21/4
[2D2k4 + 4Dk2(κ1 + κ2) + 2(κ1 + κ2)2]

1/4
.

(14)
Within the ambits of this assumption (D1 = D2 = D), we

arrive at the root-mean-squared autocorrelation functions for
spatial dimension d = 3 as follows:

ρrms
1 =

√
2π2

∫
dk k2

{
5γ2κ

2
2 + γ1

[
5D2k4 + �4

0 + 5κ2(2Dk2 + κ2)
]}

8�7
0

, (15a)

ρrms
2 =

√
2π2

∫
dk k2

{
5γ1κ

2
1 + γ2

[
5D2k4 + �4

0 + 5κ1(2Dk2 + κ1)
]}

8�7
0

. (15b)

It is interesting to note that for D1 = D2, the deterministic versions of Eqs. (1a) and (1b) involving ρ1,ρ2 obey Eq. (4) for a
special form of the constants while ρ1 + ρ2 still abides by Fick’s law; however, if D1 	= D2, then both ρ1, ρ2, and also ρ1 + ρ2

obey Eq. (4). The answer lies in the average energy dissipation rates of each of the two phases (IC and TJ) in the thermally driven
system; these rates are equal to each other with exact values calibrated against the system parameters (D,κ1,κ2) involved. We
should emphasize here that the simplifying assumption (D1 = D2 = D) used in arriving at the above result in no way sullies
the implication of this analysis. For all realistic experimental observations [11,12] concerning double diffusivity, including its
application in explaining the oxygen diffusivity in barium superconductors [13], the two diffusive constants typically differ
by about three orders of magnitude whose exact correlation forms can be analyzed using the representations in the Appendix.
Figure 1 uses identical noise strengths γ1 = γ2 = 1.

For anisotropic noise, the equivalent representation is provided in Fig. 2.

B. Spatial correlation of phases

In this section, our attention will be focused on evaluating how the concentration of each phase changes with spatial distance
in the dynamical equilibrium limit for spatial dimension d = 3. Mathematically, this implies evaluation of the respective spatial
correlation functions of each phase for all times and then taking ensemble averages over all noise realizations.

By definition, we have

[
ρrms

i (r)
]2 = 〈ρi(x,t) ∗ ρi(x + r,t)〉

=
∫

d3k
∫

dω e−i·r〈ρi(k,ω)ρ∗
i (−k − ω)〉

= 2π2
∫

dk kJ0(kr)
∫

dω〈ρi(k,ω)ρ∗
i (−k − ω)〉

= 8π3D

∫
dk kJ0(kr)

{
5γ2κ

2
2 + γ1

[
5D2k4 + �4

0 + 5κ2(2Dk2 + κ2)
]}

8�7
0

, (16)

where J0(x) represents the zeroth-order Bessel function for the scalar variable x and i = 1,2. The above Eq. (16) leads to the
following density expression for both phases as given below:

ρrms
1 (r) =

√
8π3D

∫ km

k0

dk kJ0(kr)

{
5γ2κ

2
2 + γ1

[
5D2k4 + �4

0 + 5κ2(2Dk2 + κ2)
]}

8�7
0

, (17a)

ρrms
2 (r) =

√
8π3D

∫ km

k0

dk kJ0(kr)

{
5γ1κ

2
1 + γ2

[
5D2k4 + �4

0 + 5κ1(2Dk2 + κ1)
]}

8�7
0

, (17b)

where k0 and km refer to the minimum and maximum of the wave vector k (measured as the inverse of the characteristic system
length). In our numerical solution, as shown in Fig. 4, we have chosen k0 = 0 and km = 10 000. The plots shown in Fig. 3 remain
mostly unaffected by the specific choice of k0 and km. This can be easily seen from a cross-check of the integration kernels given
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in Eqs. (17a) and (17b) in the limit k → large, as given below:

ρrms
1 (r)k→large =

√
8π3D

∫ km

k0

dk kJ0(kr)

[∣∣∣∣π2
{
5γ2κ

2
2 + γ1

[
5κ2

2 + 2(κ1 + κ2)8
]}

8 × 23/4(κ1 + κ2)14

∣∣∣∣
]
, (18a)

ρrms
2 (r)k→large =

√
8π3D

∫ km

k0

dk kJ0(kr)

[∣∣∣∣π2
{
5γ1κ

2
1 + γ2

[
5κ2

1 + 2(κ1 + κ2)8
]}

8 × 23/4(κ1 + κ2)14

∣∣∣∣
]
. (18b)

Within a very short interval, contributions to the correlation functions from such large-spatial separations can be seen to decay to
zero as shown in Fig. 3. This confirms the convergence of the integrals in Eqs. (17a) and (17b). Figure 3 validates the convergence
of Eq. (17a); a similar analysis could be repeated for Eq. (17b) in the limit of k → large to establish a similar convergence. It must
be remembered, though, that ρrms

1 = ρrms
2 is a result of our assumption D1 = D2; the correlations will have different values for

the different phases for D1 	= D2, the precise nature of which can be estimated from the expressions presented in the Appendix.
Once again, for the isotropic case (γ1 = γ2), as shown in Fig. 4, the ρ1 and ρ2 plots merge with each other.

In order to get a feel for the functional dependence of the spatial correlation function for the “nondegenerate” case D1 	= D2,
the relevant correlation functions can be approximately shown to be as follows (details in the Appendix):

ρrms
1 (r) ≈

√
8π3Dav

∫ km

k0

dk kJ0(kr)

{
5γ2κ

2
2 + γ1

[
5D2

avk
4 + �4

av + 5κ2(2Davk
2 + κ2)

]}
8�7

av

, (19a)

ρrms
2 (r) ≈

√
8π3Dav

∫ km

k0

dk kJ0(kr)

{
5γ1κ

2
1 + γ2

[
5D2

avk
4 + �4

av + 5κ1(2Davk
2 + κ1)

]}
8�7

av

, (19b)

where Dav = D1+D2
2 and �av = − [−T1−k2D1(2κ1+T2)−(κ1+κ2)(κ1+κ2+T2)−k2D2(2κ2+T2)]

1/4

21/4 , with T1 = k4(D2
1 + D2

2) and T2 =√
[k2(D1 − D2) + κ1]2 + 2[k2(D2 − D1) + κ1]κ2 + κ2

2 .

For the special case of γ1 = γ2 = 1, comparing with the “degenerate” case D1 = D2 = 10−9, we arrive at a very similar
functional behavior for the nondegenerate case as well.

In Fig. 4, we show how the spatial correlation saturates with increasing separation distance, for the case γ1 = γ2. In order
to portray the situation for the case of anisotropic noise (γ1 	= γ2), below we plot Fig. 5. While the qualitative features remain
unchanged, due to a large γ2 = 2γ1, the saturation level of ρrms

2 can be seen to be way above ρrms
1 , although the crossover point

remains roughly unchanged. This feature clearly suggests that noise anisotropy is not a qualitatively devolving feature of this
dynamics.

Unlike the deterministic case (as in [1]), the dynamical equilibrium of the thermal noise driven two-phased system stabilizes
to the same spatial concentration spread for both phases. This clearly suggests a difference at the qualitative level, as well as
obvious quantitative differences (compared to [1]).

C. Temporal correlation of phases

It is well known that a fundamental consideration in multiphase systems is the time evolution of the interface separating two
different phases. Often such systems are known to be stochastically perturbed and hence nonequilibrium in nature, potentially
rendering the relevant dynamics as oscillatory, or with oscillatory-rotatory instability leading to chaos [26]. Phase control through
synchronization driving such systems away from the chaotic bifurcation point has in fact benchmarked the hare-lynx model in
ecology [27].

By analogy with two-phase systems, we calculate below the theoretical quantities which, in principle, can be compared with
the experimental setups describing the temporal correlation dynamics. In the present case, the relevant variables necessary to
model such a stochastically driven two-phase system are ρrms

i (T ), which are encapsulated in the following equations:

[
ρrms

i (T )
]2 = 〈ρi(x,t) ∗ ρi(x,t + T )〉 =

∫
d3k

∫
dω e−iωT 〈ρi(k,ω) ρ∗

i (−k − ω)〉, (20)

for i = 1,2. Our next target is to estimate the two-point temporal correlation functions, as the first-order euphemism of the
probability density function (also connected to the fluctuation-dissipation theorem [21]).

Calculating as before, we obtain these two-point correlation functions as follows:

[
ρrms

1 (T )
]2 = γ1π

3

3

∫
dk

(
k2

�7
0

)
e−T �0

({15 + T �0[15 + T �0(6 + T �0)]}γ2κ
2
2 + γ1

[
�4

0{3 + T �0[3 + T �0(−6 + T �0)]}

+D2k4{15 + T �0[15 + T �0(6 + T �0)]} + κ2{15 + T �0[15 + T �0(6 + T �0)]}(2Dk2 + κ2)
])

, (21a)
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[
ρrms

2 (T )
]2 = γ2π

3

3

∫
dk

(
k2

�7
0

)
e−T �0

({15 + T �0[15 + T �0(6 + T �0)]}γ1κ
2
1 + γ2

[
�4

0{3 + T �0[3 + T �0(−6 + T �0)]}

+D2k4{15 + T �0[15 + T �0(6 + T �0)]} + κ1{15 + T �0[15 + T �0(6 + T �0)]}(2Dk2 + κ1)
])

. (21b)

A remarkable feature of the temporal correlation function
plot as shown in Fig. 7 is the relatively low effect of the
noise (an)isotropy compared to the spatial cases (Fig. 6). The
other aspect of these temporal correlation functions shown in
Eqs. (21a) and (21b) is the tremendous stability with regard
to noise fluctuations. In our simulations, we sampled across a
wide range of noise strengths 10−2 < D < 10−9 to find that
the results shown in Fig. 7 remain unaffected by the value of D,

as long as the stability condition kmin >
√

D
λ2

is obeyed, where

kmin is the minimum allowed value of the wave vector k.
In the analysis above, we have deliberately refrained from

going into the details of the cross-correlation description, both
for the spatial as well as the temporal cases. While qualitatively
the presence of an imaginary part in the correlation function
indicates attenuation, the subject will be dealt with in more
detail separately.

IV. NANODIFFUSION SPATIOTEMPORAL DYNAMICS

In order to compare nanodiffusion transport between the
present thermally driven model and the paradigmatic Aifantis
model [1], we will now calculate the spatiotemporal dynamics
of the concentration fields ρ1, ρ2, and ρ = ρ1 + ρ2, based
on Model 2, starting from the conserved SGNM model
previously defined in Eq. (4). The corresponding solution of
the phase concentrations as shown in [1] will be compared
with its thermally driven counterpart for periodic boundary
conditions. As always, in the context of stochastic Brownian-
type statistics, individual dynamical variables give way to their
corresponding rms. counterparts. Starting from Eq. (4) and
using λ1 = c∗D and λ2 = cD, we can rewrite the model as

∂tρ + τ∂t
2ρ = D∇2ρ + λ1∂t∇2ρ + λ2∇4ρ + η(x,t). (22)

2 4 6 8 10
Displacement r

−3

−2

− 1

1

2

3

ρ1rms (r)

α1

FIG. 3. Variation of the spatial correlation function Cr =
ρrms

1 (r) = ρrms
2 (r) against displacement r for large k (assumption

D1 = D2 = D = 10−9). The plot is obtained from a numerical
solution of Eqs. (18a) and (18b) for the parameter rescaled version

(where α1 = − π2{5γ2κ2
2 +γ1[5κ2

2 +2(κ1+κ2)8]}
8×23/4(κ1+κ2)14 ) for identical noise strengths

γ1 = γ2 = 1 (coefficient values are all scaled dimensionless numbers,
based on [11]).

Fourier transformation of the above Eq. (22) in the k − ω space
gives

ρ̂(k,ω) = η̂(k,ω)

−iω(1 + γ1k2) + (Dk2 − τω2 − γ2k4)
. (23)

The above Eq. (23) has four poles at ω = ωi (i = 1,2,3,4),

such that ωi = ±
√

T1 ±
√

T2

2τ 2 , in which T1 = − 1
2τ 2 + Dk2

τ
−

λ1k
2

τ 2 − λ2
1k

4

2τ 2 − λ2k
4

τ
, T2 = (1 − 2Dk2τ + 2λ1k

2 + λ2
1k

4 +
2k4τλ2)2 − 4τ 2(D2k4 − 2Dλ2k

6 + λ2
2k

8). To simplify
calculations through a reduced model, we study the case for
an overdamped system where τ → 0.

In this limit, the two poles turn out as ±i�, where � =
k2(D−λ2k

2)
1+λ1k2 . This gives the autocorrelation function as

ρrms
auto =

√√√√2π2γ0

∫ ∞
√

D/λ2

k
√

1 + λ1k2√
Dk2 − λ2k4

dk, (24)

where γ0 is the strength of the Gaussian white noise.
A comparison between Eqs. (15a), (15b), and (24) allows

us to compare the quantitative difference between individual
concentrations with individually added noise as against their
total concentration with an overall added noise from the per-
spective of the energy dissipation rate. This will be separately
evaluated through the spatial autocorrelation function and the

FIG. 4. Variation of the spatial correlation function Cr =
ρrms

1 (r) = ρrms
2 (r) against displacement r (assumption D1 = D2 =

D = 10−9). The plot is obtained from a numerical solution of
Eqs. (17a) and (17b) for the parameter set κ1 = 1, κ2 = 0.001 for
identical noise strengths γ1 = γ2 = 1 (coefficient values are all scaled
dimensionless numbers, based on [11]). The circles represent the
real data points (the saturation region is represented by multiple
close-lying circles doubling up as a thick solid straight line) while
the solid straight line is the extrapolated fit.
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FIG. 5. Variation of the spatial correlation function Cr for the
variables ρrms

1 (r) (represented by circles) or ρrms
2 (r) (represented

by crosses) against the separation distance r (assumption D1 =
D2 = D = 10−9) for the anisiotropic noise case: γ1 = 1 and γ2 = 2.
Results are obtained from a numerical solution of Eqs. (17a) and
(17b) for κ1 = 1 and κ2 = 0.001. Coefficient values are all scaled
dimensionless numbers, based on [11]. The saturation regimes for
both plots are represented by multiple close-lying symbols—circles
or crosses, as the case may be—giving them the appearance of a thick
line.

temporal autocorrelation function [definitions as in Eqs. (16),
(21a), and (21b)] that are defined as per [28–31] as follows:

Cr = ρrms(r)

=
√√√√2π3γ0

∫ ∞
√

D/λ2

dk
kJ0(kr)

√
1 + λ1k2√

Dk2 − λ2k4
− ρrms

auto,

(25a)

FIG. 6. Variation of the spatial correlation functions Cr =
ρrms

1 (r) against displacement r for the degenerate case (D1 =
D2 = 10−9; represented by dots) versus the nondegenerate case
(D1 = 2D2, D2 = 10−9; represented by circles). The plot is ob-
tained from a numerical solution of Eqs. (19a) and (19b) for
the parameter set κ1 = 1, κ2 = 0.001 for identical noise strengths
γ1 = γ2 = 1 (coefficient values are all scaled dimensionless numbers,
based on [11]).

FIG. 7. Variation of the temporal correlation function CT for the
variables ρ1(T ) and ρ2(T ) against the time difference T (assump-
tion D1 = D2 = D = 10−9). The circles and crosses, respectively,
represent ρrms

1 (T ) and ρrms
2 (T ) for the special case γ1 = γ2 = 1

while the corresponding anisotropic noise cases (γ1 = 1, γ2 = 2)
are represented by the solid line and dots, respectively. Results are
obtained from a numerical solution of Eqs. (21a) and (21b) for κ1 = 1
and κ2 = 0.001. Coefficient values are all scaled dimensionless
numbers, based on [11,12].

CT = ρrms(T )

=
√√√√8π2γ0

∫ ∞
√

D/λ2

dk e−T �(k,ω) k
√

1 + λ1k2√
Dk2 − λ2k4

− ρrms
auto.

(25b)

Figure 8 shows a periodic stabilizing pattern which is
distinctly different from either Fig. 4 or Fig. 5. This is most
remarkable since the deterministic description does not show
any qualitative difference between the two-phase model and
its equivalent single-phase description [11]. The temporal
description (Fig. 9) too shows qualitatively distinctive features
compared to Fig. 7. Figure 9 indicates a sharp rise toward a sat-
uration concentration density, a case of finite-sized saturation
effect, as opposed to the decaying pattern represented in the

2 4 6 8 10 r
248.92

248.94

248.96

248.98

249.00

Cr

FIG. 8. Variation of the spectral correlation function Cr against
the separation distance r (assumption D1 = D2 = D = 10−1, γ0 =
1). Results are obtained from a numerical solution of Eq. (25a) for
λ1 = λ2 = 1.
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2 4 6 8 10 T

280.86

280.88

280.90

280.92

CT

FIG. 9. Variation of the spectral correlation function CT against
the time difference T (assumption D1 = D2 = D = 10−1, γ0 = 1).
Results are obtained from a numerical solution of Eq. (25b)
for λ1 = λ2 = 1.

anisotropic case in Fig. 7. In order to magnify the quantitative
impact, we used a larger noise value D = 10−1 in arriving at
these plots; however, the choice of the actual value does not
impact the qualitative feature in any way, as the model remains
remarkably stable to noise perturbations [detailed earlier after
Eqs. (19a) and (19b)]. In fact, the quantitative corrections are
less than 1% with every order change in noise [using formulas
in Eqs. (25a) and (25b)[, reconfirming the noise amplitude
independence of the dynamics. Here we must indicate, though,
that while the dynamics is largely unaffected by changes in the
noise amplitude, the noise distribution function is expected to
be vitally important to the dynamics, a feature that is presently
being studied for future publications.

This reduced model has a cutoff at k =
√

D
λ2

which defines

its validity regime. We postpone analysis of the full model,
including a nonzero τ , as defined in Eq. (22) for a later work.

V. CONCLUSION

In this article, we have provided an initial analysis of
the continuum double diffusivity model under stochastic
forcing. Stochasticity is introduced separately as a white
thermal noise, either in a Fick class of equations describing
the concentrations in each type of diffusion path, or in a
higher-order equation for the total concentration. Comparisons
between the two cases have been made by comparing the
respective classes of spatiotemporal cross-correlations and
autocorrelations.

The autocorrelation plots in Figs. 1 and 2 conform qual-
itatively to predictions based on the deterministic double
diffusivity models [11–13]; although the amplitudes are higher
due to additional energy inputs through stochastic forcing. It
is pertinent to remember that the root-mean-squared forms
of the respective autocorrelation forms are the dimensional
equivalents of the corresponding quantities in the deterministic
models in [2,11–13] and hence could be compared on a
term-by-term basis. As to the cross-correlation terms in the
spatiotemporal dynamics (Figs. 3–7), the stochastic model
ushers in a new regime of description where stochasticity me-
diates off-diagonal, often asymmetric forcing across multiple
variables even at the first Gaussian approximation order. While
this is very much an expected part of real-life nanodynamic
processes, the deterministic double diffusivity model failed to
capture this aspect that we have successfully made now. The
results are verifiable using experimental data.

An important aspect of this analysis is the relative indepen-
dence of both spatial and temporal correlation functions to the
stochastic fluctuations. Over a wide range of noise strengths
(10−9 < D < 10−2), the correlation functions showed no
qualitative change and very little quantitative change, thereby
confirming the stability of this model to noise perturbations.
This indirectly explains why some past theories [11–13]
have managed to arrive at experimental results reasonably
accurately for some cases while faltering in others.

In summary, we point out some interesting features that
stochasticity brings into the double diffusivity model, compar-
ing existing deterministic terms against the relative stochastic
forcing. This is only a first step toward integrating the double
diffusivity properties with real-life fluctuations that could
modulate the process. As this model and the corresponding
higher-order diffusion equation have been shown to effectively
interpret transport in heterogeneous media possessing more
than one family of conduction paths, as well as transport
phenomena at the nanoscale, more detailed analysis focusing
on the precise nature of randomness, e.g., forcing through
non-Gaussian noise, as well as also delving deeper into the
microscopic dynamics of the process, will be pursued in the
next set of publications.
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APPENDIX: POLES OF THE AUTOCORRELATION FUNCTION

The poles of the autocorrelation function as defined in Eq. (12b) can be obtained as follows:

�1 = − (−T1 − k2D1(2κ1 + T2) − (κ1 + κ2)(κ1 + κ2 + T2) − k2D2(2κ2 + T2))1/4

21/4
, (A1a)

�2 = −i
(−T1 − k2D1(2κ1 + T2) − (κ1 + κ2)(κ1 + κ2 + T2) − k2D2(2κ2 + T2))1/4

21/4
, (A1b)

�3 = i
(−T1 − k2D1(2κ1 + T2) − (κ1 + κ2)(κ1 + κ2 + T2) − k2D2(2κ2 + T2))1/4

21/4
, (A1c)
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�4 = (−T1 − k2D1(2κ1 + T2) − (κ1 + κ2)(κ1 + κ2 + T2) − k2D2(2κ2 + T2))1/4

21/4
, (A1d)

�5 = − (−T1 + k2D1(−2κ1 + T2) + (κ1 + κ2)(−κ1 − κ2 + T2) + k2D2(−2κ2 + T2))1/4

21/4
, (A1e)

�6 = −i
(−T1 + k2D1(−2κ1 + T2) + (κ1 + κ2)(−κ1 − κ2 + T2) + k2D2(−2κ2 + T2))1/4

21/4
, (A1f)

�7 = i
(−T1 + k2D1(−2κ1 + T2) + (κ1 + κ2)(−κ1 − κ2 + T2) + k2D2(−2κ2 + T2))1/4

21/4
, (A1g)

�8 = (−T1 + k2D1(−2κ1 + T2) + (κ1 + κ2)(−κ1 − κ2 + T2) + k2D2(−2κ2 + T2))1/4

21/4
, (A1h)

where T1 = k4(D2
1 + D2

2) and T2 =
√

[k2(D1 − D2) + κ1]2 + 2[k2(D2 − D1) + κ1]κ2 + κ2
2 .

[1] E. C. Aifantis, Gradient nanomechanics: Applications to de-
formation, fracture, and diffusion in nanopolycrystals, Metall.
Mater. Trans. A 42, 2985 (2011).

[2] E. C. Aifantis, Internal length gradient (ILG) material mechanics
across scales and disciplines, Adv. Appl. Mech. 49, 1 (2016).

[3] A. K. Chattopadhyay and E. C. Aifantis, Stochastically forced
dislocation density distribution in plastic deformation, Phys.
Rev. E 94, 022139 (2016).

[4] E. C. Aifantis, Continuum basis for diffusion in regions with
multiple diffusivity, J. Appl. Phys. 50, 1334 (1979).

[5] E. C. Aifantis, A new interpretation of diffusion in high
diffusivity paths—A continuum approach, Acta Metall. 27, 683
(1979).

[6] E. C. Aifantis and J. M. Hill, On the theory of diffusion in
media with double diffusivity I—Basic mathematical results, Q.
J. Mech. Appl. Math. 33, 1 (1980); On the theory of diffusion in
media with double diffusivity II—Basic mathematical results,
33, 23 (1980).

[7] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech.
37, 265 (1980).

[8] E. C. Aifantis, On Barenblatt’s problem, Int. J. Eng. Sci. 18, 857
(1980).

[9] E. C. Aifantis and D. E. Beskos, Heat extraction from hot dry
rocks, Mech. Res. Commun. 7, 165 (1980).

[10] E. C. Aifantis, Further comments on the problem of heat
extraction from hot dry rocks, Mech. Res. Commun. 7, 219
(1980).

[11] D. A. Konstantinidis, I. E. Eleftheraidis, and E. C. Aifantis, On
the experimental validation of the double diffusivity model, Scr.
Mater. 38, 573 (1998).

[12] D. A. Konstantinidis and E. C. Aifantis, Further experimental
evidence of the double diffusivity model, Scr. Mater. 40, 1235
(1999).

[13] D. A. Konstantinidis, I. E. Eleftheraidis, and E. C. Aifantis,
Application of double diffusivity model to superconductors, J.
Mater. Process. Technol. 108, 185 (2001).

[14] S. Forest and E. C. Aifantis, Some links between recent gradient
thermo-elasto-plasticity theories and the thermomechanics of
generalized continua, Int. J. Solids Struct. 47, 3367 (2010).

[15] A. Kalampakas and E. C. Aifantis, Random walk of graphs:
An application to the double diffusivity model, Mech. Res.
Commun. 43, 101 (2012).

[16] D. Forster, D. R. Nelson, and M. J. Stephen, Large-distance and
long-time properties of a randomly stirred fluid, Phys. Rev. A
16, 732 (1977).

[17] C. DeDominicis and P. C. Martin, Energy spectra of certain
randomly stirred fluids, Phys. Rev. A 19, 419 (1979).

[18] V. Yakhot and S. A. Orszag, Renormalization-Group Analysis
of Turbulence, Phys. Rev. Lett. 57, 1722 (1986).

[19] A. K. Chattopadhyay and J. K. Bhattacharjee, Wall-bounded
turbulent shear flow: Analytic result for a universal amplitude,
Phys. Rev. E 63, 016306 (2000).

[20] H. Risken, The Fokker-Planck equation: Methods of solution
and applications (Springer, New York, 2013).

[21] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, UK, 1991).

[22] M. C. Cross and P. C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[23] E. C. Aifantis, Gradient material mechanics: Perspectives and
prospects, Acta Mech. 225, 999 (2014).

[24] R. E. Showalter and D. B. Visarraga, Double-diffusion models
from a highly-heterogeneous medium, J. Math. Anal. Appl. 295,
191 (2004).

[25] V. Klein and M. Peszynska, Adaptive double-diffusion model
and comparison to a highly heterogeneous micro-model, J. Appl.
Maths. 2012, 938727 (2012).

[26] B. Hu, G. V. Osipov, H.-L. Yang, and J. Kurths, Oscillatory and
rotatory synchronization of chaotic autonomous phase systems,
Phys. Rev. E 67, 066216 (2003).

[27] B. Blasius and L. Stone, Chaos and phase synchronization
in ecological systems, Int. J. Bifurcation Chaos 10, 2361
(2000).

[28] J. Pontes, D. Walgraef, and E. C. Aifantis, On dislocation
patterning: Multiple slip effects in the rate equation approach,
Intl. J. Plasticity 22, 1486 (2006).

[29] B. Mukhopadhyay and A. K. Chattopadhyay, Stochastically
driven instability in rotating shear flows, J. Phys. A 46, 035501
(2013).

[30] S. K. Nath, B. Mukhopadhyay, and A. K. Chattopadhyay, Mag-
netohydrodynamic stability of stochastically driven accretion
flows, Phys. Rev. E 88, 013010 (2013).

[31] S. K. Nath and A. K. Chattopadhyay, Cross-correlation-aided
transport in stochastically driven accretion flows, Phys. Rev. E
90, 063014 (2014).

052134-10

https://doi.org/10.1007/s11661-011-0725-9
https://doi.org/10.1007/s11661-011-0725-9
https://doi.org/10.1007/s11661-011-0725-9
https://doi.org/10.1007/s11661-011-0725-9
https://doi.org/10.1016/bs.aams.2016.08.001
https://doi.org/10.1016/bs.aams.2016.08.001
https://doi.org/10.1016/bs.aams.2016.08.001
https://doi.org/10.1016/bs.aams.2016.08.001
https://doi.org/10.1103/PhysRevE.94.022139
https://doi.org/10.1103/PhysRevE.94.022139
https://doi.org/10.1103/PhysRevE.94.022139
https://doi.org/10.1103/PhysRevE.94.022139
https://doi.org/10.1063/1.326167
https://doi.org/10.1063/1.326167
https://doi.org/10.1063/1.326167
https://doi.org/10.1063/1.326167
https://doi.org/10.1016/0001-6160(79)90019-1
https://doi.org/10.1016/0001-6160(79)90019-1
https://doi.org/10.1016/0001-6160(79)90019-1
https://doi.org/10.1016/0001-6160(79)90019-1
https://doi.org/10.1093/qjmam/33.1.1
https://doi.org/10.1093/qjmam/33.1.1
https://doi.org/10.1093/qjmam/33.1.1
https://doi.org/10.1093/qjmam/33.1.1
https://doi.org/10.1093/qjmam/33.1.23
https://doi.org/10.1093/qjmam/33.1.23
https://doi.org/10.1093/qjmam/33.1.23
https://doi.org/10.1007/BF01202949
https://doi.org/10.1007/BF01202949
https://doi.org/10.1007/BF01202949
https://doi.org/10.1007/BF01202949
https://doi.org/10.1016/0020-7225(80)90033-6
https://doi.org/10.1016/0020-7225(80)90033-6
https://doi.org/10.1016/0020-7225(80)90033-6
https://doi.org/10.1016/0020-7225(80)90033-6
https://doi.org/10.1016/0093-6413(80)90007-5
https://doi.org/10.1016/0093-6413(80)90007-5
https://doi.org/10.1016/0093-6413(80)90007-5
https://doi.org/10.1016/0093-6413(80)90007-5
https://doi.org/10.1016/0093-6413(80)90042-7
https://doi.org/10.1016/0093-6413(80)90042-7
https://doi.org/10.1016/0093-6413(80)90042-7
https://doi.org/10.1016/0093-6413(80)90042-7
https://doi.org/10.1016/S1359-6462(97)00524-1
https://doi.org/10.1016/S1359-6462(97)00524-1
https://doi.org/10.1016/S1359-6462(97)00524-1
https://doi.org/10.1016/S1359-6462(97)00524-1
https://doi.org/10.1016/S1359-6462(99)00118-9
https://doi.org/10.1016/S1359-6462(99)00118-9
https://doi.org/10.1016/S1359-6462(99)00118-9
https://doi.org/10.1016/S1359-6462(99)00118-9
https://doi.org/10.1016/S0924-0136(00)00750-0
https://doi.org/10.1016/S0924-0136(00)00750-0
https://doi.org/10.1016/S0924-0136(00)00750-0
https://doi.org/10.1016/S0924-0136(00)00750-0
https://doi.org/10.1016/j.ijsolstr.2010.07.009
https://doi.org/10.1016/j.ijsolstr.2010.07.009
https://doi.org/10.1016/j.ijsolstr.2010.07.009
https://doi.org/10.1016/j.ijsolstr.2010.07.009
https://doi.org/10.1016/j.mechrescom.2012.03.008
https://doi.org/10.1016/j.mechrescom.2012.03.008
https://doi.org/10.1016/j.mechrescom.2012.03.008
https://doi.org/10.1016/j.mechrescom.2012.03.008
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.1103/PhysRevA.19.419
https://doi.org/10.1103/PhysRevA.19.419
https://doi.org/10.1103/PhysRevA.19.419
https://doi.org/10.1103/PhysRevA.19.419
https://doi.org/10.1103/PhysRevLett.57.1722
https://doi.org/10.1103/PhysRevLett.57.1722
https://doi.org/10.1103/PhysRevLett.57.1722
https://doi.org/10.1103/PhysRevLett.57.1722
https://doi.org/10.1103/PhysRevE.63.016306
https://doi.org/10.1103/PhysRevE.63.016306
https://doi.org/10.1103/PhysRevE.63.016306
https://doi.org/10.1103/PhysRevE.63.016306
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1007/s00707-013-1076-y
https://doi.org/10.1007/s00707-013-1076-y
https://doi.org/10.1007/s00707-013-1076-y
https://doi.org/10.1007/s00707-013-1076-y
https://doi.org/10.1016/j.jmaa.2004.03.031
https://doi.org/10.1016/j.jmaa.2004.03.031
https://doi.org/10.1016/j.jmaa.2004.03.031
https://doi.org/10.1016/j.jmaa.2004.03.031
https://doi.org/10.1155/2012/938727
https://doi.org/10.1155/2012/938727
https://doi.org/10.1155/2012/938727
https://doi.org/10.1155/2012/938727
https://doi.org/10.1103/PhysRevE.67.066216
https://doi.org/10.1103/PhysRevE.67.066216
https://doi.org/10.1103/PhysRevE.67.066216
https://doi.org/10.1103/PhysRevE.67.066216
https://doi.org/10.1016/S0218-1274(00)00151-1
https://doi.org/10.1016/S0218-1274(00)00151-1
https://doi.org/10.1016/S0218-1274(00)00151-1
https://doi.org/10.1016/S0218-1274(00)00151-1
https://doi.org/10.1016/j.ijplas.2005.07.011
https://doi.org/10.1016/j.ijplas.2005.07.011
https://doi.org/10.1016/j.ijplas.2005.07.011
https://doi.org/10.1016/j.ijplas.2005.07.011
https://doi.org/10.1088/1751-8113/46/3/035501
https://doi.org/10.1088/1751-8113/46/3/035501
https://doi.org/10.1088/1751-8113/46/3/035501
https://doi.org/10.1088/1751-8113/46/3/035501
https://doi.org/10.1103/PhysRevE.88.013010
https://doi.org/10.1103/PhysRevE.88.013010
https://doi.org/10.1103/PhysRevE.88.013010
https://doi.org/10.1103/PhysRevE.88.013010
https://doi.org/10.1103/PhysRevE.90.063014
https://doi.org/10.1103/PhysRevE.90.063014
https://doi.org/10.1103/PhysRevE.90.063014
https://doi.org/10.1103/PhysRevE.90.063014



