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Entropy of diluted antiferromagnetic Ising models on frustrated
lattices using the Wang-Landau method
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We use a Monte Carlo simulation to study the diluted antiferromagnetic Ising model on frustrated lattices
including the pyrochlore lattice to show the dilution effects. Using the Wang-Landau algorithm, which directly
calculates the energy density of states, we accurately calculate the entropy of the system. We discuss the
nonmonotonic dilution concentration dependence of residual entropy for the antiferromagnetic Ising model on
the pyrochlore lattice, and compare it to the generalized Pauling approximation proposed by Ke et al. [Phys. Rev.
Lett. 99, 137203 (2007)]. We also investigate other frustrated systems, the antiferromagnetic Ising model on the
triangular lattice and the kagome lattice, demonstrating the difference in the dilution effects between the system
on the pyrochlore lattice and that on other frustrated lattices.
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I. INTRODUCTION

Frustration plays an important role in several scientific
fields. The simplest example is the antiferromagnetic (AFM)
Ising model on the triangular lattice. One cannot select all three
pairs of spins antiparallel in the basic unit of the triangle. It is
called frustration. Because of frustration, there is no long-range
order, and the frustration leads to a high degeneracy of ground
states. The existence of the residual entropy was discussed by
Pauling in 1935 for water ice [1].

Recently, spin-ice materials have captured particular at-
tention [2–4], and their exotic physics is a current topic
of geometrically frustrated magnets. Prototype materials are
the pyrochlores Dy2Ti2O7 and Ho2Ti2O7. In these materials,
the magnetic ions (Dy3+ or Ho3+) occupy a pyrochlore
lattice of corner-sharing tetrahedra, and the local crystal field
environment causes the magnetic moments to orient along
the directions connecting the centers of two tetrahedra at low
temperatures [4,5]. In the low-temperature spin-ice state, the
magnetic moments are highly constrained locally and obey
the so-called “ice rules”: two spins point in and two spins
point out of each tetrahedron of the pyrochlore lattice. This
two-in-two-out spin configuration resembles the situation of
hydrogen atoms in water ice. The measured residual entropy
is very close to Pauling’s estimate, (1/2) ln(3/2)R, where R is
the molar gas constant [3].

The dilution effects on frustration were studied by Ke
et al. [6] for spin-ice materials. The magnetic ions Dy3+ or
Ho3+ are replaced by nonmagnetic Y3+ ions. Nonmonotonic
zero-point entropy as a function of dilution concentration was
observed experimentally, and a generalization of Pauling’s
theory was discussed [6]. More recently, the detailed experi-
mental studies combined with Monte Carlo simulations were
reported [7,8].
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The effect of a magnetic field is another topic of spin-ice
materials and, recently, Peretyatko, Nefedev, and Okabe [9]
studied the effect of a magnetic field on diluted spin-ice mate-
rials in order to elucidate the interplay of dilution and magnetic
field. They observed five plateaus in the magnetization curve of
the diluted nearest-neighbor spin-ice model on the pyrochlore
lattice when a magnetic field was applied in the [111] direction.
This effect contrasts with the case of a pure (i.e., undiluted)
model, which displays two plateaus.

In this paper, motivated by the current interest in the
pyrochlore lattice, we study the entropy of the diluted AFM
Ising model on the frustrated lattices using the Monte Carlo
simulation. If one uses a canonical Monte Carlo simulation
such as the Metropolis algorithm, the estimate of the entropy
is made by the numerical integration of specific heat. A more
straightforward way of computing entropy is to use the Monte
Carlo method that directly calculates the energy density of
states (DOS) g(E), for example, the Wang-Landau (WL)
method [10]. The WL method is an efficient algorithm to cal-
culate g(E) with high accuracy. Several recent progresses have
been made in connection with the WL method. To improve the
convergence, the 1/t algorithm was proposed [11]. Using the
WL method, the difference of the energy DOS was examined
to discuss the behavior of the first-order transition [12]. A
parallel WL method based on the replica-exchange framework
for Monte Carlo simulations was also proposed [13]. Recently,
Ferreyra et al. [14] reported the calculation of g(E) for the
Ising model on the pyrochlore lattice using the WL method.

As a theoretical model of the spin-ice material, we treat the
nearest-neighbor AFM Ising model on the pyrochlore lattice.
A more complicated model, such as the dipolar model, may
be required to make connections to actual materials. However,
Isakov et al. [15] discussed the reason why the low-temperature
entropy of the spin-ice compounds is well described by the
nearest-neighbor AFM Ising model on the pyrochlore lattice,
i.e., by the ice rules.

The pyrochlore lattice can be regarded as alternating
kagome and triangular layers, and the magnetic field in the
[111] direction effectively decouples these layers. The trian-
gular and kagome lattices provide two-dimensional frustrated
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FIG. 1. Illustration of the 16-site cubic unit cell of the pyrochlore
lattice (L = 1).

systems. It is interesting to compare the behavior of the dilution
effects on the AFM Ising model of the pyrochlore lattice and
those of the triangular and kagome lattices.

The purpose of the paper is as follows. First, we obtain
precise estimates of entropy for diluted systems using the
WL method. Second, we compare the dilution concentration
dependence of the residual entropy of the pyrochlore lattice
with the generalized Pauling estimate of Ref. [6]. Third, we
uncover the mechanism of the nonmonotonic behavior of
residual entropy. Finally, we compare the dilution effects on
the residual entropy for several frustrated Ising systems on the
pyrochlore, triangular and kagome lattices.

The paper is organized as follows. Section II describes
the model and the method. The results are presented and
discussed in Sec. III. Section IV is devoted to the summary
and discussions.

II. MODEL AND SIMULATION METHOD

We investigated the AFM Ising model with nearest-
neighbor interaction on the pyrochlore lattice. Later, we also
treat the Ising model on the triangular and kagome lattices. The
pyrochlore lattice is illustrated in Fig. 1, whereas the triangular
and kagome lattices are illustrated in Fig. 2.

The Hamiltonian is given by

H = J
∑
〈ij〉

sisj (si = ±1), (1)

where 〈ij 〉 stands for the nearest-neighbor pairs. Hereafter,
the coupling J is set as 1 unless otherwise specified. We are
especially interested in the site dilution of spins. Then the
Hamiltonian becomes

H = J
∑
〈ij〉

cicj sisj (ci = 1 or 0). (2)

Here ci is the quenched variable, and the concentration of
vacancies is denoted by x.

(a () b)

FIG. 2. Illustration of the (a) triangular and the (b) kagome lattice.

Quenched randomness is investigated basically under two
different constraints, a grand-canonical constraint (average
density of vacancies fixed) and a canonical constraint (total
number of vacancies constant) [16,17]. Here, we use the
canonical constraint for the site dilution. As for the dilution
concentration x, we treat x = 0.0 (pure), 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9.

To get precise numerical information on the entropy of
the system, we use the WL method that directly calculates
the energy DOS. Let us briefly review the WL algorithm. A
random walk in energy space is performed with a probability
proportional to the reciprocal of the DOS, 1/g(E), which
results in a flat histogram of the energy distribution. Actually,
we move based on the transition probability from energy level
E1 to E2:

p(E1 → E2) = min

[
1,

g(E1)

g(E2)

]
. (3)

Since the exact form of g(E) is not known a priori, we
determine g(E) iteratively. Introducing the modification factor
fi , g(E) is modified by

ln g(E) → ln g(E) + ln fi (4)

every time the state is visited. At the same time the energy
histogram h(E) is updated as

h(E) → h(E) + 1. (5)

The modification factor fi is gradually reduced to unity by
checking the “flatness” of the energy histogram. The flatness
is checked such that the histogram for all possible E is not less
than some value of the average histogram, e.g., 80%. Then fi

is modified as

ln fi+1 = 1
2 ln fi, (6)

and the histogram h(E) is reset. As an initial value of fi , we
choose f0 = e; as a final value, we choose ln fi = 2−24, that
is, f24 � 1.000 000 06.

III. RESULTS

A. Pyrochlore lattice

For the simulation of the Ising model on the pyrochlore
lattice, we use the 16-site cubic unit cell of the pyrochlore
lattice [18], and the systems with L × L × L unit cells with
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FIG. 3. Plot of ln g(E) as a function of E of the Ising model on
the pyrochlore lattice. The system size is L = 6 (N = 3456).

periodic boundary conditions are treated. We made simulations
for the system sizes of L = 3, 4, 5, and 6; the numbers of sites
are N = 432, 1024, 2000, and 3456, respectively.

We first show the results of the Ising model on the
pyrochlore lattice. In the WL algorithm, one directly cal-
culates the ratio of g(E) for different energies E1 and E2,
g(E1)/g(E2). If we are interested only in the temperature
dependence of the total energy or the specific heat, the ratio
of g(E) is enough. However, if we discuss the absolute
value of entropy, the normalization of g(E) is necessary. In
the case of the Ising model, each spin takes one of two states;
thus the normalization condition becomes∑

E

g(E) = 2Nspin , (7)

where Nspin is the number of spins. In the case of dilution, the
number of spins Nspin is different from the number of sites N .

We plot ln g(E), essentially the entropy, as a function of E

(in units of J ) of the Ising model on the pyrochlore lattice,
shown in Fig. 3. The system size is L = 6 (N = 3456), and
this is the plot of one sample for each x. The energy takes a
value from −NJ to 3NJ for the pure system (x = 0). We note
that the energy takes a value of the multiple of 4J for the pure
system. For diluted systems, the energy takes a value of the
multiple of J , but the energy difference of a single spin flip
is a multiple of 2J . That is, the total energy is either the even
number of J or the odd number of J .

The thermal average of a physical quantity A at the inverse
temperature, β = 1/T , is calculated from the knowledge of
the energy DOS as

〈A〉β =
∑

E e−βEA(E)g(E)∑
E e−βEg(E)

. (8)

Then, the specific heat is calculated through the relation

C = d〈E〉β
dT

= β2
(〈E2〉β − 〈E〉2

β

)
. (9)

The temperature dependence of the specific heat per spin
of the AFM Ising model on the pyrochlore lattice (x =
0.0,0.1, . . . ,0.9) is plotted in Fig. 4. The temperature T is
measured in units of J . The system size is L = 6 (N = 3456).
The average was taken over 40 random samples. The statistical
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FIG. 4. Temperature dependence of the specific heat per spin of
the AFM Ising model on the pyrochlore lattice. The system size is
L = 6 (N = 3456).

errors are smaller than the thickness of the curves. We only
show the data of L = 6. For large enough system sizes of
L = 4, 5, and 6, the size dependence is small, as in the scale of
the plot in Fig. 4, because there is no phase transition associated
with the long-range order. We should note that the peak of the
specific heat becomes lower when x is raised from zero.

Before discussing the thermal average of the entropy, we
checked the accuracy of the calculation of the entropy in detail.
The residual entropy can be calculated from the raw data of
ln g(E), which is shown in Fig. 1. We plot the residual entropy
for the pure system (x = 0) as a function of 1/N (N = Nspin)
in Fig. 5. The precise estimate of the residual entropy of a
pure system (x = 0) using the series method by Nagle [19] is
0.205 01, which is close to Pauling’s estimate (1/2) ln(3/2) =
0.202 73 [1]. We also observed that the residual entropy
approaches the precise estimate by Nagle [19]. This is the
same plot as Fig. 4 of Ferreyra et al. [14].
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FIG. 5. Plot of the residual entropy per spin of the pure AFM
Ising model on the pyrochlore lattice as a function of 1/N (N =
Nspin). The system size is L = 3 (N = 432), L = 4 (N = 1024),
L = 5 (N = 2000), and L = 6 (N = 3456). The precise estimate by
Nagle [19] (0.205 01) is shown by the solid red arrow, whereas the
approximation by Pauling [1] (0.202 73) is shown by the dotted blue
arrow.
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FIG. 6. Temperature dependence of the entropy per spin of the
AFM Ising model on the pyrochlore lattice. The system size is L =
6 (N = 3456).

We calculate the thermal average of the entropy by

S = 〈E〉β
T

+ ln

(∑
E

e−βEg(E)

)
. (10)

The temperature dependence of entropy per spin of the AFM
Ising model on the pyrochlore lattice (x = 0.0,0.1, . . . ,0.9) is
plotted in Fig. 6. The average was taken over 40 samples. The
system size is L = 6 (N = 3456), and the size dependence
is small as mentioned before. We note that, as T → 0, the
residual entropy becomes larger when x is raised from zero.
In the high-temperature limit where T → ∞, the entropy per
spin approaches ln 2 = 0.693.

In Fig. 7, we plot the dilution concentration (x) dependence
of the residual entropy per spin. The system size is L =
6 (N = 3456). The average was taken over 40 random samples.
The statistical errors are smaller than the size of the marks.
The size dependence is very small, and the size difference
is not appreciable with this scale of plot. We observed
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FIG. 7. Dilution concentration dependence of the residual en-
tropy per spin of the AFM Ising model on the pyrochlore lattice.
The system size is L = 6 (N = 3456). The generalized Pauling
approximation [6] is also plotted by a dotted curve. The site-
percolation threshold of the pyrochlore lattice is shown by the red
arrow.

TABLE I. Dilution concentration (x) dependence of residual
entropy per spin for the pyrochlore lattice. The system sizes are L = 4,
5, and 6. The numbers in parentheses are the one-sigma uncertainty
for the last digits.

x L = 4 L = 5 L = 6 Generalized
(N = 1024) (N = 2000) (N = 3456) Pauling [6]

0.0 0.2066(0) 0.2060(0) 0.2058(0) 0.2027
0.1 0.2736(6) 0.2714(5) 0.2712(4) 0.2703
0.2 0.3039(10) 0.3018(10) 0.3023(6) 0.3019
0.3 0.3096(15) 0.3101(9) 0.3091(7) 0.3094
0.4 0.3043(15) 0.3053(13) 0.3061(8) 0.3047
0.5 0.2990(19) 0.3022(12) 0.3014(10) 0.3000
0.6 0.3084(24) 0.3065(14) 0.3063(10) 0.3071
0.7 0.3373(25) 0.3370(21) 0.3392(13) 0.3380
0.8 0.4048(30) 0.4025(25) 0.4021(19) 0.4046
0.9 0.5242(40) 0.5231(29) 0.5252(20) 0.5190

the nonmonotonic concentration dependence of the residual
entropy, which was experimentally reported [6,7]. We also
plot the generalized Pauling approximation [6]:

S0(x)

Nspin
= ln 2 + 3 ln(1/2)(1 − x)x2 + 2 ln(3/4)(1 − x)2x

+ (1/2) ln(3/8)(1 − x)3,

displayed by a dotted curve. In order to show the numerical
data explicitly, we tabulate the measured values of the residual
entropy for L = 4, 5, and 6 in Table I. The numbers in
parentheses are the one-sigma uncertainty for the last digits,
which was estimated by averaging over 40 samples. The
statistical errors for x �= 0 come from the average over random
samples, whereas they are only for random numbers of
simulation for x = 0, which are very small.

The obtained values agree with the generalized Pauling
approximation [6] to three digits for most of the range of x,
indicating that it is essential for the argument based on the
fraction of the configurations of a tetrahedron which satisfy
the ground state condition. For the weak dilution region, the
residual entropy becomes larger when x is raised from zero.
When one spin is missing from a tetrahedron, there are still
six lowest-energy configurations out of the eight possible
configurations. This proportion is larger than the undeleted
case that there are six lowest-energy configurations out of
the 16 possible configurations in the tetrahedron. For the
strong dilution limit (x → 1), the residual entropy per spin
approaches ln 2 (=0.693), because all the spins become free.
We conclude that the nonmonotonic dilution concentration
dependence is primarily accounted for by the nearest-neighbor
frustration interaction of the basic tetrahedron unit.

Analyzing the dilution concentration dependence of the
specific-heat peak shown in Fig. 4, we also observed
that the specific-heat peak shows the nonmonotic dependence.
The peak decreases as a function of x for small x, increases
slightly, and then decreases again. It is anticorrelated with the
behavior of the residual entropy due to the increase of the
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FIG. 8. Plot of ln g(E) as a function of E of the Ising model on
the triangular lattice. The system size is L = 48 (N = 2304).

entropy with the temperature, as calculated by

�S =
∫ (

C

T

)
dT .

This behavior of the specific-heat peak was previously reported
in Ref. [7].

B. Triangular and kagome lattices

To elucidate the nonmonotonic dilution effects on the
frustration of the pyrochlore lattice, a comparison with other
frustrated systems will be interesting. For this purpose,
we studied the AFM Ising model on the two-dimensional
triangular lattice. The exact solution of this model was given
by Wannier [20], who established that this system has no
long-range order due to frustration at all the temperatures.
The residual entropy of the AFM Ising model on the triangular
lattice was calculated to be 0.323066 [20]:

S0

N
= 2

π

∫ π/3

0
ln(2 cos ω)dω = 0.323 066.

The dilution effects of the AFM Ising model on the
triangular lattice were studied by Yao [21] using the WL
method. However, a systematic study was not made for the
dilution concentration dependence over the full range.

We carried out the WL study of the AFM Ising model
on the triangular lattice. We use the L × L system with
the periodic conditions, and the system sizes are L = 24
(N = 576), L = 32 (N = 1024), and L = 48 (N = 2304).
The simulation conditions were the same as those used on the
pyrochlore lattice. We again averaged over 40 random samples
for each size L and for each dilution concentration x.

We plot ln g(E) as a function of E of the Ising model
on the triangular lattice, shown in Fig. 8. The system size is
L = 48 (N = 2304), and this is the plot for one sample. The
energy DOS g(E) is normalized as

∑
E g(E) = 2Nspin , where

Nspin is the number of spins. The energy takes a value from
−NJ to 3NJ for the pure system.

Using the data of the energy DOS, we plot the temperature
dependence of the specific heat per spin of the AFM Ising
model on the triangular lattice (x = 0.0,0.1, . . . ,0.9), seen in
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FIG. 9. Temperature dependence of the specific heat per spin of
the AFM Ising model on the triangular lattice. The system size is
L = 48 (N = 2304).

Fig. 9. We plot the data of the system size L = 48 (N = 2304).
The size dependence is very small for large enough sizes, L =
24 (N = 576), L = 32 (N = 1024), and L = 48 (N = 2304).
The peak of the specific heat becomes higher when x is raised
from zero, which was also shown by Yao [21].

The size dependence of the residual entropy of the pure
AFM Ising model on the triangular lattice is given in Fig. 10.
Wannier [20] exactly solved the AFM Ising model on the
triangular lattice, and the residual entropy of a pure system
(x = 0) is 0.323 066. We plot S0/Nspin as a function of 1/Nspin.
Since there is an oscillatory behavior, we also plot the data
for L = 64, observing that the residual entropy per spin
approaches Wannier’s exact value in the limit as Nspin → ∞.

The temperature dependence of the entropy of the AFM
Ising model on the triangular lattice (x = 0.0,0.1, . . . ,0.9)
is plotted in Fig. 11. We plot the data of the system size
L = 48 (N = 2304). Here, the size dependence is very small
and the residual entropy becomes smaller when x is raised
from zero, which was also shown by Yao [21].
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FIG. 10. Plot of the residual entropy per spin of the pure Ising
model on the triangular lattice as a function of 1/N (N = Nspin). The
system size is L = 24 (N = 576), L = 32 (N = 1024), L = 48 (N =
2304), and L = 64 (N = 4092). The exact value by Wannier [20]
(0.323 066) is shown by the red arrow.
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FIG. 11. Temperature dependence of the entropy per spin of the
AFM Ising model on the triangular lattice. The system size is L =
48 (N = 2304).

The dilution concentration (x) dependence of the residual
entropy per spin of the AFM Ising model on the triangular
lattice is given in Fig. 12. The system size is L = 48 (N =
2304). The residual entropy becomes smaller when x is raised
from zero, which is contrary to the results of the pyrochlore
lattice. In the triangular lattice case, the frustration in the
basic unit of the triangle is resolved if one spin is deleted
from three sites. Since the frustration is partially resolved,
the degeneracy of the ground states becomes smaller. In the
case of the tetrahedron, on the contrary, there still remains a
frustration even if one spin is deleted from four sites. For the
strong dilution limit (x → 1), the residual entropy per spin
approaches ln 2 (=0.693) because all the spins become free.

To study another frustrated system, we also considered the
AFM Ising model on the kagome lattice. The pyrochlore lattice
can be viewed as an alternating stacking of kagome layers and
sparse triangular layers. The macroscopic degeneracy of the
kagome layers was studied when the magnetic field is applied
along the [111] direction [22].
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FIG. 12. Dilution concentration dependence of the residual en-
tropy per spin of the AFM Ising model on the triangular lattice
and the kagome lattice. The system size is L = 48 (N = 2304 for
the triangular lattice and N = 3456 for the kagome lattice). The
site-percolation thresholds of the triangular and kagome lattices are
shown by the solid blue and dotted orange arrows, respectively.
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FIG. 13. Plot of ln g(E) as a function of E of the Ising model on
the kagome lattice. The system size is L = 48 (N = 3456).

The AFM Ising model on the kagome lattice was exactly
solved by Kano and Naya [23]. It was shown that this
system has no long-range order due to frustration for all the
temperatures. The residual entropy of the AFM Ising model
on the kagome lattice was calculated to be 0.501 83 [23]:

S0

N
= 1

24π2

∫ 2π

0

∫ 2π

0
ln[21 − 4(cos ω1 + cos ω2

+ cos(ω1 + ω2))] dω1dω2 = 0.501 83.

In the WL study of the AFM Ising model on the kagome
lattice, we treated the kagome lattice of L × (3/2)L, and the
system sizes are L = 24 (N = 864), L = 32 (N = 1536), and
L = 48 (N = 3456). We averaged over 40 random samples
for each size L and for each dilute concentration x.

We plot ln g(E) as a function of E of the AFM Ising model
on the kagome lattice, shown in Fig. 13. The system size is
L = 48 (N = 3456), and this is the plot for one sample. The
energy DOS g(E) is normalized as

∑
E g(E) = 2Nspin , where

Nspin is the number of spins. The energy takes a value from
−(2/3)NJ to 2NJ for the pure system.

The temperature dependence of the specific heat of the AFM
Ising model on the kagome lattice (x = 0.0,0.1, . . . ,0.9) is
plotted in Fig. 14. Averaging was performed over 40 samples.
We plot the data for the system size L = 48 (N = 3456).
The size dependence is very small, and the peak of the specific
heat becomes higher when x is raised, same as in the triangular
lattice.

To confirm the accuracy of our calculation, we plot the size
dependence of the residual entropy as a function of 1/Nspin for
the pure AFM Ising model on the kagome lattice in Fig. 15.
Our calculated result for the residual entropy of the AFM Ising
model on the kagome lattice approaches the exactly calculated
value given by Kano and Naya as 0.501 83 [23].

The temperature dependence of the entropy of the AFM
Ising model on the kagome lattice (x = 0.0,0.1, . . . ,0.9) is
shown in Fig. 16. We plot the data for the system size L =
48 (N = 3456). The size dependence is very small, and the
residual entropy becomes smaller when x is raised from zero,
exhibiting the same behavior as in the triangular lattice.

We plot the dilution concentration (x) dependence of the
residual entropy per spin of the AFM Ising model on the
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FIG. 14. Temperature dependence of the specific heat per spin
of the AFM Ising model on the kagome lattice. The system size is
L = 48 (N = 3456).

kagome lattice, also shown in Fig. 12. The system size is
L = 48 (N = 3456). The residual entropy becomes smaller
when x is raised from zero, the same as that of the triangular
lattice. The frustration comes from a triangle in the case of the
kagome lattice. Thus the frustration is resolved when one spin
is deleted from this triangle.

IV. SUMMARY AND DISCUSSIONS

We studied the diluted antiferromagnetic Ising model on the
pyrochlore lattice. Using the Wang-Landau algorithm, which
directly calculates the energy density of states, we calculated
the entropy of the system with a high level of accuracy. We dis-
cussed the nonmonotonic dilution concentration dependence
of the residual entropy, and obtained a very good comparison
with the generalized Pauling approximation proposed by Ke
et al. [6].

We also investigated other frustrated systems, the anti-
ferromagnetic Ising model on the triangular lattice and the
kagome lattice. We showed the difference in the dilution effects

0 0.001 0.002
0.5016

0.5018
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S
0/

N
sp

in

FIG. 15. Plot of the residual entropy per spin of the pure Ising
model on the kagome lattice as a function of 1/N (N = Nspin). The
system size is L = 24 (N = 864), L = 32 (N = 1536), and L =
48 (N = 3456). The exact value by Kano and Naya [23] (0.501 83)
is shown by the red arrow.
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FIG. 16. Temperature dependence of the entropy per spin of the
AFM Ising model on the kagome lattice. The system size is L =
48 (N = 3456).

between the system on the pyrochlore lattice and that on other
frustrated lattices. The dilution concentration dependence of
the residual entropy was compared in Fig. 7 and Fig. 12. For
the pyrochlore lattice, the residual entropy increases with x for
a weak dilution. When one spin is deleted from the tetrahedron,
there still remains the frustration from the other three spins.
However, for the triangular and kagome lattices, the residual
entropy decreases with x. When one spin is deleted from the
triangle, the frustration is resolved. The decrease of the residual
entropy for the AFM Ising model on the triangular lattice up
to x � 0.15 was shown in Ref. [21].

In Fig. 7 and Fig. 12, we also give the values of the
site-percolation thresholds. The site-percolation thresholds
of the pyrochlore lattice, the triangular lattice, and the
kagome lattice are 0.39 . . . [24], 0.5 (=1/2), and 0.6527 . . .

[=1–2 sin(π/18)] [25], respectively. We may say that, above
the percolation threshold, the residual entropy increases
and approaches the free-spin value, ln 2 = 0.691. In the
argument of the generalized Pauling approximation [6], only
the local structure within the tetrahedron was considered, but
it yields a good comparison with the numerical data. Thus the
percolation threshold is seen not to be directly related to the
dilution concentration dependence of the residual entropy.

Based on the high-accurate calculation of the entropy, to-
gether with the comparative study of other frustrated systems,
we conclude that the nonmonotonic dilution concentration
dependence of the residual entropy of the pyrochlore lattice
is primarily accounted for by the nearest-neighbor frustration
interaction of a basic tetrahedron unit.

The long-range dipole interaction may play a role in the
detailed comparisons with experimental results. Lin et al. [7]
reported the comparative studies of the results of experiments
and (canonical) Monte Carlo simulations, which showed a
difference between Dy and Ho systems. There was still
a discrepancy between the experimental and Monte Carlo
results. An accurate Wang-Landau study on the pyrochlore
system that includes the next nearest-neighbor interaction is
still needed, and it will be left to a future work.

Quite recently, the topological spin glass behavior has been
discussed for diluted spin ice [26]. The relevance of our results
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to their study will be interesting, but for now is an open
question.
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