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Approximate probabilistic cellular automata for the dynamics of single-species populations under
discrete logisticlike growth with and without weak Allee effects
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We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-
order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured
population with nonoverlapping generations. Beginning with a general six-parameter model, we find constraints
on the transition probabilities of the PCA that guarantee that the ensuing approximations make sense in terms
of population dynamics and classify the valid combinations thereof. Several possible models display a negative
cubic term that can be interpreted as a weak Allee factor. We also investigate the conditions under which a
one-parameter PCA derived from the more general six-parameter model can generate valid population growth
dynamics. Numerical simulations illustrate the behavior of some of the PCA found.
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I. INTRODUCTION

Cellular automata (CA) are discrete-space, discrete-time
deterministic dynamical systems that map symbols from a
finite set of symbols into the same set of symbols according to
some well-defined set of rules. Usually, the discrete dynamical
cells that characterize and compose the CA update their states
simultaneously, the underlying lattice of cells is regular—like,
e. g., an array of equally spaced points or a square or hexagonal
lattice—and the dynamics of each cell depends only on the
states of other cells over a finite neighborhood. The idea of
CA dates back at least to the end of the 1940s, when they
were conceived as model systems for simple self-reproducing,
self-repairing organisms and, by extension, logical elements
and memory storage devices [1]. For broad introductions to
the subject see [2–6].

A CA with rules depending on a random variable becomes
a probabilistic CA (PCA). PCA were introduced mainly by the
Russian school of stochastic processes in the decade of 1960–
1970 in relation with the positive probabilities conjecture—a
conjecture that is deeply rooted in the theory of Markov
processes and has a counterpart in the well-known statistical
physics lore that one-dimensional systems do not display
phase transitions at finite (T > 0) temperature—but also as
model systems for noisy “neurons” and voting systems [7–13]
(see also [14,15]). Besides serving as model systems for the
analysis of computation, both applied and theoretical, digital or
biological, CA and PCA have also been playing a significant
role in the modeling of biological and ecological complex
systems, notably spatial processes and the interplay between
dispersion and competition in the determination of structure
and scale of ecosystems [16–22].
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In this paper we investigate how microscopic PCA models
of a single-species unstructured population with nonoverlap-
ping generations average in first-order, single-cell mean-field
approximation to well-known models widely employed in
population dynamics, namely, the logistic map and a variant
cubic map that describe the dynamics of a population under
weak Allee effects. The mean-field equations provide a
connection between the microscopic stochastic dynamics of
the PCA with the deterministic dynamics of the ensuing
discrete-time maps, that otherwise are typically derived using
ad hoc (phenomenological, at best) arguments.

The probabilistic nature of the PCA together with the
functional form of the logistic and cubic maps that we
want to recover from the mean-field approximations impose
constraints that the microscopic transition probabilities have
to observe to make the models sensible from the point of
view of population dynamics. Otherwise, the construction
of the microscopic PCA models with the desired population
dynamics properties from the elementary transitions available
is straightforward. We believe that the fact that both the logistic
map and a cubic map that incorporates the description of weak
Allee effects can be obtained from a single, relatively simple
microscopic framework is worth notice. Approaches closely
related to ours have been employed in [23,24]; their interacting
particle systems, however, evolve in continuous time and are
not homogeneous in space. A somewhat related approach has
also appeared in the sociophysics literature [25].

This paper is structured as follows. In Sec. II we review the
logistic growth model in discrete time for the dynamics of a
single-species unstructured population with nonoverlapping
generations and one of its possible extensions to include
Allee effects. Section III presents the PCA formalism and the
mean-field approximation to their dynamics. In this section we
obtain the first-order, single-cell mean-field approximation to
the most general one-dimensional left-right symmetric PCA
that is central to our analysis. In Sec. IV we derive the
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constraints on the transition probabilities of the PCA under
which its six-parameter mean-field approximation yields the
logistic map often encountered in population dynamics as well
as an extension thereof containing a cubic term that models
weak Allee effects. There we also obtain the solution sets in the
six-parameter (actually, five-parameter) space that encompass
the models of interest, present simulations of some of the PCA
models obtained, and discuss their main features. In Sec. V
we examine the models that survive the constraints when we
reduce the number of parameters of the PCA from six (actually,
five) to a single one. We found several, some of which can
be understood as probabilistic mixtures of elementary CA.
Finally, in Sec. VI we assess the results obtained and indicate
possible directions for further research. An Appendix details
some calculations in the mean-field approximation for some
of the single-parameter PCA found.

II. DISCRETE LOGISTICLIKE GROWTH MODELS

A. The discrete logistic growth model

The dynamics of a single-species population subject to
limiting resources can be described by the logistic growth
model

dxt

dt
= xtg(xt ) = rxt

(
1 − xt

K

)
, (1)

where xt � 0 represents the size of the population, r > 0 is
the maximum potential rate of reproduction of the individuals
in the population, and K > 0 is the carrying capacity, defined
as the maximum population viable under the given ecological
conditions [26,27]. The function g(xt ) represents the instrinsic
growth rate per capita of the population, and the form of the
right-hand side of (1) guarantees that when xt = 0 there is
no spontaneous generation of living organisms. The intrinsic
growth rate g(xt ) = r(1 − xt/K) decreases to zero as the
population grows large, and arose as an improvement over
the simple model of constant growth rate to make it more
realistic. The basic model (1) has been generalized in several
different ways to account for particular conditions and factors
affecting specific populations [28].

Discrete-time models are particularly suited to describe the
dynamics of populations with nonoverlapping generations, in
which the population growth takes place at discrete intervals
of time [29,30]. This is typically the case for populations of
annual plants and insects. The discrete-time version of (1),
a.k.a. the logistic map, is given by

xt+1 = rxt

(
1 − xt

K

)
. (2)

Equation (2) is sometimes presented in the form xt+1 − xt =
rxt (1 − xt/K), which is perhaps biologically more revealing;
the two forms, however, are equivalent by the redefinitions r ↔
(1 + r) and K ↔ (1 + 1/r)K . The logistic map (2) displays
much more complex a behavior than (1), having become the
archetypal example of a chaotic dynamical system [29–34].

In this work we are interested in the logistic map both in
its basic form (2) and with an extra term included to take into
account Allee effects, which we introduce in the next section.

−A 0 (K−A ) K
xt

r
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A (K+A ) K
xt

−r

0

g

(a) (b)
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FIG. 1. Intrinsic population growth rate functions g(+)(xt ) (a) and
g(−)(xt ) (b) given by (3). These functions provide models for the weak
[g(+)(xt )] and strong [g(−)(xt )] Allee effects.

B. Allee effects

The Allee effect, first discussed in the 1930s, describes a
positive correlation between the rate of growth and the density
of a population, namely, that at low population densities
reproduction and survival of individuals may decline [35–38].
The effect saturates or disappears as populations grow larger.
The Allee effect challenges the classical tenet of population
dynamics according to which individual fitness is higher at
low densities because of lower intraspecific competition. Allee
effects can be related with components of individual fitness
(the component Allee effect) or with overall mean individual
fitness (the demographic Allee effect), which is what in general
can be measured in the field. Empirical evidence suggests that
Allee effects are caused mainly by mate limitation, debilitated
cooperative defense, unsubstantial predator satiation, lack of
cooperative feeding, dispersal, and habitat alteration [39,40].
Recently, it has been argued that tumor growth displays many
features of population dynamics, including Allee effects [41].

It is possible to model the demographic Allee effect in
several different ways, following different biological rationales
[42]. Mathematically, the Allee effect requires that g(xt ) have a
maximum at intermediate densities and decay at low densities.
It is also desirable that g(xt ) decays at high densities to display
the logistic effect. The simplest way to obtain this combined
behavior is by multiplying the righ-hand side of (1) or (2) by
(xt/A ± 1), where A represents a critical population threshold
[43–46]. The resulting growth rate function becomes

g(±)(xt ) = r
(

1 − xt

K

)(xt

A
± 1

)
, (3)

with r , K , and A < K positive constants. Functions (3) are
concave down parabolas with roots g(±)(K) = g(±)(∓A) =
0 and maximum at x(±)

max = 1
2 (K ∓ A), where g(±)(x(±)

max) =
r(K ± A)2/4KA > 0. These functions are depicted in Fig. 1.

Functions g(±)(xt ) model what are known as the weak
(or noncritical) Allee effect [g(+)(xt )], according to which at
small population sizes the growth rate decreases but remains
positive, and the strong (or critical) Allee effect [g(−)(xt )],
when the growth rate may become negative at small population
sizes and lead the population to extinction. In this work
we only consider models for the weak Allee effect. This is
necessary since in the PCA scenario the constant term of
the intrinsic population growth rate function becomes a sum

052131-2



APPROXIMATE PROBABILISTIC CELLULAR AUTOMATA . . . PHYSICAL REVIEW E 95, 052131 (2017)

of non-negative probabilities, therefore enforcing the g(+)(xt )
model (see Sec. IV).

III. PROBABILISTIC CELLULAR AUTOMATA

A one-dimensional, two-state PCA [2–6,13–15] is defined
by an array of cells arranged in a one-dimensional lattice � =
{1,2, . . . ,L} ⊂ Z of total length L, usually under periodic
boundary condition (L + 1 ≡ 1 and 0 ≡ L), with each cell
in one of two possible states, say, xi = 0 or 1, i = 1, . . . ,L.
The state of the PCA at instant t = 0,1, . . . is given by xt =
(xt

1, x
t
2, . . . , xt

L) ∈ � = {0,1}�.
The probability distribution Pt (x) of observing a particular

state x of the PCA at instant t given an initial distribution
P0(x) is given by

Pt+1(x′) =
∑
x ∈ �

�(x′ | x)Pt (x), (4)

where 0 � �(x′ | x) � 1 is the conditional probability for the
transition x → x′ to occur in one time step. The rules that
map the state of xt

i into the new state xt+1
i depend only on

a finite neighborhood of xt
i . In this work the neighborhood

is given by the ith cell itself together with its two nearest-
neighbor cells i ± 1, and since the cells of the PCA are updated
simultaneously and independently we have that

�(x′ | x) =
L∏

i=1

φ(x ′
i | xi−1, xi, xi+1). (5)

From Eqs. (4) and (5), it is easy to show that the dynamics
of the (marginal) probability distribution Pt+1(x) of observing
a cell—any cell, since the PCA is spatially homogeneous—in
state x at instant t (equivalently, the instantaneous density of
cells in state x in the PCA) obeys

Pt+1(x ′
i) =

∑
xi−1, xi , xi+1

φ(x ′
i | xi−1, xi, xi+1)Pt (xi−1, xi, xi+1).

(6)

From this equation we see that the determination of Pt (xi) de-
pends on the knowledge of the probabilities Pt (xi−1, xi, xi+1),
which in turn depend on Pt (xi−2, xi−1, xi, xi+1, xi+2) and so
on. The simplest approach to break the hierarchy of coupled
equations implied by (6) and get a closed set of equations is to
approximate

Pt (xi−1, xi, xi+1) ≈ Pt (xi−1) Pt (xi) Pt (xi+1). (7)

This is the first-order, single-cell mean-field approximation,
which assumes probabilistic independence between the cells.
It is possible to resort to higher-order approximations involving
pairs, triplets, etc., of cells to obtain increasingly better
descriptions of the dynamics of the PCA [47–52], but we will
limit ourselves to the simple approximation (7). As we will
see, already at this level of approximation we obtain many
interesting models of single-species population dynamics.

A logical choice for most models of natural phenomena are
left-right symmetric rules, in which case φ(x ′

i | xi−1,xi,xi+1) =
φ(x ′

i | xi+1,xi,xi−1) and we are left with six transition prob-
abilities to specify. We will denote these transition prob-
abilities by a,b, . . . ,f ∈ [0,1] according to the following

TABLE I. Rule table for the general left-right symmetric one-
dimensional elementary PCA. The first row lists the initial neighbor-
hood and the other two rows give the probability at which the central
cell reaches the state given in the leftmost column [cf. (8a)–(8f)].

111 110 101 100 011 010 001 000

0 1 − f 1 − d 1 − e 1 − b 1 − d 1 − c 1 − b 1 − a

1 f d e b d c b a

convention:

φ(1 | 000) = a, (8a)

φ(1 | 001) = φ(1 | 100) = b, (8b)

φ(1 | 010) = c, (8c)

φ(1 | 011) = φ(1 | 110) = d, (8d)

φ(1 | 101) = e, (8e)

φ(1 | 111) = f. (8f)

Table I displays the rule table for PCA (8a)–(8f). Whatever
one wants to model with a left-right symmetric elementary
one-dimensional PCA must be encoded in the choice of these
parameters. We want to model single-species populations
under logistic growth with such PCA. If we identify a cell in
the state 0 as an empty site or patch and a cell in the state 1 as
an individual or pack, the interpretation of the probabilities (8)
in terms of population dynamics is immediate. For example, a
represents the probability of spontaneous generation, 000 →
010, a somewhat unnatural biological process (see Sec. IV A),
while f represents the probability of survival of the central
individual (111 → 111) in an overcrowded neighborhood. Not
every set of values for the parameters yield sensible models
from a population dynamics point of view, though. Contextual
interpretations of these parameters are discussed in Sec. IV B.

Let us obtain the mean-field equations that are going to be
the focus of our attention for the rest of this paper. Equation (6)
for Pt (x ′

i = 1) = Pt (1), in the PCA defined by the left-right
symmetric transition probabilities (8) reads

Pt+1(1) = aPt (0,0,0) + b[Pt (0,0,1) + Pt (1,0,0)]

+ cPt (0,1,0) + d[Pt (0,1,1) + Pt (1,1,0)]

+ ePt (1,0,1) + f Pt (1,1,1). (9)

Applying approximation (7) to the probabilities on the right-
hand side of (9) with Pt (1) = xt and Pt (0) = 1 − xt we obtain

xt+1 = a(1 − xt )
3 + (2b + c)xt (1 − xt )

2

+ (2d + e)x2
t (1 − xt ) + f x3

t . (10)

In the next section we determine the conditions on the
transition probabilities a,b, . . . ,f that can turn (10) into one
of the population growth models (2) or (3).

IV. PCA MODELS OF LOGISTIC POPULATION GROWTH

A. Constraints on the transition probabilities

Although the set of transition probabilities (8) are the
most general possible for an elementary one-dimensional
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left-right symmetric PCA, when φ(1 | 000) = a 
= 0 there is
spontaneous generation of living organisms, an undesirable
feature for biological population models. To make model (10)
biologically sensible, thus, we must require that a = 0. When
we set a = 0, Eq. (10) becomes xt+1 = xth(xt ) with

h(xt ) = (2b + c) + [(2d + e) − 2(2b + c)]xt

+ [(2b + c) − (2d + e) + f ]x2
t . (11)

Now note that the transition probabilities b and c always
appear in (10) and (11) in the combination 2b + c. This
happens because in the mean-field approximation (7)–(9),
Pt (0,0,1), Pt (0,1,0), and Pt (1,0,0), which are respectively
associated with the transition probabilities φ(1 | 001) = b,
φ(1 | 010) = c, and φ(1 | 100) = b, all give rise to the same
term xt (1 − xt )2. Ditto for the transition probabilities d and e,
which always appear together like 2d + e. It is thus convenient
to lump these transition probabilities into new variables u =
2b + c and v = 2d + e, both in the range 0 � u,v � 3.

Comparing the mean-field equation (11) for the dynamics
of the PCA (8) with models (2) and (3) for the growth of a
single-species population, we see that the coefficients of the
powers of xt in (11), which we will denote by [ 1 ], [ xt ], and
[ x2

t ], must obey one of the two following sets of constraints:
Case I (Logistic map). To recover (2) from (11) we must

have [ x2
t ] = 0 together with [ 1 ] > 0 and [ xt ] < 0. These

constraints translate into the following conditions on the
transition probabilities of the PCA:

u > 0, (12a)

−2u + v < 0, (12b)

u − v + f = 0. (12c)

Case II (Cubic map with weak Allee effect). In this case,
to recover the g(+)(xt ) model in (3) from (11), [ x2

t ] must be
negative while [ 1 ] and [ xt ] must be positive. In terms of the
transition probabilities these conditions read

u > 0, (13a)

−2u + v > 0, (13b)

u − v + f < 0. (13c)

Note that because 2b + c � 0 in (11) must be compared
with the independent term of g(±)(xt ) in (3), the PCA is not able
to reproduce g(+)(xt ), for which g(+)(0) = −r < 0, at least
not in the single-cell mean-field approximation. Otherwise, if
2b + c = 0, i.e., if b = c = 0, h(xt ) in (11) becomes

h(xt ) = (2d + e)xt (1 − xt ). (14)

This form for h(xt ) corresponds to the limit A → 0 in (3).
Indeed, when xt/A � 1, we can take xt/A ± 1 ≈ xt/A and
obtain g(±)(xt ) ≈ (r/A)xt (1 − xt/K), as in (14). The resulting
dynamical system develops a double root at xt = 0. The limit
A → 0 models a particular case of weak Allee effect. In this
paper we gloss over this limiting case and always take A > 0.

B. Analysis of the constraints and some examples

One can argue that from the point of view of population
dynamics the more interesting PCA models are those with

u

v

0 1 2 3
0

1

2

3

FIG. 2. Projection on the uv plane of the solution set SI of (15)
(hatched area). Given (u,v) ∈ SI, f is given by the plane f = v − u

“hovering” over the hatched area. The hatched polygon has vertices at
(u,v) = (0,0), (1,2), (2,3), and (3,3), with total area 2/9. The dashed
edge (0,0)-(1,2) as well as the lines external to the hatched area do
not belong to SI.

small values of e (101 → 111) and f (111 → 111), to model
the decrease of the birth rates in overcrowded neighborhoods
(the logistic effect), and moderate to large values of b (001 →
011 and 100 → 110) and d (011 → 011 and 110 → 110), to
model reproduction and survival under favorable conditions.
The magnitude of c (010 → 010) depends on whether one
wants to model individuals more or less resilient to loneliness
and its consequences. Possible choices for the transition
probabilities encompassing these arguments would be, for
example, e = f = b/2 and c = d or d/2, among others. In
this section we analyze the two sets of constraints identified in
Sec. IV A and give examples of PCA that fall into each case.
As we shall see, the classification of PCA into Case I or II
makes sense, since the analysis of their transition probabilities
can be interpreted as describing the dynamics of a population
under logistic growth with or without Allee effect.

Case I (Logistic map). Constraints (12) can be recast as

v < 2u, 0 < u � v � 1 + u, (15)

with f = v − u always in the range [0,1]. Problem (15) is
effectively a two-dimensional problem. Figure 2 displays the
projection {v < 2u} ∩ {0 < u � v � 1 + u} of the solution
set SI on the uv plane. The solution set SI includes the plane
f = v − u, which, however, is not displayed in Fig. 2. The uv

projection of SI occupies a considerable fraction (namely, 2/9)
of the [0,3] × [0,3] box available. That means that it is not hard
to find a set of transition probabilities satisfying (15) that also
makes sense in terms of population dynamics. For example, we
can take b = 2/3 (001 → 011 and 100 → 110) to represent
relatively high, but not certain, reproduction in a relatively
favorable neighborhood, c = 1/3 (010 → 010) and d = 7/8
(011 → 011 and 110 → 110) to represent survival, with c

smaller than d because of the “loneliness factor,” and e = 1/4
(101 → 111) again to represent possible but not certain (in
fact, unlikely) reproduction into a crowded neighborhood.
We then obtain u = 2b + c = 5/3, v = 2d + e = 2, and f =
v − u = 1/3 (111 → 111) representing the possibility of
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FIG. 3. Space-time diagram of PCA (a,b,c,d,e,f ) = (0, 2
3 ,

1
3 , 7

8 , 1
4 , 1

3 ) exemplifying Case I. A total of 120 cells under periodic
boundary conditions are evolved for 120 time steps (time runs
downward) from an initially random state of density 1/2.

survival in what we may call an overcrowded neighborhood. A
space-time diagram of the resulting PCA is displayed in Fig. 3
for a PCA of length L = 120 initially occupied by L/2 = 60
individuals randomly distributed among the cells.

The equivalent logistic map (2) for the above choice of
transition probabilities has r = u = 5/3, within the interval of
stability [29–34], and K = u/(2u − v) = 5/4, namely,

xt+1 = 5
3xt

(
1 − 4

5xt

)
. (16)

The stationary density of the logistic map (16) is given by
x∞ = 1/2, while the average stationary density of the PCA
measured from small-scale simulations is 〈x(PCA)

∞ 〉 � 0.484.
Case II (Cubic map with weak Allee effect). Constraints

(13) are equivalent to

0 < 2u < v, f < v − u. (17)

The solution set SII of (17) can be constructed as follows. In
a coordinate system (u,v,f ), the first constraint 0 < 2u < v

determines a triangular slab delimited by the planes u = 0, v =
3, and v = 2u contained in the box (0,3] × (0,3] × [0,1]. The
second constraint defines a half-space bounded above by the
plane f = v − u, i.e., by a plane normal to the direction (1, −
1,1). The intersection of this half-space with the triangular slab
is SII. This set is depicted in Fig. 4.

The volume of SII is 25/12, approximately 23% of the
total volume available, so that there are plenty of transition
probabilities to choose from. In this case, however, choices
with large values of b (001 → 011 and 100 → 110), which
we argued formerly represent populations better prepared
to thrive, are less numerous, since u < 3/2 in SII, entailing
b < 3/4, that moreover can be large only at the expense of
c (010 →)010. In other words, for a given valid u, if we

u v

f

(32,3,0)

FIG. 4. Solution set SII (shaded volume) of (17). The simplex has
vertices at (u,v,f ) = (0,0,0), ( 3

2 ,3,0), (0,3,0) (lower face), (1,2,1),
( 3

2 ,3,1), (0,3,1), (0,1,1) (upper face), with total volume |SII| = 25/12.
Dashed edges as well as faces bounded by dashed edges do not belong
to SII.

pick b > 1/2 we necessarily have to pick c < 1/2 and vice
versa; we cannot have both probabilities above 1/2 as in
Case I. For instance, if we pick b = 2/3, as in the previous
example, we have to pick c < 1/6, meaning that, on average,
less than one out of six lone individuals (010) survive to tell
the history. This is a manifestation of the Allee effect, seen
from the point of view of the local microscopic processes.
Another manifestation of the Allee effect in the opposite
direction is reflected on the possible choices for v, which
can be as large as the maximum possible, namely, v = 3.
Large values of v means large values of d (011 → 011 and
110 → 110) and e (101 → 111), which can be interpreted as
improved survival probability due to collective support despite
the logistic (overcrowding) effect. Whatever the value of v,
the transition probabilities b (001 → 011 and 100 → 110)
and c (010 → 010) are bound by the condition u < v/2,
further limiting the chances of “unassisted” reproduction (b)
and survival of lone individuals (c). Figure 5 depicts the

FIG. 5. Space-time diagram of PCA (a,b,c,d,e,f ) = (0, 3
8 ,

2
5 , 4

5 , 3
4 , 4

5 ) exemplifying Case II. A total of 120 cells under periodic
boundary conditions are evolved for 120 time steps (time runs
downward) from an initially random state of density 1/2.
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space-time diagram of a Case II PCA of length L = 120 with
parameters (a,b,c,d,e,f ) = (0, 3

8 , 2
5 , 4

5 , 3
4 , 4

5 ) initially occupied
by L/2 = 60 individuals at random cells.

Note how the clusters of individuals in Fig. 5 are more
compact than the clusters in Fig. 3. Also note how some of the
clusters are fringed by checkerboardlike regions of low pop-
ulational density before the plains devoid of individuals. This
kind of pattern is typical of invasion processes, in which Allee
effects play a major role [23,24,43–45]. Invasion processes,
however, are better modeled in two spatial dimensions.

The pattern displayed by the PCA in Fig. 5 strongly resem-
bles the pattern of directed (site or bond) percolation clusters
at or slightly above criticality [19,49,50]. The relationship of
these PCA (both Case I and Case II) with percolation processes
as well as with other known CA and PCA, in particular with the
Domany-Kinzel (DK) PCA [53], is an interesting question. For
example, the map to the DK PCA would require that c = 0;
exact correspondence would additionally require that b = d

and e = f . A PCA with the same parameters as the one in
Fig. 5 but with c = 0 would roughly correspond to an inactive
instance of the DK PCA. It thus seems that sustained activity of
the PCA in Case II depends to a certain extent on the survival
probability of lone individuals, as embodied by the transition
probability c = φ(1 | 010). Preliminary analysis suggests that
the dynamics of the PCA is not very sensitive to the particular
values of c as long as c > 0.

V. SINGLE-PARAMETER PCA

Most PCA models in the literature are one- and two-
parameter models, since they are already rich and flexible
enough to model a great many phenomena, in one or more
dimensions, and display a variety of nontrivial behavior, from
disordered and chaotic phases to phase transitions of several
different kinds [2–6,49–52]. It is thus not entirely without
interest to identify single-parameter PCA that in the single-cell
mean-field approximation yield models for the logistic growth
of populations, with or without weak Allee effects.

A. Parametrization of the transition probabilities

We can reduce the number of parameters of PCA (8)
from six to a single one, say, p ∈ R, by parametrizing
the transition probabilities like a(p),b(p), . . . ,f (p) : R →
[0,1]. The simplest possible parametrization is by linear
functions, a(p) = a0 + a1p, b(p) = b0 + b1p, . . ., f (p) =
f0 + f1p, with p ∈ [p1,p2]. If we choose p ∈ [0,1], the
transition probabilities become then given either by p or
q = 1 − p and there are 26 = 64 possible parametrizations
for the transition probabilities, namely, (a,b,c,d,e,f ) =
(p,p,p,p,p,p), (p,p,p,p,p,q), . . . , (q,q,q,q,q,q). Now,
note that since q = 1 − p ⇔ p = 1 − q, if a given
parametrization has solution set p ∈ (p1,p2] (we take a
half-open, half-closed interval for the sake of illustration),
interchanging the roles of p and q in the parametrization leads
to the “dual” parametrization with solution set q ∈ (p1,p2],
that is, p ∈ [1 − p2,1 − p1). As a consequence, as p ranges
over [1 − p2,1 − p1), the transition probabilities of the dual
parametrization range over the same values as the initial
parametrization when p ranges over (p1,p2], and the two

TABLE II. Solution sets for the one-parameter version of PCA
in Case I (logistic map) according to the possible parametrizations
indicated in the first column. The solution sets are given as line
segments (equations in symmetic form) in the (u,v,f ) space. In every
case f = (2d + e) − (2b + c) = v − u.

(a,b,c,d,e,f ) SI(a,b,c,d,e,f ; p)

(0,p,p,p,p,∗) u/3 = v/3 ∈ (0,1], f = 0

(0,p,p,p,q,∗) u/3 = v − 1 = (1 − f )/2 ∈ ( 1
5 , 1

2 ]

(0,p,p,q,p,∗) u/3 = 2 − v = (2 − f )/4 ∈ ( 2
7 , 1

2 ]

(0,p,p,q,q,∗) u/3 = (3 − v)/3 = (3 − f )/6 ∈ ( 1
3 , 1

2 ]

(0,p,q,p,p,∗) u − 1 = v/3 = (1 + f )/2 ∈ [ 1
2 ,1]

(0,p,q,p,q,∗) u − 1 = v − 1 ∈ [0,1], f = 0

(0,p,q,q,p,∗) u − 1 = 2 − v = (1 − f )/2 ∈ (0, 1
2 ]

(0,p,q,q,q,∗) u − 1 = (3 − v)/3 = (2 − f )/4 ∈ [ 1
4 , 1

2 ]

parametrizations are equal. We then have, in fact, a maximum
of 32 unique parametrizations.

In our study, a(p) = 0 and we end up with only 16 possible
parametrizations of the transition probabilities. Again, it is
convenient to look at these parametrizations through the
variables u = 2b + c and v = 2d + e. We now determine for
which values of p PCA (8) comply with constraints (12)
and (13).

Case I (Logistic map). In this case f = (2d + e) − (2b +
c) = f (b(p),c(p),d(p),e(p)), and we have to examine only
the eight possible parametrizations for b, c, d, and e. We
then enforce constraints (12) on the parametrized transition
probabilities and obtain the valid ranges for p in each case.
The solution sets SI(a,b,c,d,e,f ; p) found are summarized
in Table II. Let us look at one example closely to make
Table II more clear. If we take (a,b,c,d) = (p,p,q,p), we have
u = 2b + c = 3p and v = 2d + e = 2 − p. The constraint
u > 0 (12a) implies p > 0, while the constraint 2u > v

(12b) implies p > 2/7. Since f = v − u = 2 − 4p must be
a number between 0 and 1, we further require that 1/4 �
p � 1/2. The final solution set is the interval p ∈ (2/7,1/2].
Solutions can also be read as line segments in SI. In our
example, the equation for the line segment in symmetric form
is u/3 = 2 − v = (2 − f )/4 = p, with p ∈ (2/7,1/2].

Case II (Cubic map with weak Allee effect). Here we have
to scrutinize all 16 different parametrizations of the transition
probabilities b, c, d, e, and f to get the whole picture. However,
from constraint (13c) we see that all instances with u = v are
forbidden, ruling out the four parametrizations (0,p,p,p,p,∗)
and (0,p,q,p,q,∗). Another four parametrizations violate
constraint (13b), namely, (0,p,q,p,p,∗) and (0,p,q,q,p,∗),
because the first ones require that p > 2 and the second ones
that p < 0. Upon examination, we found that parametrization
(0,p,p,p,q,q) is also impossible because it would also require
that p < 0. The resulting solution sets are listed in Table III.

B. Mixed CA and PCA

The one-parameter PCA in Case II are examples of mixed
PCA that have appeared in the literature before [52,54,55].
In a mixed PCA, two or more deterministic CA rules are
combined probabilistically such that sometimes one rule is
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TABLE III. Solution sets for the one-parameter version of PCA
in Case II (cubic map with weak Allee effect) according to the
possible parametrizations indicated in the first column. The solution
sets are given as line segments (equations in symmetic form) in the
(u,v,f ) space. The last column gives the mixed rule specification of
the PCA.

Mixed
(a,b,c,d,e,f ) SII(a,b,c,d,e,f ; p) PCA rule

(0,p,p,p,q,p) u/3 = v − 1 = f ∈ (0, 1
5 ) p222−q32

(0,p,p,q,p,p) u/3 = 2 − v = f ∈ (0, 2
7 ) p182−q72

(0,p,p,q,p,q) u/3 = 2 − v = 1 − f ∈ (0, 2
7 ) p54−q200

(0,p,p,q,q,p) u/3 = (3 − v)/3 = f ∈ (0, 1
3 ) p150−q104

(0,p,p,q,q,q) u/3 = (3 − v)/3 = 1 − f ∈ (0, 1
3 ) p22−q232

(0,p,q,q,q,p) u − 1 = (3 − v)/3 = f ∈ [0, 1
5 ) p146−q108

(0,p,q,q,q,q) u − 1 = (3 − v)/3 = 1 − f ∈ [0, 1
5 ) p18−q236

applied, and sometimes another rule is applied to a given
cell. Mixed PCA are closely related with asynchronous PCA
[52]: in an asynchronous PCA, one of the rules is the identity
map xt+1

i = xt
i . We can specify mixed PCA by telling which

rules are applied with which probabilities. For example, the
rule table for PCA (a,b,c,d,e,f ) = (0,p,p,q,p,q), third line
in Table III, appears in Table IV. Reading the lines of the
table as binary numbers (Wolfram’s encoding [2]) we obtain
that PCA (0,p,p,q,p,q) is the mixed PCA p54−q200. In
[54], the authors studied the closely related mixed PCA
p182−q200. The two models differ in the probability for
the transition 111 → 111, that is, φ(1 | 111) = p in PCA
p54−q200 and φ(1 | 111) = 1 in PCA p182−q200. This
single difference, however, implies that PCA p182−q200 has
two absorbing configurations, the all-0 (empty lattice) and the
all-1 (full lattice) configurations. PCA p182−q200 displays an
extinction-survival phase transition at the critical point p∗ �
0.488 in the directed percolation universality class of critical
behavior. PCA p54−q200 also has an extinction-survival
phase transition between the empty lattice and a stationary state
with finite positive density at p∗ � 0.575, out of the interval
p ∈ (0, 1

7 ) in which its mean-field approximation yields the
logistic growth model with weak Allee effect. Estimates of the
critical points for the mixed PCA of Table III are given in the
Appendix.

VI. SUMMARY AND CONCLUSIONS

We explored the modeling possibilities of the most general
right-left symmetric one-dimensional elementary PCA to

TABLE IV. Rule table for PCA (a,b,c,d,e,f ) = (0,p,p,q,p,q),
third line in Table III. The first row lists the initial neighborhood and
the other two rows give the state that the central cell reaches with the
probability given in the first column. This is mixed PCA p54−q200.

111 110 101 100 011 010 001 000

p 0 0 1 1 0 1 1 0
q 1 1 0 0 1 0 0 0

the dynamics of a single-species unstructured population
with nonoverlapping generations. Our results consist in the
classification of all sets of parameters of the PCA that furnishes
in first-order mean-field approximation either the logistic map
for the density of a population or a cubic map that describes the
dynamics of a population under weak Allee effects. The PCA
that give rise to the logistic map, for example, are composed of
microscopic transitions that describe individuals that struggle
against overcrowded neighborhoods, that hamper their chances
of reproducing and survival (small probabilities for transitions
like 101 → 111 and 111 → 111) and prefer more capacious
environments (large probabilities for transitions like 010 →
010 and 100 → 110). In the same manner, the PCA that furnish
the cubic map for the dynamics of a population under weak
Allee effects is made of microscopic transitions that describe
individuals that prefer to team up as long as the neighborhood
is not too crowded (relatively high probabilities for events
like 011 → 011 and 101 → 111) but suffer from loneliness
(smaller chances that 001 → 011 and 010 → 010). Examples
were given in Sec. IV B.

In Sec. V we obtained all one-parameter PCA that yield the
logistic map for the dynamics of a population density xt in the
mean-field approximation, both in the absence (Case I) and in
the presence (Case II) of weak Allee effects. We found eight
different PCA in the first case and seven in the second case.
The PCA in Case II can be viewed as probabilistic mixtures of
two different CA rules. All of them display phase transitions
between an inactive (x∞ = 0) and an active (x∞ > 0) phase,
however, at critical points out of the range in which their
single-cell mean-field approximation becomes the logistic
growth with weak Allee effects. It would be interesting to
investigate the phase transitions in these models irrespective
of their connection with the logistic or cubic maps of this
work, as well as their relationship with percolation processes
and other known CA and PCA.

The analysis of the discrete maps found in this paper was
left aside for two reasons. First, because the logistic map (2) is
one of the most well-studied dynamical systems ever, and we
do not feel compelled to add anything to the extensive body
of literature concerning its behavior [29–34]. Second, because
the dynamics of the full cubic map (10) and its interpretation in
the context of population dynamics and Allee effects deserve
a detailed investigation that we intend to carry out elsewhere.
Note that although cubic maps have appeared in mathematical
biology before [56–58], in this paper they are obtained in
population dynamics from microscopic models involving the
behavior of individual agents. One should not expect that the
bifurcations displayed by the logistic and cubic maps will
appear in a PCA with the same mean-field equation. Mean-field
models, as well as the maps, are “well stirred,” while the PCA
dynamics is local. One way to recover the bifurcations is to add
some reshuffling (long-range mixing) among the interacting
particles or to rewire a fraction of the cells to explore the
small-world effect (see [51,59,60] for examples, discussion,
and references).

Clearly, ecological complexity, even at the limited scale of
a single species within a single patch, cannot be grasped by a
one-dimensional PCA. PCA have, however, the merit of being
simple enough to allow for analytical approaches, at least to
some degree. Moreover, the PCA transition probabilities can
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be readily interpreted in population dynamics terms, as we
did in Sec. IV. The extension of the single-cell mean-field
approximation to two-dimensional models, with two or more
states per cell, together with automated search for meaningful
combinations of parameters may prove fruitful.
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APPENDIX: PHASE TRANSITIONS IN THE MIXED PCA
OF TABLE III

Here we obtain the critical points of the extinction-survival
phase transition of the PCA listed in Table III from their mean-
field equation (10) and small-scale numerical simulations.

The critical point in the mean-field approximation can be
calculated as follows. In the stationary state xt+1 = xt = x∞,
and from (10) with a = 0 we obtain that either x∞ = 0 or

(u − v + f )x2
∞ + (v − 2u)x∞ + (u − 1) = 0, (A1)

where u, v, and f are the variables introduced in Sec. IV A.
Equation (A1) has solutions

x(±)
∞ = −(v − 2u) ±

√
(v − 2u)2 − 4(u − v + f )(u − 1)

2(u − v + f )
.

(A2)

TABLE V. Critical points for the single-parameter mixed PCA
listed in Table III at the single-cell mean-field approximation (p∗

mf)
and from small-scale numerical simulations (p∗

sim). Uncertainties in
the values of p∗

sim are approximately ±0.001.

Mixed PCA rule p∗
mf p∗

sim

p222−q32 1/3 0.543
p182−q72 1/3 0.563
p54−q200 1/3 0.576
p150−q104 1/3 0.573
p22−q232 1/3 0.589
p146−q108 0 0.648
p18−q236 0 0.676

Now we must find the critical points p∗ at which x
(±)
∞ (p∗) = 0.

The candidate roots of (A2) are easily seen to be the points
at which 4(u − v + f )(u − 1) = 0; however, since u − v + f

is a removable singularity of (A2), the candidate roots are
actually obtained from the condition u − 1 = 0. The critical
point p∗

mf is then given by the root between 0 and 1 and the
mean-field stationary density profile is the solution of (A2)
with x∞(p) � 0 for p � p∗

mf (or, sometimes, p � p∗
mf). The

mean-field critical points calculated for the mixed PCA of
Table III are given in Table V, together with critical points
p∗

sim estimated from simulations of PCA of L = 8000 cells
with data averaged over 4000 samples of the stationary density.

With every continuous phase transition there comes the
question of its universality class, i.e., of the critical exponents
ruling its scaling behavior at criticality [49,50]. We guess, on
the basis of the directed percolation conjecture [61,62], that
the critical behavior of the PCA of Table III all belong to the
directed percolation universality class of critical behavior.
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