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Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice
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The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The
rods were represented as linear k-mers (i.e., particles occupying k adjacent sites). In the initial state, they were
deposited onto a two-dimensional square lattice of size L × L up to the jamming concentration using a random
sequential adsorption algorithm. The size of the lattice, L, was varied from 128 to 2048, and periodic boundary
conditions were applied along both x and y axes, while the length of the k-mers (determining the aspect ratio) was
varied from 2 to 12. The k-mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were
deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts
between the same sort and between different sorts of k-mers, respectively, were calculated. Both the shift ratio of
the actual number of shifts along the longitudinal or transverse axes of the k-mers and the electrical conductivity
of the system were also examined. For the initial random configuration, quite different self-organization behavior
was observed for short and long k-mers. For long k-mers (k � 6), three main stages of diffusion-driven spatial
segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the
intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage,
reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial
configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of
k-mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially
increases as the lattice size growth.

DOI: 10.1103/PhysRevE.95.052130

I. INTRODUCTION

Phase behavior and self-assembly in systems of elongated
particles have attracted a great deal of attention for many
years. Onsager developed a density expansion theory and
showed that the excluded volume effect can produce a
nematic-isotropic (NI) transition in such systems [1]. The
density of the NI transition for systems of rigid ellipsoids
and cylinders has been estimated [2]. A lattice model of holes
and long rigid rods with a length-to-width ratio (aspect ratio)
k = 100 has been analyzed [3]. Theory predicts that, below a
certain concentration of holes, NI transition can occur. Similar
behavior has also been observed for a system of noninteracting
rods and holes for a simple cubic lattice [4]. The transition
predicted by Onsager’s theory has been confirmed using a
cluster expansion approximation for three-dimensional (3D)
systems of rods oriented in three mutually perpendicular
directions [5]. The seven virial coefficients of the expansion
of the free energy in powers of density were calculated, and it
was shown that the system exhibits a van der Waals–like loop
associated with the disorientation transition.
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Scaled particle approaches have been tested against a fluid
of rods with different aspect ratios k [6–8]. Monte Carlo (MC)
simulations have predicted isotropic, nematic, smectic-A, and
solid phases for the 3D systems with k � 4 [9,10]. A direct
transition from the isotropic to the smectic-A phase for a
system with k = 3.2 has been observed [10]. The critical
density of the NI transition has been found to be inversely
proportional to the aspect ratio k of the rods [2,11]. A
statistical theory for describing the packing properties and
phase behavior of a granular material composed of elongated
grains has also been developed [12]. The theory predicts that
the systems need not necessarily undergo a discontinuous
first-order phase transition (even at minimum close-packing).
A kinetic approach has been applied to study the dynamic
ordering of rods [13]. At steady state, the nematic ordering
was only observed at low diffusivities, whereas at large
diffusivities, the system was disordered.

In two-dimensional (2D) systems, similar self-assembly
and NI transition in systems of rodlike particles have been
predicted. The reduction in spatial dimensionality from 3D
to 2D influences the nature of the ordered phases. For
example, a perfect long-range order for 3D systems is realized,
whereas a quasi-long-range order with algebraic decay of
the order-parameter correlation function is realized for 2D
systems [14,15]. The existence of liquid crystalline order in
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2D systems has been discussed [16]. Note that the Mermin-
Wagner-Berezinskii theorem forbids a long-range order in 2D
systems with continuous symmetry; however, such an order
may be possible for systems with the hard-core interactions
between the particles [17].

By means of MC simulation, a 2D system of hard ellipses
with the aspect ratio k = 6 has been studied [18]. The system
exhibited two first-order phase transitions: a solid-nematic one
(at high density) and an NI one (at a density 1.5 times smaller).
These transitions were attributed to geometrical factors. The
density-functional approximation has been used to study the
phase behavior of hard ellipses in 2D [19]. A continuous NI
transition was observed for the ellipses, whereas there was a
first-order transition for the ellipsoids. No evidence for a first-
order NI transition was found using MC simulation of hard
rods [14]. The nematic phase demonstrated algebraic order
(quasi-long-range order) and the occurrence of a disclination-
unbinding transition of the Kosterlitz-Thouless (KT) type has
been suggested. MC simulations for hard ellipses with aspect
ratios k = 2,4, and 6 have been reported [20]. The NI transition
was only observed for k > 2, while the transition was first-
order for k = 4 and continuous (via disclination unbinding) for
k = 6. MC simulations of the gravitational pouring of elliptical
particles with different aspect ratios k (k ∈ [1,8]) in 2D have
been studied [21,22]. For k � 2, “amorphous” packings with
no translational order were observed. However, the ellipses
formed the packings with long-range orientational order and
the ordering growing with increasing k. These states were
named as the “nematic glasses.”

Mean-field model predicts nematic, columnar, and
crystalline order in dense systems of parallel hard rods in 2D
systems [10]. Scaled particle theory has been applied to 2D flu-
ids of ellipses and rectangles [23]. Theory predicts the presence
of an isotropic-nematic transition that is strongly dependent
on the details of particle geometry. A density-functional
theory for the NI transition in a 2D system of rods has been
developed [17]. The theory predicts the continuous (second
order) NI transition of self-assembled rods in 2D systems.

MC simulations have been applied to study the phase
behavior of continuous 2D fluid systems with spherocylinders
(tapered cylinders) [15]. At high density for long rods with high
aspect ratios k � 7, a 2D nematic phase of the KT type occurs.
Shorter rods exhibit a melting transition to an isotropically
arranged phase dominated by chains of particles that align
side-by-side.

The formation of piles in the 2D packing of acrylic rods
(≈12) constrained between two Plexiglas sheets has been
studied both experimentally and in MC simulations [24].
Orientational correlations with nematic ordering extending
over two particle lengths were observed.

The different experimental studies for 2D systems of
vertically vibrated rod-shaped particles have been extensively
discussed [25]. For example, various shapes (cylinders with
cut tips, tapered tips, and rice-like particles) with aspect ratios
k ranging from 4 to 12.6 were experimentally tested [26].
The strictly cylindrical particles did not form ordered phases
(smectic and nematic). Irrespective of the aspect ratio, a strong
fourfold (tetratic) orientational order was always observed.
Stacks with similarly oriented cylinders were formed in
the tetratic arrangement. The range of tetratic order was

shorter (when the distance was scaled by cylinder length)
for long cylinders. In a similar study, stainless steel rods
with aspect ratios of k = 20,40, and 60 confined to 2D
containers have been analyzed [27,28]. At high density, the
distinct patterns reflected competition between bulk nematic
and boundary alignments. In a container of circular geometry,
this competition produced bipolar configuration with two
diametrically opposed point defects. As density increased, the
patterning shifted from bipolar to a uniform alignment [28].
The presence of large-scale collective swirl motions has been
revealed in monolayers of vibrated granular rods (different rice
species, mustard seeds, and stainless steel rods with aspect
ratios from ≈1 to ≈8) [29]. It was speculated that the very
strong sensitivity of swirling to the shape of the particles can
be related to the formation of the tetratic structures.

In recent decades, much attention has been paid to the study
of self-assembly in systems of linear k-mers (particles occu-
pying k adjacent adsorption sites) deposited on 2D lattices. A
linear k-mer represents the simplest model of an elongated
particle with an aspect ratio of k. Computer simulations
have been extensively applied to investigate percolation and
jamming phenomena for the random sequential absorption
(RSA) of k-mers [30–38]. Various anomalies in the properties
of the systems’ dependence on the length of the k-mers
have been reported. For example, the jamming concentration
decreases monotonically when approaching the asymptotic
value of pj = 0.66 ± 0.01 at large values of k. The percolation
threshold pc is a nonmonotonic function of the length k, with
a minimum at a particular length of the k-mers (k ≈ 13) and,
presumably, percolation is impossible for very long k-mers
(k � 104) [35].

The irreversible RSA process leads to a nonequilibrium
state of the system, and further self-organization in the
deposited film is possible, owing to deposition-evaporation
processes or the diffusion motion of the k-mers. Several
problems related to such types of self-assembly of k-mers have
previously been discussed [39–45]. Dynamic MC simulations
using a deposition-evaporation algorithm for simulation of the
dynamic equilibrium of k-mers on square lattices have been
applied [39]. For long k-mers (k � 7), two entropy-driven
transitions as a function of density, p, were revealed: first,
from a low-density isotropic phase to a nematic phase with an
intermediate density at pin, and second, from the nematic phase
to a high-density disordered phase at pnd. A lattice-gas model
approach has been applied to study the phase diagram of self-
assembled k-mers on square lattices [40]. It has been observed
that the irreversible RSA process leads to an intermediate state
with purely local orientational order and, in the equilibrium
model, the nematic order can be stabilized for sufficiently
long k-mers [44]. For example, for k = 7, pin ≈ 0.729 [44]
and pnd ≈ 0.917 [43].

On a square lattice, in the course of diffusion, the horizontal
and vertical stacks of k-mers separated from one another
and a characteristic coarsening was observed [45]. Such
self-assembly of k-mers can significantly affect the properties
of the films. The properties of electrically conductive films
filled with elongated particles (e.g., carbon nanotubes) are
of particular interest in the production of electrodes for
super-capacitors, thin film transistors, and fuel cells [46,47].
Nevertheless, in spite of great interest in the problem, the
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impact of diffusion-driven self-assembly on the percolation
and electrical conductivity of such films has never previously
been discussed in the literature.

This paper analyzes the processes of diffusion-driven self-
assembly of linear k-mers on a square lattice by means of
kinetic MC simulation. The initial state was produced using
RSA with isotropic orientations of the k-mers, after which the
k-mers underwent translation diffusion. The kinetics of the
changes of structure and electrical conductivity in different
directions were analyzed.

The rest of the paper is constructed as follows. In Sec. II,
the technical details of the simulations are described, all
necessary quantities are defined, and some test results are
given. Section III presents our principal findings. Section IV
summarizes the main results.

II. COMPUTATIONAL MODEL

In the kinetic MC simulation, the RSA model was used to
produce an initial homogeneous and isotropic distribution of
linear k-mers (i.e., particles occupying k adjacent sites) in a
2D film [48]. The rodlike particles were deposited randomly
and sequentially, and their overlapping with previously placed
particles was forbidden.

The problem was approached using a square lattice of
size L × L. In the present work, almost all calculations were
performed using L = 256. In some cases, scaling analysis
for lattices of sizes up to L = 2048 was performed. Periodic
boundary conditions were applied along both the x and y axes.
The length of the k-mers (aspect ratio) was varied from 2 to 12.
Isotropic orientation of the k-mers was assumed; i.e., k-mers
oriented along the x and y directions (kx-mers and ky-mers,
respectively) were equiprobably in their deposition.

For a random initial configuration (r configuration), the
kx-mers and ky-mers were randomly deposited over the entire
lattice. In some cases, we divided the lattice in two areas
of a specific shapes. The initial states were generated by
deposition of only kx-mers inside one of these areas and only
ky-mers inside the other area. The areas were either (a) two
stripes oriented in the vertical direction (v configuration) or
(b) diagonal stripes (d configuration).

The concentration of the particles corresponded to the
jamming state, pj . In this state, no additional k-mer can
be placed because the presented voids are too small or of
inappropriate shape. Note that initial RSA jammed state
is nonequilibrium and nonergodic. The values of pj for
different values of k have recently been calculated at the
thermodynamic limit (L → ∞) [49], while our estimations
of pj for a particular lattice size L = 256 have also recently
been presented in Ref. [45]. The total number of k-mers at the
jamming state, Nk , was equal to pjL

2/k.
The diffusion of k-mers was simulated using the kinetic

MC procedure (see the Appendix). For fairly dense systems in
the jamming state, rotational diffusion is impeded, especially
for large values of k. This is the reason why only translational
diffusion was taken into consideration in our simulation.

At each step, an arbitrary k-mer was randomly chosen.
Then, a random order of four possible directions of shift was
generated. A shift by one lattice unit along the first direction
was attempted. When the attempt was successful, a next k-mer

FIG. 1. Examples of patterns at different times, tMC, from the
videok6 in the Supplemental Material [50]. Here, L = 256, k = 6
and the initial r configuration were used. The concentration of k-mers
corresponds to the jamming state, pj ≈ 0.769 [45].

was randomly chosen. When the attempt was unsuccessful,
the next direction was chosen. Equal probabilities of such a
translational shift along the longitudinal or transverse axes
of the k-mers were assumed. One time step of the MC
computation, which corresponds to an attempted displacement
of the total number of k-mers in the system, Nk , was taken as
the MC time unit. Time counting was started from the value
of tMC = 1, being the initial moment (before diffusion), and
the total duration of the simulation was typically 107 MC time
units, although in some cases even up to 109.

Figure 1 presents examples of the k-mer patterns at different
moments in time, tMC, for k = 6 and the initial r configuration.
At the initial moment, at tMC = 1, the deposited k-mers tend
to align parallel to each other and stacks of the horizontally
(x stacks) and, typically, vertically (y stacks) oriented k-mers
were observed. These stacks can be represented as squares
of size ≈k × k. In the jamming state, small voids between
the stacks were also present. These results fully correspond
with previously reported data [31,45,49,51]. Comparison of
the patterns at different times evidenced the possibility of
diffusion-driven spatial segregation (self-assembly) in the
systems (Fig. 1). Evident separation of domains of kx-mers
and ky-mers was observed. This phase ordering resembles the
coarsening (Ostwald ripening) in phase-separating systems,
such as binary alloys or in the anisotropic ferromagnet (Ising
model) [52]. At late stages (tMC � 106), very large percolating
domains of the horizontal and vertical stacks were formed.

For characterization of these processes, a range of parame-
ters were calculated during the course of the simulation:

(1) the number of intraspecific contacts (per monomer)
between the same sorts of k-mers (i.e., horizontal-horizontal
or vertical-vertical), n;

(2) the number of interspecific contacts (per monomer)
between the different sorts of k-mers (i.e., horizontal-vertical),
nxy ;

(3) the shift ratio of the actual number of shifts along
the longitudinal axis to the one along transverse axis of the
k-mers, R;
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FIG. 2. Fragment of a square lattice with two deposited 3-mers
of different orientations. The conductivities of the bonds for (a)
conventional and (b) insulating ends models are indicated.

(4) the electrical conductivity.
Note, that the maximum value n or nxy can attain is

2(1 + 1/k). For calculation of the electrical conductivity in
the horizontal, σx , or vertical, σy , directions, the periodic
boundary conditions were removed and two conducting buses
were applied to the opposite borders of the lattice in the
corresponding y or x directions. The electrical conductivities
were calculated between these buses, and the mean value σ =
(σx + σy)/2 was evaluated. For the conventional model, the
different electrical conductivities of the bonds between empty
sites, σm, filled sites, σp, and empty and filled sites, σpm =
2σpσm/(σp + σm) were assumed [Fig. 2(a)]. For the insulating
ends model, the two ends of each k-mer were isolated and
the electrical conductivities of the bonds were calculated
as demonstrated in Fig. 2(b). Presumptively, interspecific
contacts play a crucial role in the system connectivity and
formation of a percolation cluster, especially for large value
of k [35]. Insulating ends model allows examine effect of
the end contacts on the electrical properties of the system
under consideration. We put σm = 1 and σp = 106 in arbitrary
units. The Frank-Lobb algorithm was applied to evaluate the
electrical conductivity [53]. In the calculations, the logarithm
of the effective conductivity was averaged over different runs
(see Ref. [54] for the details).

Figure 3 presents examples of the evolution over time of
the number of intraspecific, n, and interspecific, nxy , contacts,
the shift ratio, R, and the electrical conductivity for the
conventional model, σ , for the same MC run that generated
the for patterns presented in Fig. 1.

Comparison of the data presented in Figs. 1 and 3 allows the
following preliminary conclusion to be drawn. We can identify
several stages of the diffusion-driven spatial segregation (self-
assembly) of the system under consideration.

Initial stage: During the initial stage, the system undergoes
a drastic transition, namely, the jammed state turns into
a nonjammed state. Upon this transition, the number of
intraspecific contacts, n, goes through a maximum, while the
values nxy , R, and σ decrease noticeably. The duration of
the transition mode is of the order 102 MC steps. Its end
corresponds to the minimum of the curve R(tMC).

Intermediate stage: In this stage (tMC = 102–106), con-
tinuous cluster coarsening and labyrinth pattern formation
can be observed. The labyrinth structures form during the
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FIG. 3. Number of intraspecific, n, and interspecific, nxy ,
contacts, the shift ratio, R, and electrical conductivity for conventional
model, σ , versus the MC time tMC. The data correspond to the same
MC run as for the patterns presented in Fig. 1, L = 256, k = 6, with
use of the initial r configuration. The concentration of the k-mers
corresponds to the jamming state, pj ≈ 0.769 [45]. Here, all vertical
axes are linear.

middle of the stage and then transform into the germs of
the stripe domains toward its end (see Fig. 1). The values
of n and R increase and the value of nxy decreases almost
proportionally to the time log10(tMC) (Fig. 3). The end of this
stage corresponds to the inflection points in the curves n(tMC)
and nxy(tMC) in Fig. 3.

Final stage: During the third stage, regular patterns begin
to form. These patterns appear as striped diagonal domains
oriented at 45◦ to the lattice side. The stripe formation finishes
at times in the order of tMC ≈ 5 × 106. Later in the MC
simulation, the system stabilizes in a steady state. The diagonal
stripe domains on a plane correspond to a torus divided into
two equal parts [50].

For each given value of k, the computer experiments were
repeated 100 times, and then the data were averaged. The
error bars in the figures correspond to the standard error of the
mean. When not shown explicitly, they are of the order of the
marker size.

III. RESULTS AND DISCUSSION

A. Initial r configuration

Figure 4 presents the patterns for different values of the
length of k-mers for relatively long MC simulations, tMC =
107. The initial r configuration (L = 256) was used. For short
k-mers, cluster coarsening was observed. This self-assembly
of rodlike particles became more evident and the clusters grew
more in size with increase of k. Stripe domains were only
observed in the case of long rods with high aspect ratios k � 6.

The values of the number of intraspecific, ni , and inter-
specific, ni

xy , contacts for different values of k-mers for the
initial moment tMC = 1 before diffusion began are presented
in Fig. 5. The ni(k) dependence was weak and a minimal
number of intraspecific contacts (ni ≈ 1.407) was observed at
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FIG. 4. Examples of patterns at tMC = 107 for different values of
length of the k-mers. Here, L = 256 and the initial r configuration
were used. The concentration of k-mers corresponds to the jamming
state [45].

k = 4. The ni
xy(k) dependence was fairly strong and could be

well-approximated by the following equation:

ni
xy = (a/

√
k − b)2, (1)

where a = 1.843 ± 0.016, b = 0.2620 ± 0.009, and the coef-
ficient of determination is r2 = 0.9998.

Figure 6 compares the kinetics of the changes in the number
of (a) intraspecific and (b) interspecific contacts for different
values of k. Here, for the convenience of presentation, the data
have been normalized to their initial values at tMC = 1.

The normalized number of intraspecific contacts, n∗, grows
during the time period tMC = 1–10 for all values of k

[Fig. 6(a)]. During the intermediate stage II and the final stage
III, the time dependencies were different for different values
of k. The most remarkable feature was the presence of steps
at the boundary between stages II and III for k = 6,7, and 8
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FIG. 5. Relationship between the initial number (i.e., at tMC = 1)
of intraspecific, ni , and interspecific, ni

xy , contacts versus the length
of the k-mers. The normalized numbers of intraspecific contacts, n∗

f

versus k at tMC = 107 are also presented. Here, L = 256 and the initial
r configuration were used. The concentration of k-mers corresponds
to the jamming state [45].
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FIG. 6. Normalized number of (a) intraspecific, n∗ = n/ni , and
(b) interspecific, n∗

xy = nxy/ni
xy , contacts versus the time tMC for

different values of length of the k-mers. Here, ni and ni
xy are the

corresponding initial values at tMC = 1, while L = 256 and the initial
r configuration were used. The concentration of k-mers corresponds
to the jamming state [45]. The values of (a) n∗

f and (b) tt correspond to
the final values at tMC = 107 and to the transition period, respectively.

and their absence for other values of k. The dependence of
the normalized number of intraspecific contacts, n∗

f , versus
k for relatively long kinetic MC simulations, tMC = 107, is
presented in Fig. 5. The maximum value of n∗

f was observed
at k = 6.

The kinetics of the changes in the normalized number
of interspecific contacts, n∗

xy , were also different for various
values of k [Fig. 6(b)]. These changes were insignificant for
k = 2,3. For other values of k, the values of n∗

xy decreased
during the initial period of time and then stabilized after a
transition period, tt . The transition periods were tt ≈ 2 × 103

for k = 4, tt ≈ 3 × 104 for k = 5, and tt ≈ 3 × 106 for k � 6.
The kinetics of changes in the shift ratios R(tMC) and electrical
conductivity σ (tMC) for different values of k are presented in
Figs. 7 and 8, respectively. For all values of k the values of R

decreased significantly during the initial stage I (at tMC < 102)
(Fig. 7). In the initial jammed state, shifts along the transverse
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FIG. 7. Shift ratio, R, versus the time tMC for different values of
length of the k-mers. Here, L = 256 and the initial r configuration
were used. The concentration of k-mers corresponds to the jamming
state [45].

axes of the k-mers are not possible (i.e., R = ∞) and the initial
decrease of R evidently reflects a rapid transition of the system
into a nonjammed state. For k � 5, the values of R stabilized
at some level within the intermediate (II) and final (III) stages.
For k � 6, distinct minima within stage II and the steps at the
boundary between stages II and III were observed in the R(tMC)
dependencies. The observed steps correlate with the similar
steps observed in the n∗

xy(tMC) and n∗
xy(tMC) dependencies

(Fig. 6). These steps can be explained by the starting of the
process of stripe domain formation. It is evident, that the for-
mation of domains of similarly oriented k-mers accompanies
the restriction of the shifts along the transverse axis.

The kinetics of the changes in the electrical conductiv-
ity, σ (tMC) were significantly different for the conventional
[Fig. 8(a)] and insulating ends [Fig. 8(b)] models. Note that,
for isotropic deposition, the mean geometric conductivity,
σg = √

σmσp = 103 approximately corresponds to the value
of the electrical conductivity at the percolation threshold [54].

For the conventional model, the electrical conductivity, σ ,
during the diffusion evolution of the system, was noticeably
greater compared with σg for all values of k [Fig. 8(a)]. This
reflected the presence of percolation during the evolution.
At the initial moment (in the jamming state), the percola-
tion concentration, pc, is always smaller than the jamming
concentration, pj , for the studied range k ∈ [2,12] [35]. The
temporal changes of electrical conductivity were insignificant
for k < 5. For k � 6 the values of σ decreased noticeably
during the initial stage I (for t < 100) and distinct minima
at t ≈ 103 were observed. For the insulating ends [Fig. 8(b)]
model, significant changes of electrical conductivity, σ , with a
sharp transition above σg were only observed at the boundary
between stages II and III for relatively long k-mers (k � 6).

Figure 9 compares the electrical conductivity, σ , versus the
k dependencies at the initial jamming state (tMC = 1) and at
the final state, after a relatively long time (tMC = 107) for the
conventional and insulating ends models. On the one hand, for
the conventional model, the value of σ decreased with increase
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FIG. 8. Electrical conductivity, σ , versus the time tMC for different
values of length of the k-mers for (a) conventional and (b) insulating
ends models. Here, L = 256 and the initial r configuration were used.
The concentration of k-mers corresponds to the jamming state [45].

of k, in both the initial and final states. This naturally reflected
the decrease in the value of the jamming concentration for the
longer k-mers [49]. The diffusion evolution also resulted in
a decrease of σ . On the other hand, for the insulating ends
model, during the initial stage, the value of σ decreased with
increase of k but was always below the level of the mean
geometric conductivity, σg . We can conclude that, during the
initial stage, a suppression of the percolation for the insulating
ends model is caused by the presence of insulating ends. So, the
presence of the insulating ends has a significant impact on the
connectivity between the x and y stacks. During the diffusion,
the formation of the stripes for k � 6 resulted in a restoration
of percolation through the system via the connectivity inside
the large domains of similarly oriented k-mers.

B. Effects of the size of the system: L = 128–2048

Figure 10 presents examples of the patterns formed with a
fixed length of k-mers, k = 12 and different sizes of the system,
L = 128–2048 at tMC = 107. The initial r configuration was

052130-6



DIFFUSION-DRIVEN SELF-ASSEMBLY OF RODLIKE . . . PHYSICAL REVIEW E 95, 052130 (2017)

2 4 6 8 10 12
k

tMC=
1
107

Insulating ends model

Conventional model

g

101

102

103

104

105

106

FIG. 9. Electrical conductivity, σ , versus the length of k-mers
for different values of tMC for conventional and insulating ends
models. Here, L = 256 and the initial r configuration were used.
The concentration of k-mers corresponds to the jamming state [45].

used. The fairly ideal stripe domains were only observed for
L = 128 and L = 256. For larger lattices starting from L =
512, stacks consisting of k-mers of perpendicular orientation
appeared inside the stripe domains and their concentration
increased with increase of L. We believe that these alien stacks
may be found to disappear when tMC → ∞. Unfortunately, we
are not in a position to perform any direct verification of this
suggestion because the simulation is very time-consuming.

The example of the evolution over time of the patterns for
k = 12 and L = 2048 is presented in Fig. 11. In this case, an
evident coarsening of clusters elongated along the diagonals
of the lattice was observed at tMC = 105–106.

The defects inside the stripe domains were strongly
stabilized and did not disappear during diffusion evolution.

FIG. 10. Examples of patterns at tMC = 107 for k = 12 and
different sizes of the lattice L = 128–2048. Here the initial r

configuration was used. The concentration of k-mers corresponds
to the jamming state.

FIG. 11. Examples of patterns at different times, tMC, from the
video videok12L2048 in the Supplemental Material [50]. Here,
L = 2048, k = 12, and the initial r configuration were used. The
concentration of k-mers corresponds to the jamming state.

Figure 12 compares the kinetics of the changes in (a) the
normalized number of interspecific contacts, n∗

xy = nxy/ni
xy ,

and (b) the shift ratio, R, for k = 12 and for different sizes
of the system, L. The data evidenced the presence of fairly
insignificant scaling within the studied range of L.

C. Comparison of the different initial configurations

In order to clarify the mechanism of formation of the
diagonal stripe domains for k � 6, the effects of different
initial configurations on such pattern formation were also
studied. A strong impact of the initial configuration on the
evolution of patterns and the kinetics of the main parameters
of the system was observed. Figure 13 compares the time

100 101 102 103 104 105 106 1070

0.2

0.4

0.6

0.8

1

256
1024
2048

100 101 102 103 104 105 106 107

20

30

40

50

256
1024
2048R 

   
   

   
   

   
   

   
   

   
   

   
 n

* xy

L=

L=

tMC

tMC(b)

I                              II                              III

I                              II                              III

k=12

(a)

FIG. 12. Normalized number of (a) interspecific contacts, n∗
xy =

nxy/ni
xy , and (b) the shift ratio, R, versus the time tMC for k = 12

and different sizes of the system, L. Here, ni
xy is the initial value at

tMC = 1 and the initial r configuration were used. The concentration
of k-mers corresponds to the jamming state.
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FIG. 13. Examples of patterns at different times, tMC, from the
video videok12vd in the Supplemental Material [50]. Here, L = 256,
k = 12, initial v configuration (upper row) and d configuration
(bottom row) were used. Concentration of k-mers corresponds to
the jamming state of r configuration [45].

evolution of the patterns for initial stripe configurations: v

configuration (upper row) and d configuration (bottom row).
Here, L = 256, k = 12, and the concentration of particles
corresponds to the jamming concentration for the initial r

configuration. It is clearly evident that the initial unstable v

configuration gradually transforms to diagonal stripe patterns,
whereas the initial stable d configuration remains almost
unchanged. We can conclude that the pattern of diagonal stripe
domains is an attractor, i.e., any spatial distribution of k-mers
tends to transform into diagonal stripes when k � 6.

Figure 14 compares the kinetics of changes in (a) the
number of intraspecific contacts, n, (b) the interspecific
contacts, nxy , (c) the shift ratio, R, and (d) the electrical
conductivity, σ , for k = 12 and L = 256. It is remarkable
that, for various initial configurations, the initial values and
the evolution of all parameters were fairly different.

Their final values were almost the same irrespective of
the initial configuration. Note that for the initial v and d

configuration, for the insulation ends model, the electrical
conductivity was above the mean geometric conductivity, σg .
This reflected the presence of percolation along the stripe
domains. It is also interesting that, for v configuration, some of
the studied parameters illustrated extrema at tMC ≈ 5 × 105,
i.e., just near the boundary between stages II and III. This
corresponds to the critical transformation of the vertical stripe
into the diagonal stripe (see pattern for initial v configuration
at tMC = 5 × 105, Fig. 13).

Similar effects were observed for other values of k in the
range of 6–12. At smaller values of k, the choice of initial
d configuration did not allow the diagonal stripe patterns to
stabilize. Figure 15 presents examples of such patterns at
tMC = 107 for different values of k.

The value of nxy increased during the diffusion evolution
of the system, and saturated for a long time at the level of ns

xy .
The inset in Fig. 16 shows the half-time t1/2 required to attain
0.5ns

xy . The most rapid kinetics were observed for small k-mer
lengths.

100 101 102 103 104 105 106 107

1.44

1.46

1.48 r
v
d

100 101 102 103 104 105 106 107

0.02

0.04

0.06
r
v
d

n x
y

n

Initial configuration

tMC

tMC

(a)

(b)

k=12

100 101 102 103 104 105 106 107

20

40

60

80

100

r
v
d

100 101 102 103 104 105 106 107

R

k=12
Initial configuration

tMC

tMC

Insulating ends model

Conventional model

g

(c)

(d)

102

103

104

105

106

FIG. 14. Number of (a) intraspecific contacts, n (b) interspecific
contacts, nxy , (c) shift ratio, R, and (d) electrical conductivity, σ ,
versus time tMC for k = 12. Here, L = 256 and different initial r ,
v, and d configurations were used. The concentration of k-mers
corresponds to the jamming state of the r configuration [45].

FIG. 15. Examples of patterns at tMC = 107 for different values
of length of the k-mers. Here, L = 256 and the initial d configuration
were used. The concentration of k-mers corresponds to the jamming
state for the initial r configuration [45].
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FIG. 16. Number of interspecific, nxy , contacts versus time tMC

for different values of k. Here, L = 256, and the initial d configuration
were used. The concentration of k-mers corresponds to the jamming
state for the initial r configuration [45]. Inset shows the half-time t1/2

required to attain the level 0.5ns
xy .
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FIG. 17. Number of interspecific, nxy , contacts versus time tMC

for initial r , v, and d configurations, L = 2048, for (a) k = 6 and
(b) k = 12. The concentration of k-mers corresponds to the jamming
state for the initial r configuration [45]. The corresponding patterns
at tMC = 107 are also shown.

Finally, Fig. 17 compares the kinetics of changes in the
number of intraspecific contacts, n, for initial r , v, and d

configurations for large systems, L = 2048, (a) k = 6 and
(b) k = 12. For k = 6, the systems with different initial
configurations progressively changed. We can speculate that,
for any initial configuration, the system presumably relaxed to
the state of diagonal stripes [Fig. 17(a)]. However, an accurate
estimation of this statement requires longer MC simulations
and is not possible at present time.

For k = 12, the initial d configuration was stabilized and
only point defects were observed after long MC simulations.
The initial r configuration was seemed to tend to the defective
stripe domains. The initial v configuration being destroyed
very slowly and the final state is hardly to predict. So, for large
systems such as L = 2048, different nonergodic steady states
can be realized, with a dependence on the initial configurations
and the value of k.

IV. CONCLUSION

The diffusion-driven self-assembly of rod-like particles
(k-mers) oriented along x and y directions on a square lattice
was studied by means of MC simulation. Isotropic orientations
for the k-mers was assumed at the starting point. We consid-
ered only very dense systems, i.e., systems at the jamming
concentration. The initial jamming state was produced by
RSA, then, the k-mers were allowed to diffuse. The typical
time of deposition was supposed to be much less than the
typical time of relaxation. In such concentrated systems, only
the translational diffusion of particles is possible, whereas
rotational diffusion is completely inhibited. The length of the
k-mers (and therefore their aspect ratio) was varied from 2 to
12. The size of lattice, L, was varied from 128 to 2048, and
periodic boundary conditions were applied to the lattice along
both the x and y directions. Particular attention was paid to
the situation with L = 256. The systems under consideration
exhibited the rich nonequilibrium patterning, typical for
materials composed of shape-anisotropic particles [25]. The
most striking was the formation of diagonal stripe domains for
aspect ratios above a specific critical value, k � 6. For shorter
k-mers (k � 5), the diagonal patterns did not ever occur for
any of the initial distributions of k-mers used. Moreover, if
the initial distribution of k-mers corresponded to diagonal
stripe domains, it was unstable and the diffusion destroyed
this diagonal configuration. As a result, the final distribution
was homogeneous. Similar changes of deposition-evaporation
driven self-assembly of k-mers on the square lattice were
revealed, where the nematic order can only be stabilized
for sufficiently long k-mers (k � 7) [39]. The different self-
assembly of elongated particles with dependence on their
aspect ratio has also been observed in continuous systems [20].
We have observed very intriguing behavior reflecting the
impact of the system size on self-assembly. For large-scale
systems with initial random placement of the kx-mers and
ky-mers over the whole lattice, the diagonal stripe domains
became less ideal and contained more defects even for k � 6.

Moreover, different nonergodic steady states can be realized
with dependence on the initial configurations. Different initial
configurations were used for the placement of k-mers onto the
lattice. For the initial r configuration, kx-mers and ky-mers
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were randomly placed on the whole lattice. For the initial
v configuration and d configuration, kx-mers and ky-mers
were randomly placed inside the two different vertically or
diagonally oriented stripes, respectively. For the initial v

configuration, the transformation of the vertical stripe domains
into diagonal stripe domains was also observed when k � 6.
For shorter k-mers (k � 5) the diagonal stripe domains
were not stable for all tested initial configurations. Although
qualitatively similar effects were observed for different values
of L (L = 128–2048), in the large scale systems, the diagonal
stripe domains became more defected. Note that discussed
diffusion-driven transformations of RSA jammed states can
be also realized in less dense ensembles of rod-like particles
and details of self-assembly can be dependent on initial
concentration of particles

Finally, in the lattice adsorption of k-mers, the observed
effects surely reflect the competition between different factors
related to the discrete nature of the rods, the limited numbers of
their possible orientations and the finite sample size. The rel-
ative importance of these factors still remains an open
question.
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APPENDIX: ALGORITHM

1: {NMC is the total number of Monte Carlo steps}
2: {Nk is the number of k-mers to be shifted}
3: for i = 1 to NMC do
4: {One Monte Carlo step}
5: for j = 1 to Nk do
6: Randomly select a k-mer
7: Randomly select a shift direction
8: Try to shift the k-mer in the chosen direction by one

lattice site
9: {k-mers cannot pass through each other.}
10: end for {j loop}
11: end for {i loop}
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