
PHYSICAL REVIEW E 95, 052127 (2017)

Evolution of moments and correlations in nonrenewal escape-time processes

Wilhelm Braun,1,2,* Rüdiger Thul,3 and André Longtin1,2

1Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
2University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada

3Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, United Kingdom

(Received 5 August 2016; revised manuscript received 16 February 2017; published 16 May 2017)

The theoretical description of nonrenewal stochastic systems is a challenge. Analytical results are often not
available or can be obtained only under strong conditions, limiting their applicability. Also, numerical results have
mostly been obtained by ad hoc Monte Carlo simulations, which are usually computationally expensive when a
high degree of accuracy is needed. To gain quantitative insight into these systems under general conditions, we here
introduce a numerical iterated first-passage time approach based on solving the time-dependent Fokker-Planck
equation (FPE) to describe the statistics of nonrenewal stochastic systems. We illustrate the approach using
spike-triggered neuronal adaptation in the leaky and perfect integrate-and-fire model, respectively. The transition
to stationarity of first-passage time moments and their sequential correlations occur on a nontrivial time scale that
depends on all system parameters. Surprisingly this is so for both single exponential and scale-free power-law
adaptation. The method works beyond the small noise and time-scale separation approximations. It shows
excellent agreement with direct Monte Carlo simulations, which allow for the computation of transient and
stationary distributions. We compare different methods to compute the evolution of the moments and serial
correlation coefficients (SCCs) and discuss the challenge of reliably computing the SCCs, which we find to be
very sensitive to numerical inaccuracies for both the leaky and perfect integrate-and-fire models. In conclusion,
our methods provide a general picture of nonrenewal dynamics in a wide range of stochastic systems exhibiting
short- and long-range correlations.
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I. INTRODUCTION

A general property of diverse systems, ranging from
superconducting quantum interference devices (SQUIDs) [1],
to lasers [2] to excitable cells [3–6] is that time intervals
between specific events are not statistically independent.
The theoretical description of such nonrenewal stochastic
processes [7] poses a significant challenge, as it implies that the
present state of the system depends, in general, on the whole
past evolution or parts of it, and not just on the previous state.
Analytical approximations to tackle such memory effects have
included the assumption of stationarity [8], small stochasticity
[9], and time-scale separation [10–12] between stochastic and
deterministic parts of the dynamics.

Even if these approximations allow for some insight into
the parameter dependence of, e.g., serial correlations and can
be used to understand experimental data, as exemplified in
Refs. [9,13–16] in the context of excitable systems, it is
desirable to understand the statistics of model systems without
making simplifying assumptions. Regarding stationarity, real
systems rarely operate in a stationary state due to transients
that arise from deterministic or random perturbations. A
prominent example are cortical neurons. An average cortical
neuron receives random inputs from approximately 104 other
neurons, whose activity is modulated by nonstationary sensory
and other inputs, resulting in transient neuronal dynamics
[17] that become stationary only after a certain time. It is
therefore important to understand how statistical properties
of interevent times evolve and become invariant following
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a transient regime due to internal dynamics and external
inputs. Keeping with illustrations from neural dynamics, it is
well known that physiologically relevant processes underlying
neural coding rarely have only one well-defined time scale
[18,19]. This has led researchers in various theoretical fields
to consider multiple time-scale dynamics [20]. An important
example of a system with multiple time scales is neuronal
adaptation, where a neuron’s firing rate adjusts in response to
a stimulus. Adaptation with multiple time scales, or even no
time scale as in the case of power-law adaptation [21–23], is
now known to be biophysically relevant, and even optimal for
some tasks [24]. Recently, it was also shown that a neuron
model with adaptive firing thresholds exhibiting multiple time
scales is the optimal choice for the prediction of spike times in
cortical neurons [25,26]. Therefore, a theoretical description
of adaptation without a single well-defined time scale is an
important goal.

In this paper, we show how to describe two-dimensional
nonrenewal dynamics by an iterated first-passage time (iFPT)
approach. This approach allows us to determine stationary
statistical properties of the system as well as provide a
description of the transition to stationarity. We furthermore
show how to compute serial correlations in the time series
generated by the firing times of the system. While our approach
is general and applicable to any system where first-passage
times [27] play a role, we illustrate its versatility with
two important examples: spike-triggered neuronal adaptation
with a single exponential current and a power-law current
without an intrinsic time scale. Using the underlying time-
dependent FPE to describe the system, we need only to
apply mathematically convenient standard absorbing boundary
conditions to obtain stationary distributions, e.g., that of
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the adaptation current upon firing. Moreover, the methods
developed here can easily be extended to models with
correlation-generating deterministic input currents as recently
considered in Ref. [28].

II. MODEL

We consider a stochastic differential equation (SDE) driven
by an external signal s(t):

dX(t) = μ[X(t)] dt + φ[X(t)] dW (t) − s(t) dt. (1)

X is defined on the domain (−∞,xth]. If X reaches xth,
the system is said to have generated an event, and X is
instantaneously reset to 0. For all examples in this study,
we chose the Ornstein-Uhlenbeck process (OUP) given its
prominence in the field of stochastic systems. For the
OUP, we fix the correlation time τm = 1

γ
, bias current I0,

and noise intensity σ as follows: μ[X(t)] = γ [I0 − X(t)],
φ[X(t)] = σγ . W (t) is a standard Brownian motion, and we
set xth = 1. Given that the OUP is the basis for integrate-and-
fire (IF) neuron models, which are among the most popular
neuron descriptions [29], we refer to events as spikes and
to s(t) as a time-dependent adaptation current in the present
study. The general dynamics of s(t) obeys a single autonomous
ordinary differential equation (ODE),

ṡ = ω(s), (2)

and s is increased by a fixed amount κ when X = xth: s →
s + κ , which is the mechanism for spike-triggered adaptation
[30]. When s(t) is also reset to its starting value s(0), the model
is a renewal model, and its firing statistics may be studied using
standard techniques; see, e.g., Ref. [31] for a recent review.

Here we focus on two forms of the adaptation current. The
first one is power-law adaptation, for which

ω(s) = − 1

α
s2(t). (3)

This ODE has the general solution s(t) = ( t
α

+ 1
s(0) )

−1
. There-

fore, the current s in this case has a power-law time dependence
with no intrinsic time scale [21].

The second adaptation current is given by a single expo-
nential decay with time scale τa:

ω(s) = − 1

τa

s(t), (4)

which has the general solution s(t) = s(0)e− t
τa .

The time to the first spike event is the following first-passage
time (FPT):

T1 = inf(t > 0 : X(t) > xth|X(0) = 0,s(t = 0) = s(0)).

In the nonrenewal case we are studying here, subsequent
firing times will in general not have the same distribution as
T1. We define the kth interspike interval (ISI) as

Tk = inf

(
t −

k−1∑
i=1

Ti : X(t) � xth,t >

k−1∑
i=1

Ti

)
. (5)

The first moment of the kth ISI is given by τ 1
k = E(Tk).

The second moment of the kth ISI will be denoted by
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FIG. 1. Sample paths of the model for a power-law adaptation
current given by Eq. (3). Top: X(t) [Eq. (1)], the horizontal dashed
lines are at X = 0 and xth = 1. Bottom: s(t) [Eq. (2)] When X

reaches xth,s undergoes a jump of size κ . The subsequent ISIs Tk

have distributions Fk(t), and the starting values s
(k)
0 have distributions

Gk(s) for k � 1. Parameter values are α = 3.0,γ = 1.0,σ = 0.8,

I0 = 4.0,κ = 3.0.

τ 2
k = E[(Tk)2], and the kth firing rate is given by the inverse

of the corresponding mean ISI rk = 1
τ 1
k

. The kth standard

deviation m2(k) is then given by

m2(k) =
√

τ 2
k − (

τ 1
k

)2
. (6)

The values of the peak adaptation current after the kth firing
are defined for k � 1 as

s
(k)
0 =

(
s(t−) + κ : t =

k∑
i=1

Ti

)
, (7)

where t− indicates that we take the left-sided limit.
For simplicity, we choose s to be started from a point
(s(0)

0 = κ), instead of from a biophysically more realistic initial
distribution. However, the methods we are going to describe
in the following are also valid when s is initially started from
a distribution.

The central challenge is to obtain the distributions Gk and
Fk for k � 1, which are the distributions of s

(k)
0 and Tk defined

by Eqs. (7) and (5), respectively. An example realization
for the case of power-law adaptation is shown in Fig. 1.
The knowledge of these distributions is key to understanding
the nonrenewal dynamics, as they form a hidden Markov
model of the underlying non-Markovian dynamics [15,16,32].
Therefore, once these distributions are known, the nonrenewal
dynamical system breaks up into coupled renewal dynamical
systems, which are much more tractable mathematically. This
gives rise to the iFPT approach, which we now explain.

III. THE IFPT APPROACH

Being a diffusion process, the system given by Eqs. (1)
and (2) is governed by a two-dimensional time-dependent
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FPE [33]. The FPE for the probability density function
p(t ; x,s) dx ds =P(X(t)∈(x,x + dx),s(t)∈(s,s+ds)|X(0) =
x0,s(0) = s0) reads [we use x� = (x,s) for brevity]

∂tp(t ; x) = ∇ · [A(x)∇p(t ; x)] − ∇ · [F(x)p(t ; x)], (8)

where A is the diffusion matrix and F the drift vector, which
can be obtained in a straightforward way from the SDE for X,
Eq. (1), and the ODE for s, Eq. (2). Explicitly, we have

A(x) =
(

φ(x)2

2 0

0 0

)
(9)

and

F(x) = [μ(x) − s,ω(s)]�.

The IF property of X entails that we have an absorbing
boundary at X = xth for all times t : p(t ; x = xth,s) = 0.
With this boundary condition, we can compute the cumu-
lative distribution function (CDF) of the first-passage time
T1,CDF1(t) = ∫ t

0 F1(λ) dλ, by time evolution of the FPE on
a computational domain � ⊂ R2, which we choose to be a
rectangle extending to sufficiently negative values in the x

direction [34]:

CDF1(t) = 1 −
∫

�

p1(t ; z) dz, (10)

where p1 is the solution to Eq. (8) with the initial condition
p1(0; x,s) = δ(x − x0), where x0 = (0,κ)�. For the computa-
tion of F1, we then only need to differentiate Eq. (10).

To describe adaptation, one needs to compute the statistics
of the peak adaptation currents, as defined by Eq. (7). Hence,
we need to characterize the hidden Markov model generated
by the ISIs Tk and the peak adaptation currents s

(k)
0 . Whereas

the dynamics of s and X as a whole is non-Markovian, the
distribution of the ISI Tk is completely determined by the
distribution Gk−1, and the sequence {Tk,s

(k−1)
0 }∞k=1 is therefore

Markovian. Knowing the values of Tk and s
(k−1)
0 , the value of

s
(k)
0 is fixed, and the distribution of the ISI Tk+1 can be obtained

by solving an FPT problem with s
(k)
0 as initial condition for s.

The central observation now is that for the second ISI, X

again starts from 0, whereas s starts from a distributionG1. This
is because X evolves stochastically and therefore reaches the
threshold xth at different times T1, corresponding to different
values of s(t = T1) + κ immediately after the firing event.
To compute the second ISI, we therefore need to know G1.
This can be iterated: to compute the distribution Fk of the
kth ISI, we need the distribution Gk−1. This is the central
idea of the iFPT approach. To set up the iFPT approach, we
first observe that between threshold crossings of X,s evolves
deterministically. Therefore, when we know the PDF of the
first FPT, by conservation of probability, we also know the
distribution of s after the first firing event:

G1(s − κ) =
∣∣∣∣dt(s)

ds

∣∣∣∣F1[t(s)], (11)

where t(s) is the inverse function of s. The support of G1 is
shifted, because of the jump of size κ that s undergoes when X

reaches its threshold xth. For the second ISI T2,s is started from
the distribution G1(s) instead of a point, whereas X is started

from a point again (Fig. 1). This means that to obtain F2,
the FPE is started from a distribution: p2(0; x) ∝ G1(s)δ(x).
This generalizes to values of k larger than 1. For the kth ISI
distribution Fk(t), we therefore must choose

pk(0; x) ∝ Gk−1(s)δ(x). (12)

We show how to obtain the distributions Gk for k > 1 in
Sec. V. Linear splines are used to create a mesh function
approximating Eq. (12) on the computational domain �. Due
to this approximation, Eq. (12) then has to be normalized ap-
propriately, so that

∫
�

pk(0; z) dz = 1. The FPE is then solved
again, and the distributions Fk(t) are obtained analogously to
Eq. (10): CDFk(t) = 1 − ∫

�
pk(t ; z) dz, i.e., by time stepping

the FPE to obtain the CDF of the kth ISI followed by a
numerical differentiation. This constitutes the iFPT approach.

To quantify the accuracy of our numerical methods, we also
compute the relative disagreement  between results obtained
by the iFPT approach and direct MC simulations. It is defined
for a quantity Z by

(Z) = |ZiFPT − ZMC|
ZiFPT

. (13)

We performed MC simulations for two different simulation
setups: the first one without any boundary correction (plain
MC), and the second one with a boundary correction according
to Giraudo and Sacerdote (MC-GS) [31,35,36]. This boundary
correction is applied to reduce the systematic overestimation of
FPTs when using the Euler-Maruyama scheme. We compute
the relative disagreement given by Eq. (13) using either MC
simulations with or without boundary correction; we observed
that the order of the relative disagreement is unchanged, but in
general, the plain MC algorithm gives rise to larger disagree-
ments than MC-GS. A decrease in the relative disagreement is
expected, because the GS correction method should yield an
improved weak error of O(h) [37], in contrast to the plain MC
simulation, which has a weak error of O(h

1
2 ) [38], where h is

the time step for the discretization of the SDE, Eq. (1). In the
following, the time step for MC simulations is chosen to be
h = 10−3, and we choose M = 106 independent realizations.
The plain Euler-Maruyama scheme then gives rise to a weak
error of O(h

1
2 ) ≈ 3×10−2 when estimating moments of first

passage times, which is one order of magnitude larger than
the MC error proportional to 1√

M
= 10−3. Therefore, in our

simulations, the plain MC error is negligible in comparison
to the error introduced by the finite-time discretization of the
SDE [Eq. (1)].

For the numerical solution of the FPE [Eq. (8)], we choose a
finite element discretization method [39] and evolve the system
using either a stabilized Crank-Nicolson (CN) scheme [40] in
Fig. 2 or an Euler time-stepping scheme [39] in Fig. 3.

The relative disagreement between MC simulations and
finite-element solutions stays largely constant across different
lags k when we use the CN scheme instead of the Euler scheme
as can be seen by comparing the lower panels of Figs. 2 and 3;
the sizes of the disagreement are comparable in magnitude.
This suggests that the remaining small discrepancy between
MC simulations and PDE results can be largely explained
with the errors associated with the MC simulation method. In
particular, note that for the examples we show, the MC-GS
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FIG. 2. Top: Evolution of the rate rk = 1
τ1
k

(left) and standard

deviation given by Eq. (6) (right) of ISIs as a function of k. Empty
circles: Plain MC simulations of Eqs. (1) and (2). Triangles: MC
simulations with GS boundary correction. Filled circles: moments
obtained from numerical solution of FPE using a CN time-stepping
scheme. M = 106 independent MC realizations for each value of k.
Power-law adaptation [Eq. (3)] with α = 5.5, I0 = 6.0, σ = 1.3,

γ = 1.0, κ = 5.5. Bottom: Relative disagreements defined by
Eq. (13), where an MC-GS algorithm was used.

weak error of size O(h) is comparable in magnitude to the
numerator of (Z) [Eq. (13)], i.e. the absolute disagreement.
We will see what effects this has on the computation of
correlations in Sec. VI.
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(left) and standard

deviation given by Eq. (6) (right) of ISIs as a function of k. Empty
circles: Plain MC simulations of Eqs. (1) and (2). Triangles: MC
simulations with GS boundary correction. Filled circles: moments
obtained from numerical solution of FPE using an Euler time-stepping
scheme. M = 106 independent MC realizations for each value of
k. Single exponential adaptation [Eq. (4)] with τa = 1.0,I0 = 5.0,

σ = 1.0,γ = 1.0,κ = 1.0. Bottom: Relative disagreements defined
by Eq. (13), where an MC-GS algorithm was used.
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FIG. 4. PDF Fk of the kth ISI Tk [Eq. (5)]. The symbols are
MC simulations (M = 106 MC realizations) as indicated in the
legends. Solid black lines: PDF obtained by numerical solution of
the FPE, Eq. (8). In the left panel, the distributions are practically
indistinguishable after k = 2. Top: Power-law adaptation [Eq. (3)].
Bottom: Single exponential adaptation [Eq. (4)]. Parameter values as
in Fig. 2 for power-law adaptation and as in Fig. 3 for exponential
adaptation. Both panels show results for plain MC simulations.

IV. TRANSITION TO STATIONARITY

We show the evolution of the rate and standard deviation of
ISIs in Figs. 2 and 3. The rates decreases, whereas the standard
deviation increases until both quantities reach a stationary
value. Given that these quantities are derived from moments of
the ISI distributions, the distributions also converge towards
a stationary form. The convergence towards stationarity of
ISI and peak adaptation current distributions (Fk and Gk ,
respectively) is shown in Figs. 4 and 5. As expected for
adapting models, the ISIs (whose distributions are shown in
Fig. 4) increase with higher k, which means that the rate rk

decreases. This is well captured by the iFPT approach, with
a maximal relative disagreement smaller than 3% in Fig. 2
and smaller than 2% in Fig. 3. Also, the width of both the
ISI distributions and the peak adaptation current distributions
(Fig. 5) increases, which is reflected by the increase of the
variances of Fk and Gk shown in Figs. 2 and 3. The mean of
the peak adaptation currents shifts to the right as stationarity is
reached. Moreover, stationarity is reached with varying speed,
i.e., for different values of the lag k (compare Fig. 2 with
Fig. 3). Generally, the speed of adaptation can be controlled by
adjusting the bias current I0 and the noise level σ as well as the
adaptation strength (size of the kick κ and, in the case of single
exponential adaptation, the time scale τa). We have carried out
additional MC simulations (not shown) to obtain insight into
how these parameters influence the speed of the transition to
stationarity. A higher bias current and a higher noise level will
in general lead to a less rapid transition to stationarity. This can
be understood as follows: X is driven to threshold more rapidly,
causing the inhibition to build up quickly, reaching values that
are higher than those typically found around the peak of the
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0 [Eq. (7)]. The symbols are MC simulations

(M = 106 MC realizations) as indicated in the legends. The black
solid line is G1 obtained from Eq. (11) or G2 (G3) obtained
using Eq. (18). In the left panel, the distributions are practically
indistinguishable after k = 2. Top: Power-law adaptation [Eq. (3)].
Bottom: Single exponential adaptation [Eq. (4)]. Parameter values as
in Fig. 2 for power-law adaptation and as in Fig. 3 for exponential
adaptation. Both panels show results for plain MC simulations.

stationary distribution. This slows the transition to stationarity,
because s needs to decay first. Moreover, a large kick size κ

and a rapidly decaying adaptation current will cause a quick
transition. For the latter case, this is easily understood as we
are then nearly dealing with a renewal system: after a short
initial period, the effect of the adaptation current on the firing
time statistics is negligible. For the former case, we note that
the larger the kick size κ , the more pronounced the inhibitory
effect of adaptation within one ISI, which means that X takes
longer to reach threshold before a large out-of-equilibrium
average value of the current s (a value that is larger than those
typically found around the mode of the stationary distribution)
can build up. The system reaches stationarity rapidly because
it is quasideterministic as the dynamics of s dominates the
system, and the stochastic fluctuations of X will cause only
small perturbations. For both power-law and single exponential
adaptation currents, it is possible to reach the stationary regime
already after one or two firing events as in Fig. 2 or to have a
long transient regime as in Fig. 3. The initial condition s

(0)
0 for

the adaptation current can also be chosen to control the speed
of the transition. If it is placed far away from the mean of the
stationary distribution, the transition will take a longer time;
also, it is possible to obtain a nonmonotonic behavior of the
rate as a function of the interval number when s

(0)
0 is placed

far above the aforementioned mean. The first mean ISI will
then be the longest statistically, in contrast to the examples we
show in Figs. 2 and 3.

V. STATISTICS OF THE kth ISI

The iFPT approach can be iterated beyond the first two
firing events to obtain the distribution for the third ISI, F3(t).

However, for the computation of the third ISI, no equation
similar to Eq. (11) can be used to obtain G2 because s was
started from a distribution to obtain F2. Indeed, for one fixed
time T2, there are many different starting values s

(1)
0 due to

the stochastic dynamics of X. Importantly, the ISI T2 and
the initial condition s

(1)
0 are not independent random variables

(for a large value of s
(1)
0 , a large ISI T2 is more probable and

vice versa) so that we can obtain the value that s reaches
after the second firing by the following observation (focusing
on power-law adaptation): given that T2 = λ and s

(1)
0 = ν, we

have s
(2)
0 = 1

λ
α
+ 1

ν

+ κ . We have included the jump of size κ due

to the definition of s
(2)
0 (see Fig. 1). This emphasizes that once

two values in the triplet (T2,s
(1)
0 ,s

(2)
0 ) are fixed, the third one is

determined. In the following, we again use λ to denote a fixed
FPT and ν to denote a fixed initial value of the adaptation
current s. Analogously, we generally have for s

(k)
0 : given

Tk = λ and s
(k−1)
0 = ν,s

(k)
0 = f (λ,ν) is determined. The func-

tion f determining the subsequent value of the peak adaptation
current given the previous ISI λ and the previous peak value
of the adaptation current ν reads for power-law adaptation
[Eq. (3)]:

f (λ,ν) = κ + 1
λ
α

+ 1
ν

, (14)

whereas for exponential adaptation [Eq. (4)], we have

f (λ,ν) = κ + ν exp

(
− λ

τa

)
. (15)

An alternative way is to fix the value of s
(k)
0 and then put a

constraint on the time Tk when s
(k−1)
0 is fixed: given s

(k−1)
0 = ν

and s
(k)
0 = θ,Tk = h(ν,θ ) is determined, where, for power-law

adaptation, we have the ISI as a function of the previous and
subsequent adaptation values:

h(ν,θ ) = α

(
1

θ − κ
− 1

ν

)
. (16)

The function h is defined by solving the equation
f (λ,ν) = θ for λ. To actually compute the density Gk , we
need to relate the above observations to densities that we can
compute with the iFPT approach. To that end, we now define
the conditional density H:

H(λ,ν)dλ ≡ P
(
T1 ∈ (λ,λ + dλ)|s(0)

0 = ν
)
. (17)

We have used T1 and s
(0)
0 in the definition Eq. (17) to

stress that, for the purpose of the computation of H, we need
only to solve the FPT problem for T1 using different values
of the initial condition s

(0)
0 . It will become apparent below

that we need to compute H only once, because it does not
depend on the firing index k. For a fixed value of ν,H(λ,ν)
is an FPT probability density. Our notation emphasizes that
H is a function of two variables. ν sets the level of initial
inhibition, i.e., the starting value of s. We show the function H
for both power-law and exponential adaptation in Fig. 6. We
see that with increasing starting value ν, the mode of the FPT
distribution shifts to larger times. For power-law adaptation,
the shape of the FPT distributions does not change much,
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FIG. 6. Conditional FPT densities H(λ,ν) given by Eq. (17)
relating the initial value of the adaptation current to the distribution
of the following ISI. Computed using numerical solutions to the
FPE Eq. (8). Top: Power-law adaptation, computed using a CN
time-stepping scheme. Bottom: Exponential adaptation, computed
using an Euler time-stepping scheme. Parameter values as in Fig. 2
for power-law adaptation and as in Fig. 3 for exponential adaptation.

whereas for exponential adaptation, the distributions become
broader with increasing ν.

With this at hand, we now show how to practically compute
the distributions Gk for k > 1. We can obtain the CDF of s

(k)
0

by observing that

P
(
s

(k)
0 � θ

) =
∫
D(k−1)(θ)

H(λ,ν)Gk−1(ν) dλ dν (18)

with

D(k−1)(θ ) = (λ,ν > 0|ν ∈ supp(Gk−1),

h(ν,θ ) � λ � Tmax). (19)

The function h defined in Eq. (16) ensures that for a fixed
value of ν, we collect all times λ so that s(k)

0 � θ , which ensures
that f (λ,ν) � θ for fixed values of θ and ν. Tmax is chosen
so that H(Tmax,ν) ≈ 0∀ν ∈ supp(Gk−1). This means that Tmax

should be chosen in the tail of the FPT distribution. Note that
for the iFPT approach, one has only to compute H(λ,ν) over
the support of Gk for k � 1 once [41], and then multiply it with
the adaptation current distribution of the previous iteration
Gk−1. This function then needs to be integrated according
to Eq. (18), and the PDF Gk can be obtained by numerical

differentiation. We show results for G2 and G3 using Eq. (18)
in Fig. 5. The agreement between MC simulations and Eq. (18)
is excellent.

Iterating these ideas into the stationary regime, the ideas
of the previous paragraph can be used to directly compute the
stationary density of the peak adaptation current. We assume
that stationarity is reached after k∗ − 1 firing events. Then
s

(k∗)
0 and s

(k∗+1)
0 have the same distribution. Consequently, the

stationary density of the peak adaptation current after firing
satisfies the two-dimensional integral equation [cf. Eq. (18)]

Q(θ ) =
∫
D(θ)

H(λ,ν)Q′(ν) dλ dν, (20)

where Q(θ ) ≡ P(s(k∗)
0 � θ ) denotes the CDF of the stationary

peak value for the adaptation current s [Eq. (2)]. We have
checked that this equation is indeed satisfied by the stationary
distributions for the peak adaptation current obtained from
MC simulations (data not shown). Therefore, Eq. (20) can
serve as a tool to check whether a given distribution for the
peak adaptation current is stationary, or alternatively as a way
to compute Q(θ ) directly if the function H is known.

VI. CORRELATIONS BETWEEN
INTERSPIKE INTERVALS

We now show how to compute serial correlations with the
iFPT approach. We define the SCC [15,42] between the nth
ISI Tn and the (n + k)th ISI Tn+k according to

SCC(n,k) = E(TnTn+k) − Q1(n,k)

Q2(n,k)
, (21)

where

Q1(n,k) = E(Tn)E(Tn+k) (22)

and

Q2(n,k) = m2(k)m2(n + k) =
√

Var(Tn)Var(Tn+k). (23)

Here Var(Tn) denotes the variance of the nth ISI distribu-
tion, and m2 is the standard deviation given by Eq. (6). Note
that the definition Eq. (21) does not make use of the notion
of stationarity, so that the SCC depends on both the position
n of the ISI in the spike train as well as on the lag k between
ISIs. Since we have already computed the distributions of the
kth ISI, we can readily compute the variances and means in
Eq. (21), i.e., the terms given by Eqs. (22) and (23). It is slightly
more complicated to compute the first term in the numerator,
E(TnTn+k), because we need the joint density p2(Tn,Tn+k) of
Tn and Tn+k . In the present study, we focus on k = 1. By
definition, we have

E(TnTn+1) =
∫

dTn dTn+1 Tn Tn+1 p2(Tn,Tn+1)

=
∫

dTn dTn+1 Tn Tn+1p1(Tn+1|Tn)Fn(Tn),

where as previously Fn(Tn) is the density of the nth ISI
and p1(Tn+1|Tn) is the conditional density of Tn+1 given Tn.
Because Tn+1 is statistically determined only by s

(n)
0 , we can
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define this conditional density as

p1(Tn+1|Tn) =
∫

dy p(Tn+1,y|Tn),

where p(Tn+1,y|Tn) denotes the joint density of Tn+1 and
s

(n)
0 = y conditioned on the previous ISI Tn. We can rewrite

this as follows:

p(Tn+1,y|Tn) = p3(Tn+1,y,Tn)

p(Tn)

= p(Tn+1|y,Tn)p(y,Tn)

p(Tn)

= p(Tn+1|y,Tn)p(y|Tn)p(Tn)

p(Tn)

= p(Tn+1|y,Tn)p(y|Tn).

Now, as we have previously shown, the statistics of Tn+1

is completely determined when s
(n)
0 = y is fixed, hence

p(Tn+1|y,Tn) = p(Tn+1|y) ≡ H(Tn+1,y). Therefore, we have

E(TnTn+1) =
∫

dTn dTn+1 dy Tn Tn+1H(Tn+1,y)

×p(y|Tn)Fn(Tn).

This can be further simplified by noting that p(y|Tn) = p(y,Tn)
Fn(Tn)

and therefore

E(TnTn+1) =
∫

dTn dTn+1 dy Tn Tn+1 H(Tn+1,y)p(y,Tn).

(24)

For n = 1, Eq. (24) can be simplified because s
(1)
0 is

a deterministic function of T1 [see Eq. (11)], so that
p(s(1)

0 = y,T1 = x) = δ[y − f (x,s
(0)
0 )]F1(x), where f is de-

fined by Eqs. (14) and (15). Hence, we have for n = 1

E(T1T2) =
∫

dT1 dT2 T1 T2 H
(
T2,f

(
T1,s

(0)
0

))
F1(T1).

We have shown in Sec. V how to obtain the conditional
FPT density H. To evaluate Eq. (24) for general n, we still
need to compute the joint density p(s(n)

0 = y,Tn). This can be
achieved by means of an MC simulation, where we fix a value
of n and then record the frequency with which pairs of s

(n)
0

and Tn are generated by the system. We show an example of
these densities in Fig. 7. The most notable feature is an inverse
proportionality between s

(n)
0 and Tn. The longer, e.g., T2, the

less likely it is for the value of s after the second firing, s
(2)
0 , to

attain a high value.
Equation (24) is formally correct, but not very practical

for actual computations. This is because to apply the iFPT
approach, it is desirable to obtain all quantities needed for the
SCC using solutions of the FPE only, and no MC simulations.
These, however, are required to obtain an approximation for
the joint density p(s(n)

0 ,Tn) in Eq. (24). We therefore propose
an approximation to compute E(TnTn+1) using the available
densities F ,G, and H only. To that end, we note that

p3(Tn+1,Tn,y) = p(Tn+1,Tn|y)p(y). (25)

FIG. 7. MC simulations with GS boundary correction for the joint
density of s

(n)
0 (i.e., nth peak value of adaptation current following

the nth FPT) and Tn for different values of n. Top: Power-law
adaptation, n = 2. Bottom: Exponential adaptation, n = 3. M = 106

MC realizations. Parameter values as in Fig. 2 for power-law
adaptation and as in Fig. 3 for exponential adaptation.

If we now assume that Tn and s
(n)
0 are independent, we can

approximate this as follows:

p3(Tn+1,Tn,y) ≈ p(Tn+1|y)p(y)p(Tn)

= H(Tn+1,y)Gn(y)Fn(Tn). (26)

This results in an alternative, approximative expression for the
expectation E(TnTn+1):

E(TnTn+1) =
∫

dTn dTn+1 dy Tn Tn+1

×H(Tn+1,y)Gn(y)Fn(Tn). (27)

Equation (27) is therefore equivalent to Eq. (24) if
p(y,Tn) = Gn(y)Fn(Tn). Although Fig. 7 demonstrates that
p does not factorize (the joint density is negatively sloped),
we show below that Eq. (27) approximates Eq. (24) very
well. Given that Eq. (27) does not require additional MC
simulations, the small error introduced by Eq. (27) is well
offset by the large reduction in computational cost.

There exists a third alternative expression for the expecta-
tion of the product of ISIs suggested for a different, but related,
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model, in Ref. [43]. It reads in our notation [44]

E(TnTn+1) =
∫

dTn dTn+1 dy Tn Tn+1 H(Tn+1,f (Tn,y))

×H(Tn,y)Gn−1(y), (28)

where f is given by Eq. (14) or Eq. (15). The term
H(Tn,y)Gn−1(y) that appears in Eq. (28) is the same as the one
on the right-hand side in Eq. (18), which we used to obtain the
CDF of s

(n)
0 .

For n = 1, Eq. (28) reads

E(T1T2)

=
∫

dT1 dT2 T1 T2 H
(
T2,f

(
T1,s

(0)
0

))
H

(
T1,s

(0)
0

)︸ ︷︷ ︸
=F1(T1)

,

because s is started from a point s
(0)
0 , so that formally G0(y) =

δ(y − s
(0)
0 ), which collapses the integration over y in Eq. (28).

Thus, for n = 1, Eqs. (24) and (28) coincide. This is also true
for higher values of n. A proof for this equivalence is presented
in Appendix. Equation (28) makes use only of the quantities
H and G, which can be computed using the iFPT approach as
explained in the previous section.

We show comparisons between MC simulations and the
three expressions for E(TnTn+1), Eqs. (24), (27), and (28),
in Fig. 8. The results presented in Fig. 8 are in agreement
with the observation that the two expressions Eqs. (24) and
(28) are equivalent. We find that the agreement of Eq. (28)
with MC simulations is comparable to Eq. (27), particularly
for exponential adaptation. Interestingly, the formally correct
Eq. (24) and the approximate Eq. (27) give comparable
results; Eq. (24) slightly deviates from MC simulations and
Eq. (27) when n gets larger. The maximal relative disagreement
between MC and iFPT results is less than 2% (Fig. 8, bottom
panels). We will see below that the SCC is best approximated
by using the exact result Eq. (24) [or equivalently Eq. (28)],
as we expect. We attribute the discrepancy between MC
simulations and the exact result Eq. (24) to the error caused
by the numerical integration over the MC approximation of
the joint density p(y,Tn). We checked that applying a kernel
density estimation [45] to the MC results for p(y,Tn) did not
alter these results.

Similar results forQ1 andQ2 [Eqs. (22) and (23)] are shown
in Figs. 9 and 10. The agreement is good, with the maximal
relative disagreement always less than 5%. The relative dis-
agreement for the statistics of the product of two adjacent ISIs,
Q1(n,1), is in general larger than the error for the moments, as
can be seen by comparing Figs. 2 and 3 with Fig. 9. Indeed, for
the case of power-law adaptation, we observe an increase of
roughly one order of magnitude in the relative error even when
the more accurate CN scheme is used (see, e.g., left panels of
Fig. 9). An exception is the computation of the joint expecta-
tion, shown in Fig. 8, where, depending on which methods are
compared, the relative disagreement is comparable in size to
the one for the computation of the moments shown in Figs. 2
and 3. This increase of the relative disagreement makes the
computation of the SCC using the iFPT approach hard, because
the two expressions in the numerator of Eq. (21) are quite
close to one another for the parameter values we have chosen
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FIG. 8. Top: Expectation E(TnTn+1) of adjacent ISIs for different
values of n. Left: power-law adaptation. Right: exponential adapta-
tion. M = 106 MC realizations. Empty circles: Plain MC simulations
of Eqs. (1) and (2). Triangles: MC simulations with GS boundary
correction. Pentagons: Eq. (24). For power-law adaptation, the
pentagons are on top of the empty triangles and filled circles and hence
not visible. Filled circles: Eq. (27). Diamonds: Eq. (28). The diamonds
are nearly on top of the filled circles and hence not visible. The PDE
results were obtained using a CN scheme (power-law adaptation)
or an Euler time-stepping scheme (exponential adaptation). The
vertical error bars show the MC error for a >99.99% confidence
interval. Bottom: Relative disagreements defined by Eq. (13), where
for power-law adaptation, the GS boundary corrected MC algorithm
was used, and for exponential adaptation, the plain MC algorithm
was used. For the iFPT quantity, Eq. (24) was used. Parameter values
as in Fig. 2 for power-law adaptation and as in Fig. 3 for exponential
adaptation.

here, meaning that the numerator is small and indeed of the
same magnitude or even smaller as the relative disagreement,
e.g. −2.6×10−2 in the left panel and −8.6×10−4 in the right
panel of Fig. 8 for n = 1 for the MC-GS simulation method.
The increase in the relative discrepancy is caused by error
propagation, because for the second-order statistics, one has to
multiply two quantities that both come with an individual error.
Therefore, whereas the iFPT approach can in principle also be
used to compute serial correlations present in the spike train,
obtaining reliable results can in general be a computational
challenge. When the negative serial correlations are stronger,
so that the difference in the numerator of Eq. (21) is larger, the
iFPT approach should give more accurate results. We stress
that the dominant source of error is not the computation of the
joint expectation E(TnTn+1) of ISIs, but the product of the ex-
pectation of ISIs and the variances, which can be seen by com-
paring the lower panels of Fig. 8 with those of Figs. 9 and 10.

Finally, we show the SCC at lag 1 obtained by MC
simulations and PDE numerics in Fig. 11. The agreement
is worse than for all previously considered quantities, but
still reasonable. To verify the MC simulations, we checked
that our MC simulation setup was able to reproduce known
analytical results for the SCC obtained in Ref. [15] for certain
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FIG. 9. Top: Q1(n,1) [defined in Eq. (22)] of adjacent ISIs for
different values of n. Left: power-law adaptation. Right: exponential
adaptation. Empty circles: MC simulations of Eqs. (1) and (2).
Triangles: MC simulations with GS boundary correction. Filled
circles: Eq. (22), CN time-stepping scheme for power-law adaptation
and Euler time-stepping scheme for exponential adaptation. Bottom:
Relative disagreement defined by Eq. (13), a plain MC algorithm was
used to obtain the relative disagreement. Parameter values as in Fig. 2
for power-law adaptation and as in Fig. 3 for exponential adaptation.

limiting cases. The anticorrelations between adjacent ISIs
[SCC(n,1) < 0] strengthen until they reach a stationary value.

Thus, we see that MC and PDE results for the SCC in
general do not agree as well as one would expect from the
good agreement of the expecations E(TnTn+1) in Fig. 8. The
deviation is likely more pronounced for parameters that lead
to small negative SCCs, which we have for both models
considered in this section. In the next section, we will compare
this with results for the perfect integrate-and-fire model, where
parameter values are chosen so that the SCCs are more negative
and hence the agreement is better. This is because the two terms
in the numerator of Eq. (21) are close to each other for small
SCCs, and hence a small error in them impacts the accuracy
of the SCC computation quite dramatically.

We show in the next section that our methods re-
produce known stationary analytical results for the SCC
when we consider the perfect integrate-and-fire model with
single exponential adaptation in a parameter regime where we
have large negative correlations, thus demonstrating that our
methods are sound, but SCC calculations are very sensitive to
numerical inaccuracies.

The perfect integrate-and-fire model

The adapting perfect integrate-and-fire (PIF) model driven
by white Gaussian noise and a single exponential adaptation
current is one of the simplest models for spike-triggered
adaptation. For small noise intensity, analytical expressions
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FIG. 10. Top: Q2(n,1) [defined in Eq. (23)] for adjacent ISIs for
different values of n. Left: power-law adaptation. Right: exponential
adaptation. Empty circles: MC simulations of Eqs. (1) and (2).
Triangles: MC simulations with GS boundary correction. Filled
circles: Eq. (23), CN time-stepping scheme for power-law adaptation
and Euler time-stepping scheme for exponential adaptation. Bottom:
Relative disagreement defined by Eq. (13), a plain MC algorithm was
used to obtain the relative disagreement. Parameter values as in Fig. 2
for power-law adaptation and as in Fig. 3 for exponential adaptation.
Parameter values as in Fig. 2 for power-law adaptation and as in Fig. 3
for exponential adaptation.

for the stationary SCC exist. We here study this stationary
limit case and compare analytical formulas to results obtained
with the iFPT approach.

The model reads (we follow the notation of Refs. [46]
and [47])

dX = (I0 − s) dt +
√

2D dW (t), (29)

ds

dt
= − s

τa

. (30)

The adaptation mechanism works in analogy to the previous
model [Eq. (2)]: whenever X reaches the threshold X = 1,s

receives a kick of size  ≡ ̃
τa

and X is instantaneously reset
to 0.

The stationary SCC at lag 1 for this model under the
assumption of small noise (i.e., D � 1) reads [46]

SCC(k = 1) = −α(1 − θ )(1 − α2θ )

1 + α2 − 2α2θ
, (31)

where

α = s∗ − 

s∗ , θ = I0 − s∗

I0 − s∗ + 
,

T ∗ = 1 + ̃

I0
, s∗ = 

1 − exp
( − T ∗

τa

) .
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FIG. 11. Serial correlation coefficient at lag n = 1 [defined in
Eq. (21)] for adjacent ISIs for different values of n for the LIF
model [Eq. (1)]. Left: power-law adaptation. Right: exponential
adaptation. Empty circles: Plain MC simulations of Eqs. (1) and
(2). Triangles: MC simulations with GS boundary correction. Filled
circles: PDE results, SCC computed using Eq. (27). Pentagons:
PDE results, SCC computed using Eq. (24). CN time-stepping
scheme for power-law adaptation and Euler time-stepping scheme for
exponential adaptation. Diamonds: PDE results, SCC computed using
Eq. (28). Parameter values as in Fig. 2 for power-law adaptation and
as in Fig. 3 for exponential adaptation. Even if the joint expectations
shown in Fig. 8 agree well, this does not imply that the SCC will
be well approximated; the small correlation values [i.e., the differ-
ence between E(TnTn+1) and Q1(n,1)] for the two examples lead
to large discrepancies in the SCCs, which are especially significant
for the case of power-law adaptation.

Thus, we can compute the SCC in closed analytical form as
a function of the system parameters. This formula serves as an
important benchmark for our numerical results. In particular,
we expect that after the described transition to stationarity,
the SCC given by Eq. (21) will approach the stationary SCC
given by Eq. (31). This is confirmed in Fig. 12. In particular,
the agreement between MC simulations and the exact formula
Eq. (24) is very good (the relative disagreement between PDE
numerics and the analytical result is less than 6% for the
stationary value); the agreement of MC simulations with the
approximation Eq. (27) is a bit worse, but still reasonable.
Thus, we conclude that our methodology can be used more
generally to compute the evolution of the moments and SCCs.
However, as seen in the previous section, to obtain a good
agreement between MC simulations and PDE numerics, the
computational effort might be rather large. In particular, we
note that the PIF example shown in Fig. 12 gives rise to stronger
negative SCCs, which means that the error propagation has less
of an effect, but is still present, even when moments of firing
times between MC and PDE numerics disagree by less than
1% (data not shown). We finally note that it is also possible
to analytically compute the stationary SCC at higher lags and
for different models (e.g., the leaky integrate-and-fire model
in the presence of weak noise or for small adaptation currents)
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FIG. 12. Serial correlation coefficient at lag n = 1 [defined in
Eq. (21)] for different values of n for the PIF model [Eq. (30)]. The
dashed horizontal line is the stationary SCC given by Eq. (31). Empty
circles: Plain MC simulations of Eq. (30). Pentagons: Eq. (24). Filled
circles: Eq. (27). The PDE results were obtained using a CN time-
stepping scheme. M = 106 MC realizations. Time step h = 10−3.
Parameter values: D = 0.1, τa = 5.0, ̃ = 10, I0 = 5.5, s

(0)
0 = 5.0.

using the approach described in Ref. [47], or, using a different
approach, in Ref. [15].

VII. SUMMARY AND CONCLUSIONS

In this paper, we have developed a numerical method for
the computation of moments and correlations in general two-
dimensional nonrenewal escape time processes. Our approach
relies on the numerical solution of a two-dimensional time-
dependent FPE with initial conditions obtained from marginal
distributions of previous states of the system. Crucially, the
computation scheme presented in this study is general insofar
as it can be applied to any stochastic process with a known
reset condition [Eq. (1)] and any deterministic signal [Eq. (2)].
As an important application, we have described the transition
to stationarity in a stochastic IF neuron model with spike-
triggered adaptation, which causes nontrivial ISI correlations.
A different mechanism for introducing positive correlations
between ISIs has recently been reported in Ref. [28] and can
equally well be analyzed with the presented methodology.
Moreover, our approach enables us to determine the nontrivial
time scale of transition to a stationary adapted state by counting
the number of intervals needed for this transition.

Experimentally, the transition to stationarity is often char-
acterized by the behavior of the instantaneous firing rate
[17,18,48]. The instantaneous firing rate is usually obtained
by averaging the neuronal activity binwise for a fixed time.
This differs from the firing rate used here as given by the
inverse of the mean ISI [Eq. (5)]. In other words, while the
instantaneous firing rate is measured in real time, our firing
rate relates to interval numbers. This entails that for a given
time t , the firing rate contains contributions from, in general,
past firing events that may have occurred at any point k in the
spike train. Knowing the joint distributions of all ISIs Tk , it is
at least in principle possible to reconstruct the instantaneous
firing rate, whereas given the instantaneous firing rate, we
cannot reconstruct the joint distributions of the individual ISIs
Tk . Despite the difference in the definition of the firing rate, it
might be an interesting topic for further study to classify the
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time scales of the transition to stationarity both experimentally
and based on the theory presented here.

The computation of ISI moments using the iFPT approach
is computationally inexpensive, giving rise to small relative
disagreements between solutions of the FPE and direct MC
simulations. In contrast, the computation of correlations is
harder. We observed that we lost one order of magnitude in
accuracy compared to the simulation of the moments for the
quantities Q1 [Eq. (22)] and Q2 [Eq. (23)], which makes the
reliable computation of SCCs a computationally challenging
task. We conclude that even a relative disagreement of ISI
moments between Monte Carlo estimations and PDE solutions
of the order 10−3 is not enough to reliably estimate the
SCC using PDE numerics only (but this might be specific
for the examples we have considered), indicating that more
refined numerical methods or larger computational resources,
or indeed both, are needed. When the difference between the
two terms in the numerator of Eq. (21) is large, the small
error made by the numerical solution of the PDE should
have a less detrimental influence on the final result. The need
for more refined numerical methods is further substantiated
by the fact that the more accurate asymptotically stable CN
time-stepping scheme did not result in a significant decrease
in the relative disagreement between PDE results and both
plain MC and MC-GS simulations, for both moments of firing
intervals and the SCC. In this paper, we have discussed only
the error associated with MC simulations, because it is readily
available. The numerical solution of the FPE is of course also
subject to numerical errors and future work will likely benefit
from a discussion about how to systematically reduce these
errors. In this context, it might be beneficial to compare the
finite-element methods used here to other methods for solving
PDEs, such as finite difference and finite volume methods
[49]. A systematic error estimation study might be made more
difficult by the fact that the diffusion matrix [Eq. (9)] is not
positive definite [50,51].

There is an alternative method to compute the ISI distri-
butions given the distributions of the peak adaptation currents
using the formula

Fk(t) =
∫

supp(Gk−1)
H(t,y)Gk−1(y) dy. (32)

This is an integral equation frequently used in the context of
randomized FPT problems [52,53], where usually Fk and the
kernelH are given, and one tries to find a matching distribution
Gk−1 of starting points. Using Eq. (32), we do not have to
solve a time-dependent PDE for each ISI, but must compute
H once as the solution of a time-dependent FPE with varying
initial conditions for s, similar to the computation of F1. The
averaging that the iFPT approach amounts to is particularly
clear in this formulation. The densities Gk are obtained as
discussed above [see Eq. (18)]. The approach relying on
Eq. (32) might be computationally less expensive, but we
found that it is not as exact as solving a time-dependent FPE
for each ISI, especially at larger times. This is likely caused
by errors when computing H, as the numerical integration in
Eq. (32) can be performed accurately and efficiently. However,
Eq. (32) could be useful for analytical explorations when H is
known.

We finally emphasize that our approach did not use the
complicated boundary conditions for stationary IF models,
where the probability flux at threshold gives rise to a dis-
continuity of the probability flux at reset [9,54]. In contrast,
our approach allows for the computation of transient and
stationary distributions of the adaptation dynamics in an
iterative fashion, requiring the solution of a two-dimensional
time-dependent PDE. The only boundary condition that has
to be taken into account is an absorbing boundary condition
for the probability density at the threshold xth. This makes the
problem tractable using finite-element approximation methods
for time-dependent PDEs, resulting in a general description of
two-dimensional IF models with spike-triggered adaptation.
The approach we have described in this paper can in principle
also be used to gain analytical insight into these system;
however, quantities such as H and the solution of a two-
dimensional time-dependent PDE seem to be unavailable in
closed analytical form except in the most simple cases.
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APPENDIX: EQUIVALENCE OF Eqs. (24) AND (28)

We here show that Eqs. (24) and (28) are equivalent.
We recall Eq. (24):

E(TnTn+1) =
∫

dTn dTn+1 ds
(n)
0 Tn Tn+1

× H
(
Tn+1,s

(n)
0

)
p
(
s

(n)
0 ,Tn

)
. (A1)

We rewrite Eq. (28) as follows:

E(TnTn+1) =
∫

dTn dTn+1 dy Tn Tn+1

×H(Tn+1,f (Tn,y))p(y,Tn), (A2)

where y = s
(n−1)
0 and we have replaced H(Tn,y)Gn−1(y) =

p(y,Tn). Note that in Eq. (A1), p is the joint density of s
(n)
0

and Tn, whereas p is the joint density of s
(n−1)
0 and Tn in

Eq. (A2).
By inspection, the two expressions are identical if we can

show that∫
ds

(n)
0 H

(
Tn+1,s

(n)
0

)
p
(
s

(n)
0 ,Tn

)
=

∫
ds

(n−1)
0 H

(
Tn+1,f

(
Tn,s

(n−1)
0

))
p
(
s

(n−1)
0 ,Tn

)
, (A3)

for Tn and Tn+1 fixed.
Starting from the second line in Eq. (A3), we change

the integration variable from s
(n−1)
0 to s

(n)
0 by observing

that from s
(n)
0 = f (Tn,s

(n−1)
0 ), we have ds

(n)
0

ds
(n−1)
0

= ∂f

∂s
(n−1)
0

and

therefore ds
(n−1)
0 = ds

(n)
0 ( ∂f

∂s
(n−1)
0

)
−1

. We need to assume that f
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is invertible with respect to the second argument, which is the
case for both power-law [Eq. (14)] and exponential adaptation
[Eq. (15)] considered in this paper. The integral then becomes∫

dTn dTn+1 ds
(n)
0 Tn Tn+1 H

(
Tn+1,s

(n)
0

)
×p

[
f −1(Tn,s

(n)
0

)
,Tn

]( ∂f

∂s
(n−1)
0

)−1

. (A4)

But p[f −1(Tn,s
(n)
0 ),Tn)]( ∂f

∂s
(n−1)
0

)
−1

is nothing but the trans-

formation from p(s(n−1)
0 ,Tn) to p(s(n)

0 ,Tn). Indeed, we have

(fixing Tn)

p
(
s

(n)
0 ,Tn

) ∂s
(n)
0

∂s
(n−1)
0

= p
(
s

(n−1)
0 ,Tn

)
,t (A5)

so that

p(s(n)
0 ,Tn) = p

[
f −1

(
Tn,s

(n)
0

)
,Tn

]( ∂f

∂s
(n−1)
0

)−1

. (A6)

Therefore, Eqs. (24) and (28) are equivalent.
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