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A model called “colored percolation” has been introduced with its infinite number of versions in two
dimensions. The sites of a regular lattice are randomly occupied with probability p and are then colored by
one of the n distinct colors using uniform probability q = 1/n. Denoting different colors by the letters of the
Roman alphabet, we have studied different versions of the model like AB,ABC,ABCD,ABCDE, . . . etc. Here,
only those lattice bonds having two different colored atoms at the ends are defined as connected. The percolation
threshold pc(n) asymptotically converges to its limiting value of pc as 1/n. The model has been generalized by
introducing a preference towards a subset of colors when m out of n colors are selected with probability q/m

each and the rest of the colors are selected with probability (1 − q)/(n − m). It has been observed that pc(q,m)
depends nontrivially on q and has a minimum at qmin = m/n. In another generalization the fractions of bonds
between similarly and dissimilarly colored atoms have been treated as independent parameters. Phase diagrams
in this parameter space have been drawn exhibiting percolating and nonpercolating phases.
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I. INTRODUCTION

Over the last several decades, the phenomenon of perco-
lation has been proved to be one of the most investigated
models in the topic of transport in random disordered systems
[1–6]. Broadbent and Hammersley first introduced the model
of percolation trying to better understand the mechanism
of fluid flow through a random porous medium [7], and
now it has become one of the simplest models of studying
order-disorder phase transition [8]. Due to its simplicity and
plenty of applicability in a number of fields, the literature
on this topic is vast, and expectedly a large number of
variants of percolation models have been introduced to study
the critical behaviors of widely different systems [6,9–16].
In particular, the percolation theory has been successfully
applied to the well-known sol-gel transition [17], transitions in
conductor-insulator mixtures using random resistor networks
[18,19], propagation of fires in forests [1,20], spreading of
infectious diseases in the form of epidemics [21,22], etc.

In the ordinary percolation, the sites of a regular lattice
are occupied randomly and independently with probability
p or kept vacant with probability (1 − p). Any two adjacent
occupied sites are considered as connected. A group of
such occupied sites interconnected through their neighboring
connections forms a cluster, the properties of which depend on
p. At any arbitrary value of p, there are several clusters of dif-
ferent shapes and sizes. The size of the largest cluster increases
monotonically as p is increased, and right above a critical
value of p = pc, known as the percolation threshold, the
largest cluster includes sites on the opposite sides of the lattice
and thus for the first time a global connectivity is established.
Therefore, pc marks the transition point, between the globally
connected and disconnected phases, characterized by the
divergence of the correlation length ξ (p) as p → pc. It is well
known that the ordinary percolation undergoes a continuous
phase transition at p = pc, and the set of critical exponents
defined at and around pc characterizes the universality class
of the transition [1]. The best known value of pc(sq) for the
site percolation on the square lattice is 0.59274605079210(2)
[23] and 1/2 for the bond percolation [24].

Inspired by the phenomena of anti-ferromagnetism, gela-
tion, spreading of infection from the infected cells to normal
cells, Mai and Halley introduced the AB percolation model
[2,25–27]. The model of AB percolation is illustrated in the
following way. Initially, all sites of a lattice are occupied
with B atoms. Then, random sites are selected one by one
and the B atoms at these sites are replaced by the A atoms.
At any arbitrary intermediate stage the fraction of A atoms
is denoted by r . According to this model, bonds which are
having both A and B atoms at their opposite ends are marked
as connected. For a given value of r , the probability that any
given edge has a bond is 2r(1 − r), which has its maximum
at r = 1/2 and decreases monotonically on both sides of this
point. Consequently, the average size of the largest cluster
gradually grows till r = 1/2. The entire scenario is symmetric
about r = 1/2. At r = 1 − rc, the size of the largest cluster
drops sharply, and finally it vanishes at r = 1. Therefore,
for rc � r � 1 − rc, the system is percolating. However, the
existence of a global connectivity through the alternating A

and B atoms, and therefore the existence of rc, crucially
depends on the geometry of the underlying lattice [27,28].
For example, the spanning AB cluster does not exist on the
square lattice [28,29], but it exists on the triangular lattice
[30]. Although it was first concluded that the universality
class of AB percolation in two dimensions is different from
the ordinary percolation [26], later it has been argued that
it belongs to the same universality class as the ordinary
percolation [31–33]. Further, random occupation of lattice
sites by more than two distinct atoms was studied through
the model of polychromatic percolation [34,35].

In this paper, we consider a percolation model, where the
sites of a regular lattice are occupied with probability p similar
to the ordinary site percolation, and then at every occupied site
one of the n differently colored atoms is assigned with a given
probability q. A bond between a pair of neighboring occupied
sites is declared as connected if the atoms are of different
colors. We refer to this model as colored percolation, and we
study the critical properties of this model for both the square
and triangular lattices.
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FIG. 1. Typical configurations of AB, ABC, ABCD, and ABCDE percolation (from left to right) at their critical points have been shown
on a 24×24 square lattice with periodic boundary conditions along the horizontal direction. The colors used are red (A), green (B), yellow (C),
blue (D), and orchid (E) and are distributed with uniform probabilities. The corresponding bond configurations with the spanning clusters in
magenta have been shown in the lower panel. It may be noted that for AB percolation, there is no spanning cluster even when all the sites are
occupied.

The paper is organized as follows. We start by describing
the model of colored percolation in Sec. II, where we consider
every color to be equally likely. In Sec. III we generalize
the model by introducing a preference towards the selection
of a subset of colors and its simulation results. Percolation
transition using similarly colored bonds in addition to the
dissimilar bonds has been described in Sec. IV. Percolation
transition mixing the fractions of similarly and dissimilarly
colored bonds are reported in Sec. V. The critical properties
of the model are presented in Sec. VI. Finally, we summarize
in Sec. VII.

II. MODEL

The sites of a L×L regular and initially empty lattice are
occupied randomly by atoms one by one. At any arbitrary
stage, the density of atoms is denoted by p. After occupying
a given site, the corresponding atom is colored by selecting
one of the n colors with probability q = 1/n. The letters of
the Roman alphabet are used to denote the different colors.
The bonds, which have two distinct colored atoms at their
opposite ends, are declared as connected. Therefore, the other
bonds having the same colored atoms like AA, BB, etc., are
not connected. Gradually, the number of connected bonds in
the system increases with increasing the value of p.

For n = 2, every selected site is occupied either by a A

atom or by a B atom with probability q = 1/2. Like the
model of AB percolation, the size of the largest cluster never
assumes a macroscopic size on the square lattice, and therefore,
a percolation transition is absent here. On the other hand, our
simulation results indicate that on the triangular lattice the
percolation transition occurs at pc ≈ 0.729.

For n = 3, every selected site is occupied by one of the
three atoms A, B, and C with probabilities q = 1/3. Only the
AB, BC, and CA bonds are defined to be connected. In this
case, there exists a percolation threshold pc ≈ 0.807 on the
square lattice and ≈0.630 on the triangular lattice. We refer to
this model as ABC percolation.

Such an extension of the model can be continued with
four colored atoms, where A, B, C, and D atoms are
distributed with probabilities q = 1/4. The critical densities
of the occupied sites are pc ≈ 0.734 on the square lattice and
≈0.591 on the triangular lattice estimated using the method in
Ref. [36]. This model is referred as the ABCD percolation.

We systematically increase the number of distinct col-
ored atoms to define further the ABCDE,ABCDEF,

ABCDEFG, etc., colored percolation models. In brief, we
have been able to define an infinite set of percolation models
by defining connectivity through the bonds between dissimilar
atoms. Figure 1 shows the images of the typical percolation
configurations on the square lattice for four different values
of n.

The order parameter and the percolation threshold

The size of the largest cluster for a particular value of p

and for the system of size L is denoted by smax(p,L), and the
average fractional size of the largest cluster is defined as the
order parameter �(p,L) = 〈smax(p,L)〉/L2. The variation of
�(p,L) with p has been shown in Fig. 2(a) for six different
values of n on the square lattice. The sharp rise in the
order parameter curve shifts towards smaller values of p with
increasing the value of n.
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FIG. 2. For n = 3 (black), 4 (blue), 5 (green), 6 (orange),
7 (maroon), and 8 (red). (a) The order parameter �(p,L), has
been plotted against the site occupation probability p for the square
lattice of size L = 1024 (n increases from right to left). (b) Plot
of the percolation thresholds pc(n,L) against L−1/ν using ν = 4/3
(n increases from top to bottom). By extrapolating as L → ∞, we
obtain the asymptotic values of the percolation threshold pc(n).

As p is increased, the size of the largest cluster increases
monotonically by merging with the other clusters, whereas the
variation of the second largest cluster is not monotonic. In a
typical run α, the second largest cluster may merge several
times with the largest cluster and thereby causes multiple
jumps in the size of the largest cluster. At a specific value
of p, the maximum of the second largest cluster merges with
the largest cluster that results the maximal jump in the size
of the largest cluster. This particular value of p is defined as
the percolation threshold pα

c for the run α [36,37]. For a fixed
value of n, this calculation is repeated over a large number of
independent runs α, and the pα

c values are averaged to obtain
pc(n,L) = 〈pα

c 〉 for the system size L. In our simulation,
periodic boundary conditions are imposed along both the
vertical and horizontal directions. The value of smax(p,L) is
evaluated using the algorithm given in reference [38] over the
entire range of p.

For a given value of n, the pc(n,L) values are extrapolated
as

pc(n,L) = pc(n) − AL−1/ν (1)

to obtain the asymptotic value of the percolation threshold
pc(n) for L → ∞, where ν is known as the correlation length
exponent. Using 1/ν as a free parameter we varied its trial
values at the interval of 0.001 and found by the least square

TABLE I. Numerical estimates of the asymptotic values of the
percolation threshold pc(n) for n differently colored atoms occur
with probability 1/n for the square and triangular lattice geometries.

pc(n)

n Square Triangular

2 0.72890(4)
3 0.80745(5) 0.63005(4)
4 0.73415(4) 0.59092(3)
5 0.69864(7) 0.56991(5)
6 0.67751(5) 0.55679(5)
7 0.66345(5) 0.54782(3)
8 0.65342(8) 0.54130(3)
9 0.64588(5) 0.53634(2)
10 0.64002(4) 0.53245(3)
11 0.63532(5) 0.52931(2)
12 0.63147(4) 0.52672(2)

fitting method that the best values for all n differ from 3/4
by at most 0.005. Therefore in the rest of our calculation we
have used ν = 4/3, the exact value of the exponent in two
dimensions [1,39]. In Fig. 2(b), we plot pc(n,L) against L−1/ν

in a linear scale for six different values of n. The data points
for all six values of n fit excellently to a straight line. By
extrapolating the straight lines as L → ∞ and measuring the
y intercept we estimate the asymptotic values of pc(n). The
values of pc(n) for first few values of n are listed in Table I for
square and triangular lattices. It is to be noted that, for each
value of n, the pc(n,L) values are calculated numerically using
L = 64, 128, 256, 512, 1024, and 2048.

As the number of different colors increases, there are more
and more connected bonds in the system, which helps the
system to percolate at smaller densities. The probability that
a bond would be a connected one is given by pb = 1 − 1/n,
and, therefore, for very large value of n the entire scenario
is exactly same as the ordinary site percolation. Expectedly,
pc(n) approaches pc = pc(∞), the ordinary site percolation
threshold on the corresponding lattice.

To investigate how the asymptotic values of the percolation
threshold pc(n), approach the value pc as n → ∞, we first
calculate pc(n) for different values of n up to n = 110.
Then, we plot the deviation pc(n) − pc against n on a double
logarithmic scale for the square and triangular lattices (Fig. 3).
Although both the curves have curvatures at their initial
regimes, for large values of n they are quite straight. The slopes
of the curves within a window ranges between n = 16 and
110 measured as 1.020 and 1.017 for the square and triangular
lattices, respectively. We observed that these slopes approach
gradually to a value of unity as we shift the window to higher
values of n. Thus, we conjecture that pc(n) − pc ∼ n−1 for
both lattices.

III. PREFERENTIAL COLORED PERCOLATION

A straightforward generalization of this model can be
achieved by introducing a preference towards the probability of
selection of differently colored atoms. In the simplest case, let
us consider the atoms of color C to be preferentially selected,
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FIG. 3. Plot of pc(n) − pc against n (up to n = 110) on a
log − log scale, using pc = pc(sq) and 1/2 for the square and
triangular lattices, respectively. The slope of the curves in the fitted
regime have been found to be 1.020 and 1.017, respectively.

whereas all other colored atoms are on the same footing. More
specifically, we denote the probability of selection of the C

atoms by q, and for all other atoms it is (1 − q)/(n − 1). As
before, only the bonds between dissimilar atoms are defined
to be connected.

For a given value of q, if Probii is the probability that two
atoms at the end sites of a bond are of same color i, then the
probability that a particular bond would be a connected one is
given by

Probb(q) = 1 −
n∑

i=1

Probii = 1−q2−(1−q)2/(n−1). (2)

The above expression describes that with increasing the value
of q from 0, the Probb(q) first increases, reaches its maximum
at q = qmin, and finally decreases beyond this point. The
condition dProbb(q)/dq = 0 at q = qmin yields the value of
qmin = 1/n. This property of Probb(q) should be reflected in
the percolation properties of the system also. Consequently,
the percolation threshold pc(q) must decrease with q, till it
reaches qmin and then increases for q > qmin.

For n = 3, the variations of the order parameter for different
values of q have been shown in Fig. 4. For q = 0, one gets
back the n = 2 unpreferred colored percolation, and therefore,
for the square lattice even a fully occupied lattice does not
percolate. Further, on increasing the value of q the BC and
CA bonds are created, which eventually also contribute to the
global connectivity. Tuning the value of q, it has been observed
that there exists a threshold value of q = q1 when the global
connectivity first appears, i.e., pc(q1) = 1. If the probability q

is increased further, the percolation threshold pc(q) gradually
decreases and reaches its minimum value pc(qmin) ≈ 0.807 at
qmin ≈ 0.333. On increasing q even further, pc(q) increases
and reaches the value of unity again at q = q2. The global
connectivity is lost beyond this point. For each value of q,
first the percolation threshold pc(q,L) for the system size L

is estimated for L = 256, 512, and 1024, and then they are
extrapolated as L → ∞ using Eq. (1) to obtain pc(q). The
variation of pc(q) for the entire range of q has been shown
in Fig. 5.
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FIG. 4. Plot of the order parameter �(p,L) against occupation
probability p for the preferential ABC percolation on square lattice
of size L = 1024. The values of q are 1/3 (black), 0.20 (red), 0.53
(blue), 0.12 (magenta), and 0.60 (green) arranged from left to right.

For the triangular lattice, the curve retains its shape, but in
this case, even for q = 0, there exists a percolation threshold.
Since, for q = 0 the other two atoms are occupied with
probability 1/2, the value of percolation threshold is expected
to be ≈0.729. Similarly, for q = 0 and n = 4 on the square
lattice this model is identical to the ABC percolation, and
therefore, pc(0) ≈ 0.807.

Numerically, the values of q1 and q2 are determined using
the bisection method in the following way. To estimate q2,
we select a pair of values qc and qd for q so that the
system is globally connected and disconnected respectively
for p = 1. We have applied the periodic boundary condition
along one direction and tested for the global connectivity along
its transverse direction using the Burning algorithm [40] for
q = (qc + qd )/2. If the system is globally connected, then qc is
replaced by q, otherwise qd is replaced by q. This procedure
is repeated until qd − qc < 10−7, when (qc + qd )/2 defines
q2 for a particular run. Averaging over a large number of
independent runs q2(n,L) for specific values of n and L has
been estimated. A similar procedure has been followed for
q1(n,L). The entire procedure is then repeated for different

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7q
0.80

0.85

0.90

0.95

1.00

p c
(q

)

FIG. 5. For the preferential ABC percolation on the square
lattice, percolation threshold pc(q) is plotted against the parameter q.
The minimum of pc(q) occurs at q = 0.333, which is in agreement
with its estimate of 1/3, using Eq. (2).
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FIG. 6. For n = 3 and for square lattice, plot of q2(n,L) − q2(n)
against L−0.740 with q2(n) = 0.6639 exhibits an excellent straight
line which passes very close to the origin. The value of q2(n,L) is
calculated for L = 256, 512, 1024, 2048, and 4096.

values of L and extrapolations to L → ∞ using Eq. (1) in
this case as well, we obtain q1(n) and q2(n). For n = 3,
the best linear fit has been exhibited in Fig. 6 by plotting
q2(3,L) − q2(3) against L−0.740, using q2(3) = 0.6639(5) on
the square lattice. Similarly, q1(3) = 0.0414(5) has been
estimated.

Therefore, a nontrivial value of q1(n) exists for n = 3 and
n = 2 on the square and triangular lattices, respectively. It
does not exist for all other values of n. On the other hand,
q2(n) exists for all values of n � 3 and n � 2 for the square
and triangular lattices, respectively.

The density of connected bonds Probb(q) corresponding
to the point q = q2(n) represents a threshold value in the
correlated bond percolation scenario. Beyond this point, the
density of connected bonds is no longer sufficient to establish
a global connectivity. Neglecting the local correlations and
equating Probb(q2) to pb

c , the random bond percolation
threshold of the respective lattices, we arrive at an expression
of q2(n) using Eq. (2):

q2(n) = (
1 + {

1 + n
[(

1 − pb
c

)
(n − 1) − 1

]}1/2)/
n. (3)

Numerically estimated values of q2(n) for different values
of n using bisection method, along with the values obtained
from Eq. (3) using pb

c = 1/2, are summarized in Table II for
the square lattice. It is observed that the values are close to
each other and differ only due to the existence of short range
correlations in the system.

TABLE II. The comparison of q2(n), evaluated using Eq. (3) with
its numerical estimates for different values of n for square lattice. For
each values of n, numerically q2(n,L) is calculated for L = 256, 512,
1024, 2048, and 4096 and on extrapolation to L → ∞ we obtained
q2(n). Each of the reported value has an error bar of 5 in the last digit.

n 3 4 5 6 7 8

Numerical 0.6639 0.6849 0.6927 0.6969 0.6995 0.7013
Analytical 2/3 0.6830 0.6899 0.6937 0.6961 0.6978
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FIG. 7. The variation of the percolation threshold pc(q,m) with
q for the generalized version of the preferentially colored percolation
model is shown for m = 1,n = 4 (black), m = 2, n = 4 (red), and
m = 3, n = 6 (blue) for the square lattice. The curves are arranged
from top to bottom along the line q = 0.50.

A more general version of the preferential colored perco-
lation model is the situation when m distinctly colored atoms
are equally probable and the remaining (n − m) colors are
also equally probable but occur with different probabilities.
Such a generalization can be obtained by assigning an atom of
one of the m colors with probability q/m and the rest of the
(n − m) colors with probability (1 − q)/(n − m) at the time of
occupying a vacant site. The probability for an arbitrary bond
to be connected is given by

Probb(q,m) = 1 − q2/m − (1 − q)2/(n − m). (4)

Evidently, Probb(q,m) is maximum at qmin = m/n, and it
decreases on both sides of this point. The expression of
Probb(q,m) remains unaltered if the value of q is changed
from q to (1 − q) at the same time m is changed from m

to (n − m), i.e., Probb(q,m) = Probb(1 − q,n − m). Immedi-
ately, it implies that the curve is symmetric about q = 1/2
only when m = n/2. The percolation threshold pc(q,m) for
specific values of n and m is expected to exhibit such properties
appropriately.

Again, after extrapolation to the large L limit using Eq. (1)
with ν = 4/3 we obtain pc(q,m). In Fig. 7 the asymptotic
values of the percolation threshold pc(q,m) have been plotted
against q for three pairs of values of m and n for the square lat-
tice. It is observed that all three curves have their own minimum
which occur at qmin = 0.25,0.50, and 0.50 for m = 1,n = 4;
m = 2,n = 4; and m = 3,n = 6 respectively. Clearly, the qmin

values match excellently with our analytically estimated value
of qmin = m/n. As expected, the curves corresponding to
m = n/2 are symmetric about the point q = 1/2.

IV. PERCOLATION USING ADDITIONAL
SIMILAR BONDS

Let us recall that for n = 2 case on the square lattice and
for any arbitrary value of the site occupation probability p,
the density of AB bonds is maximum for q = 1/2. In spite of
that, no percolation transition is observed on the square lattice
since the largest cluster of AB bonds is found to be minuscule
even when p = 1. In other words, even the maximum number
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FIG. 8. (a) For L = 256 (black), 512 (red), and 1024 (blue)
(arranged from left to right), the order parameter �(v,L) has been
plotted with the bond occupation probability v between AA or BB

atoms at p = 1, for n = 2 with q = 1/2 colored percolation. (b) By
suitably scaling the abscissa and ordinate when the same data as in
(a) are replotted, a nice data collapse is observed using vc = 0.0651,
β/ν = 0.101(5), and 1/ν = 0.745(5).

of connected bonds are not sufficient to establish a global
connectivity across the system [28].

In this section we study a new variant of our colored
percolation model, where in addition to the AB bonds, we
allow also a fraction v of similarly colored bonds (like AA

and BB) to be connected. Therefore, for v = 1, the problem
reduces to the ordinary site percolation with the percolation
threshold at pc(sq). This suggests that for all values of
pc(sq) � p � 1 there should be a critical value of v = vc(p)
for the fraction of bonds between similarly colored atoms, such
that percolation transition occurs only for v � vc(p).

For p = 1 one must include a nontrivial fraction vc(1) of
similar bonds to achieve a percolation transition. On a fully
occupied lattice we have used again the bisection method
to obtain an accurate estimation of vc(1). Starting with two
trial values of v corresponding to the globally connected and
unconnected systems, the gap between them is reduced by
successive halving of the interval. As before, the values of
vc(1,L) obtained this way have been extrapolated for L → ∞
to obtain vc(1) = 0.0651(5). It may be noted that the existence
of a nonzero value of vc(1) is a numerical demonstration of
the absence of a percolation transition in the n = 2 colored
percolation as well as in the AB percolation on the square
lattice.
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FIG. 9. Phase diagram of the density v of similarly colored bonds
and the site occupation probability p for n = 2 (black), 3 (red), and
4 (blue) (arranged from right to left) with q = 1/n (filled circles).
The critical curve is fitted very closely by Eq. (6) whose parameters
are c1 = 5.01, 8.28, and 11.47; c2 = −9.48, − 17.92, and −26.25;
c3 = 4.55, 9.50, and 14.47 for n = 2, 3, and 4 respectively.

In Fig. 8(a) the order parameter �(v,L) = 〈smax(v,L)〉/L2

has been plotted against v for three different sizes of the
system. For v = 0, only the AB bonds are present in the
system and the size of the largest cluster is minuscule, which
is apparent by the very small value of the order parameter. On
increasing v further, the order parameter grows monotonically,
and the sharpest rise occurs at a critical value vc(1,L) leading
to the occurrence of global connectivity. A finite-size scaling
analysis is exhibited in Fig. 8(b) indicating a scaling form:

�(v,L)Lβ/ν ∼ F{[v − vc(1)]L1/ν}. (5)

Using vc = 0.0651, the best data collapse is observed for
1/ν = 0.745(5) and β/ν = 0.101(5), compared to the exact
value of the correlation length exponent 1/ν = 3/4 and
β/ν = 5/48 ≈ 0.104 for the ordinary percolation in two
dimensions [1]. In addition, our estimates for the fractal
dimension df = 1.896(5) of the infinite incipient cluster [41]
and the exponent γ = 2.388(5) of the second moment of the
cluster size distribution at vc(1,L) yield values very much
consistent with the exactly known exponents of df = 91/48
and γ = 43/18 for the ordinary percolation which fulfill
the scaling and hyperscaling relations in two dimensions:
γ /ν + 2β/ν = 2 [1,42].

Repeating this method for many different values of occu-
pation probability p we have drawn the phase diagram in the
v-p plane in Fig. 9. This plane is divided into two regions
by the critical curve vc(p), which separates the percolating
region (above) from the nonpercolating (below) region. Three
different critical curves are shown for n = 2, 3, and 4. The
dependence of the critical fraction vc(p) on p for a specific
value of n is obtained by the quadratic polynomial fit of the
data as exhibited in Fig. 9:

vc(p) = c1 + c2p + c3p
2. (6)

The values of c1,c2, and c3 are given in the Fig. 9 caption.
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FIG. 10. Phase diagram of the density of similarly colored bonds
v and dissimilarly colored bonds u for fixed values of p for n = 2 (a)
and n = 3 (b), with q = 1/n using L = 1024 on the square lattice.
The values of p are 1.00 (red), 0.90 (orange), 0.80 (green), 0.70
(cyan), 0.65 (blue), and 0.61 (indigo) (arranged from left to right).
For every p, the region above the critical curve depicts the percolating
phase.

V. GENERALIZED COLORED PERCOLATION
WITH SIMILAR AND DISSIMILAR BONDS

In this section we have generalized the model of col-
ored percolation tuning the fractions of the bonds between
similar and dissimilar colored atoms using two independent
parameters. Specifically, for the site occupation probability
p > pc, the bonds between dissimilarly colored atoms are
connected with probability u, and those between similarly
colored atoms are connected with probability v. Therefore, on
the u − v plane a critical percolation curve represents the phase
boundary between the percolating and the nonpercolating
phases. In Fig. 10(a) we have shown for n = 2 and q = 1/2,
a series of critical percolation curves for different values of
occupation probability p. Here the density of connected bonds
is given by Probb(u,v) = (u + v)/2. The symmetry of this
expression under the interchange of u and v is reflected by
the mirror symmetry of the curves in Fig. 10(a) about the
v = u line. This can be generalized further for any value of n

as Probb(u,v) = u + (v − u)/n, and therefore, for n > 2 the
critical curves are not symmetric about the u = v line anymore.
This has been exhibited in Fig. 10(b) for n = 3 and q = 1/3.

A better visualization of the percolating and nonpercolating
phases has been exhibited by a three-dimensional critical
surface in the (u-v-p) space. Figures 11(a) and 11(b) exhibit
such plots for n = 2 and 3 respectively. Any point within the
space enclosed by the critical surface represents the percolating
phase. The intersections of these critical surfaces with the
u = 1 plane have been shown in Fig. 9 for n = 2, 3, and 4.

VI. UNIVERSALITY CLASS
OF COLORED PERCOLATION

To confirm that the colored percolation belongs to the
universality class of ordinary percolation, we have estimated
a set of critical exponents, e.g., the fractal dimension of the
largest cluster, the cluster size distribution exponent and the
fractal dimension of the shortest paths right at the percolation
threshold of the unpreffered colored percolation.

Fractal dimension: The average fractional size of the largest
cluster at the percolation threshold decreases with the system
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FIG. 11. 3D phase diagram has been drawn in the u − v − p

plane, for n = 2 (a) and n = 3 (b), with q = 1/n using L = 1024
on the square lattice. The colored surface separates the percolating
region from the nonpercolating region.

size L as 〈smax[pc(L)]〉/L2 ∼ Ldf −2, where df is its fractal
dimension [41]. Our estimated values of df = 1.897(2) for
n = 3 on square lattice [Fig. 12(a)] and 1.895(2) for n = 2
on triangular lattice are compared with the fractal dimension
91/48 ≈ 1.8958 of the ordinary percolation in two dimensions.

Cluster size distribution: The size s of a percolation cluster
being the number of occupied sites in the cluster. Cluster sizes
are measured for all clusters right at the percolation threshold,
marked by the maximal jump of the largest cluster. The cluster
size distribution D(s) is measured by averaging over many
different configurations. In Fig. 12(b) the finite-size scaling
of the data for D(s) has been shown for n = 3 on the square
lattice. An excellent collapse of the data confirms a power
law variation: D(s) ∼ s−τ . Using the best fitted values of the
scaling exponents, the cluster size distribution exponent τ has
been estimated to be 2.051(5), compared to 187/91 ≈ 2.055 for
ordinary percolation in two dimensions [5,43]. A very similar
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FIG. 12. Plots for n = 3 and q = 1/3 at the percolation threshold
of the colored percolation on the square lattice. (a) The average
fractional size 〈smax[pc(L)]〉/L2 of the largest cluster plotted against
the system size L gives a value of the fractal dimension df = 1.897(2).
(b) The finite-size scaling analysis of the cluster size distribution
D(s,L) has been exhibited. Plot of D(s)L3.882 against sL−1.893

shows an excellent data collapse, which yields τ = 2.051(5). (c)
The average shortest path 〈	(L)〉 has been plotted against L for
L = 128, 256, 512, 1024, 2048, and 4096. The fractal dimension of
the shortest path is estimated from the slope as d	 = 1.133(2).

value of 2.051(5) has been found for n = 2 on the triangular
lattice.

Shortest path: In general on a cluster, there exists multiple
paths between an arbitrary pair of sites. The smallest of these
is called the shortest path, and its length is measured by the

number 	 of connected bonds on this path. Using the Burning
algorithm [40] the average lengths 〈	(n,L)〉 of the system
spanning shortest paths at the percolation threshold have been
estimated and is found to scale with the lattice size L as
〈	(n,L)〉 ∼ Ld	 , with d	 = 1.133(2) for n = 3 on the square
lattice [Fig. 12(c)] and 1.133(3) for n = 2 on the triangular
lattice compared to ≈1.131 in two dimensions for the ordinary
percolation [44,45].

The same set of critical exponents have been estimated for
the preferential colored percolation with q = 0.60, and we
have obtained very similar matching with the exponents of
ordinary percolation.

VII. SUMMARY

To summarize, we have introduced the model of “colored
percolation” and have formulated its infinite number of
versions in two dimensions. The sites of a regular lattice
are occupied by atoms with probability p and are colored
randomly using one of the n distinct colors with probability
q = 1/n. A bond is said to be connected if and only if its end
atoms are of different colors. The global connectivity is then
determined through the connected bonds. It has been observed
that the percolation threshold pc(n) approaches pc in the limit
of n → ∞ as 1/n.

The preferential colored percolation has been defined when
m out of n colors are selected with probability q/m each, and
rest of the colors are selected with probability (1 − q)/(n− m).
It has been observed that pc(q,m) depends nontrivially on
q and has a minimum at qmin = m/n. The plot of pc(q,m)
against q is asymmetric for general value of m, but it becomes
symmetric about q = 1/2 only when m = n/2.

This model is further generalized by adding similarly
colored bonds of density v. It has been found that for each value
of the site occupation probability p, there exists a nontrivial
value of vc(p). The phase diagram in the v-p plane has been
drawn with v = vc(p) as the critical curve separating the
percolating and nonpercolating regions. Such a phase diagram
is better viewed in 3D and drawn by tuning v as well as u

of the fraction of dissimilarly colored bonds and plotting the
site occupation probability p along the z axis. Estimation of
different critical exponents lead us to conclude that all versions
of the model of colored percolation belong to the percolation
universality class.
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