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Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental
studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like
thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these
systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning
unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned
with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical
two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical
Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in
contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance
of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two
external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance
(COP). We find full distributions of these quantities numerically and study the tails of these distributions. We
also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and
their probability distributions are broad with power law tails.

DOI: 10.1103/PhysRevE.95.052123

I. INTRODUCTION

After Feynman’s theoretical construction of his famous
Ratchet and Pawl machine in Ref. [1], due to advancement in
nanoscience, it is now possible to realize miniaturized engines
experimentally [2–5]. Many of the experiments are based
on theoretical predictions, namely the fluctuation theorems
that put bounds on thermodynamic quantities of interest, like
efficiency of the engines [6,7]. For thermodynamic engines,
such as Carnot or Stirling, the fluctuations are usually ignored
and most of the physics is obtained from average values
of work and heat [8]. These notions, however, fail in the
case of microscopic engines. Microengines behave differently
and the main reason behind this odd behavior are the loud
thermal fluctuations. These thermal fluctuations cause energy
exchanges of the order of kBT , where kB is the Boltzmann
constant and T is the ambient temperature. For small systems
one can thus not just rely on mean values of work and heat or,
as a matter of fact, any thermodynamic quantity, but one has to
look at full probability distributions. To deal with such systems,
one needs to use the framework of stochastic thermodynamics
[9–11]. Many studies on such small-scale engines have shown
that fluctuations in thermodynamic quantities dominate over
mean values even in the quasistatic limit [12–19]. Many
studies have also looked at full distributions of efficiency
[13,14] and also the large deviation functions [20]. Models
with feedback control both instantaneous and delayed have
also been investigated [21–24]. Most of the earlier studies,
both theoretical and experimental, were based on applying the
thermodynamic engine protocols, such as Carnot or Stirling,
to a colloidal particle placed in an harmonic trap. The trap
strength is then modified time dependently to mimic isothermal
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expansion, compression and adiabatic expansion, compression
steps [2,3,13,14]. We would like to point out that there
are, in fact, no detailed studies that deal with fluctuations
of thermodynamic quantities for externally driven systems
that are simultaneously in contact with several heat baths.
These systems show many features not seen in earlier studied
models.

In this work, we have studied a model of classical heat
engine and a pump where two Ising spins are independently
kept in contact with two heat baths at different temperatures.
These spins are externally driven by time-dependent magnetic
fields with a phase difference [25]; see Fig. 1. During full
driving, protocol system is never isolated from the heat baths.
Interestingly the phase difference is the only parameter that
decides whether system works as a heat engine or a refrigerator.
Performance of this model in terms of average heat currents
has been studied in Ref. [25]. In this paper, we analyze this
model in terms of the following:

(1) rich features this model exhibits in phase diagrams of
engine and pump performance;

(2) fluctuations in efficiency, COP, and their probability
distributions, including power-law tails;

(3) behavior of work, heat, efficiency, and power in
quasistatic limit;

(4) reliability of the model to work either as an engine or
a refrigerator.

II. MODEL

We consider a model of two classical Ising spins with
interaction energy J , driven by time-dependent external mag-
netic fields h1(t) = h0 cos(ωt) and h2(t) = h0 cos(ωt + φ),
where φ is the phase difference and ω the driving frequency,
as shown in Fig. 1. The Hamiltonian for this system is
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FIG. 1. Cartoon of the model discussed in the text.

written as

H = −Jσ1σ2 − h1(t)σ1 − h2(t)σ2, σ1,2 = ±1. (1)

Left and right spins are in contact with heat baths at
temperature TL and TR , respectively. Interaction of spins with
the respective heat baths is modeled by Glauber dynamics
[26]. We define heat currents coming from left (right) baths
Q̇L (Q̇R) and work done on left (right) spin ẆL (ẆR) to be
positive. The total work done is nothing but Ẇ = ẆL + ẆR .
If P (σ1,σ2,t) represents the probability to have spins in state
{σ1,σ2} at time t , then the heat-exchange rates can be written
as

Q̇L =
∑
σ1,σ2

P (σ1,σ2,t)r
L
σ1,σ2

�E1(σ1,σ2),

Q̇R =
∑
σ1,σ2

P (σ1,σ2,t)r
R
σ1,σ2

�E2(σ1,σ2),

(2)
ẆL = −〈σ1〉ḣ1(t) = −ḣ1(t)

∑
σ1,σ2

σ1P (σ1,σ2,t),

ẆR = −〈σ2〉ḣ2(t) = −ḣ2(t)
∑
σ1,σ2

σ2P (σ1,σ2,t),

where the modified Glauber spin flip rates to compensate for
two heat reservoirs are given by

rL,R
σ1,σ2

= r(1 − γL,Rσ1σ2)(1 − δL,Rσ1,2), (3)

with

γL,R = tanh(J/kBTL,R),

δL,R = tanh(h1,2/kBTL,R), (4)

where r is a rate constant. The energy changes associated with
left or right spin flips are given by

�E1 = 2[Jσ1σ2 + h1(t)σ1],

�E2 = 2[Jσ1σ2 + h2(t)σ2]. (5)

Expressions in Eq. (2) can be easily obtained from the
master equation satisfied by P (σ1,σ2,t); see Ref. [25] for
details. It is easy to show that the average energy U = 〈H〉 =∑

σ1,σ2
H(σ1,σ2)P (σ1,σ2,t) and U̇ = Q̇L + Q̇R + ẆL + ẆR

from the above expressions. Since external driving is time
dependent, after a transient period probability P (σ1,σ2,t)
attains a time periodic state that is independent of the initial
state. We also define time-averaged heat and work currents,

namely,

〈q̇L,R〉 = 1/τ

∫ τ

0
Q̇L,Rdt,

〈ẇ〉 = 1/τ

∫ τ

0
Ẇdt, (6)

where τ = 2π/ω is the time period of the external driving.
Once these definitions are set, for TL � TR , we define

stochastic efficiency ε and stochastic coefficient of perfor-
mance (COP) η as

ε = ẇ

−q̇L

, η = q̇R

ẇ
. (7)

We note that due to large thermal fluctuations, two efficiencies

ε̄ = 〈ẇ〉
〈−q̇L〉 and 〈ε〉 =

〈
ẇ

−q̇L

〉
,

are in general not equal that is 〈ε〉 �= ε̄ similarly 〈η〉 �= η̄. For
completeness we reproduce results from Ref. [25] to show
how the phase φ and time period τ determine the engine or
pump behavior. In Figs. 2(a) and 2(b), we plot 〈ẇ〉, 〈q̇L〉, and
〈q̇R〉 as a function of the phase φ for engine and pump mode of
operation, respectively. In Fig. 2(a), for all values of φ the heats
〈q̇L〉 > 0, 〈q̇R〉 < 0 but for a narrow range π/2 � φ � π work
done 〈ẇ〉 < 0. In this narrow range, work is extracted from the
system, hence the device works as an engine. It can be seen that
for parameters TL = 1.0, TR = 0.1, J = 1.0, h0 = 0.25, and
τ = 190, at φ = 0.7π maximum work is extracted. We refer to
this set of parameter values as optimal parameters for engine
mode of operation throughout the manuscript. Similarly, in
Fig. 2(b), for all values of φ work done 〈ẇ〉 > 0, but the heats
〈q̇L〉 and 〈q̇R〉 take positive and negative values alternately. For
a narrow strip π/2 � φ � π , 〈q̇L〉 < 0 and 〈q̇R〉 > 0, thus the
system works like a pump, transferring heat from the right bath
to the left. For parameters TL = 0.5, TR = 0.5, J = 1.0, h0 =
0.25, and τ = 225, at about φ = 0.7π maximum pumping
of heat happens. Thus, we refer to these parameter values as
optimal parameters for refrigerator-pump mode of operation
throughout the manuscript. Similar results, as in Fig. 2(b)
are obtained if the right bath is slightly colder showing one
can transfer heat from colder to hotter bath working as a
refrigerator; see Ref. [25].

The average values of heats and work done can easily be
obtained by solving the master equation numerically [25].
But to study fluctuations and distributions of these quantities,
we have to rely on Monte Carlo simulations, which we now
describe.

III. SIMULATIONS

To study the dynamics of the system and for evaluating
different heat currents, we perform Monte Carlo simulations.
We discretize the magnetic field sweep, which consists of
∼104 time steps such that each time step dt = τ/104 with
τ = 2π/ω, where τ is the time period of external driving. We
also fix the Boltzmann constant kB = 1, the interaction energy
J = 1.0, and the rate constant r = 0.5. Simulation follows
usual Monte Carlo steps in which first or second spin is chosen
at random. At each discrete time step, only one spin may flip.
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FIG. 2. (a) Engine mode of operation. 〈q̇L〉 > 0, 〈q̇R〉 < 0 and 〈ẇ〉 < 0 for certain values of the phase φ. Parameter values are h0 = 0.25,
τ = 190, TL = 1.0, TR = 0.1. At φ = 0.7π , maximum work is extracted from the system (inset). In all the results discussed further these
parameters are considered to be optimal for engine mode of operation. (b) Pump-refrigerator mode of operation. Parameter values are h0 = 0.25,
τ = 225, TL = 0.5, TR = 0.5. See, for example, at φ = 0.7π , we have 〈q̇R〉 > 0, 〈ẇ〉 > 0, and 〈q̇L〉 < 0 implying heat is taken from the right
bath, work is done on the system, and heat is dissipated into the left bath. In all the results discussed further, these parameters are considered
to be optimal for pump-refrigerator mode of operation. Zero line is just a guide for the eyes. See Ref. [25] for details.

Since each spin is in contact with a separate heat bath, the spin
flip rates themselves can be used to evaluate flip probabilities
by multiplying them with the time step dt . In general, flip rates
need not be smaller than 1, thus we choose the rate constant
r such that this problem does not arise [27]. At each step, if a
spin flips, heat is exchanged between the left (right) spin and
left (right) bath. We calculate these rates of heat exchange, the
rate of work done on the first and second spin in the steady
state, over one time period.

For our systems, there are four thermodynamically possible
machines which are engine, heaters 1 and 2, and refrigerator
[13]. The actual mode of operation is determined by signs of
heat exchanges 〈q̇L〉, 〈q̇R〉 and the total work done 〈ẇ〉. For
TL � TR , these modes of operation are described as:

(1) Engine mode: 〈q̇L〉 > 0, 〈q̇R〉 < 0, 〈ẇ〉 < 0, implying
heat flows from left bath into the system, which is used by

the working substance to do work on the external agent and
remaining heat is dissipated into the right bath.

(2) Heater 1 mode: 〈q̇L〉 < 0, 〈q̇R〉 < 0, 〈ẇ〉 > 0. In this
case external agent delivers large amount of heat in form of
work into system and this heat is then dissipated in both left
and right reservoirs.

(3) Heater 2 mode: 〈q̇L〉 > 0, 〈q̇R〉 < 0, 〈ẇ〉 > 0 heat flows
from the left bath, as well as work is done on the system, hence
a large amount of heat is dissipated in the right bath.

(4) Refrigerator mode: 〈q̇L〉 < 0, 〈q̇R〉 > 0, 〈ẇ〉 > 0, heat
is taken from the right bath which is at a slightly lower
temperature than the left bath, work is done on the system
and this results in transfer of heat to the left bath.

In our model the phase difference φ and the time period τ

alone can determine different modes of operations as can be
seen from Figs. 2(a), 2(b) and Fig. 3(a), 3(b).
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FIG. 3. (a) Shows the phase diagram as a function of the phase difference φ for engine mode of operation. Black solid circles indicate Heater
2 mode and open black circles indicate engine mode. (b) Phase diagram for the refrigerator mode. Solid red circles heater 1 (for 0 � φ < π/2
and 3π/2 < φ � 2π ) and solid green circles refrigerator (for π/2 � φ < π ), solid black circles heater 2 mode ( for π � φ < 3π/2 ). Different
modes are also indicated in the figure.
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We are also interested in studying fluctuations in heat
exchanged and work done as well as to study how sensitive is
the performance of the model in engine and pump-refrigerator
mode, on the optimal parameter values described above.
Hence, we construct phase diagram for both modes of
operations as a function of the phase φ and the temperature
TL keeping TR = 0.1 for engine mode and TR = 0.5 for
pump mode of operation. These phase diagrams are shown in
Figs. 3(a) and 3(b), respectively. Figure 3(a) shows how engine
mode of operation depends on the phase φ and the temperature
TL for fixed TR = 0.1 and τ = 190. It has two distinct domains
namely engine and heater 2. For π/4 < φ < π and TL − TR >

1, engine behavior is observed (〈q̇L〉 > 0, 〈q̇R〉 < 0, 〈ẇ〉 < 0).
Other part of the diagram is dominated by heater 2 operation.
In Fig. 3(b), we plot phase diagram for the refrigerator mode
of operation where TR = 0.5, τ = 225. It is equally dominated
by heater 1, refrigerator, and heater 2 modes with refrigerator
mode occurring in a narrow strip between π/2 < φ < π , and
for very small temperature differences TL − TR � 0.005.

We now examine how different modes of operations depend
on different parameters in the model other than the phase φ.
To this end we construct the phase diagram where we keep

the phase φ = 0.7π , temperature TR = 0.1 fixed, and vary TL

for different time periods of driving τ . This phase diagram
is shown in Fig. 4(a). We see that for small τ ∼ 50, work
done 〈ẇ〉 < 0 with 〈q̇L〉 > 0, 〈q̇R〉 < 0, system works as an
engine independent of the temperature difference TL − TR . For
large τ > 50 engine behavior persists but only for the moderate
temperature differences TL − TR ∼ 1. Other part of the phase
diagram is mainly dominated by the heater 2 mode of operation
where 〈q̇L〉 > 0, 〈q̇R〉 < 0, 〈ẇ〉 > 0. After determining the
phase diagram we choose optimal parameters and find the
probability distribution of efficiency P (ε). This distribution is
shown in Fig. 4(b). We see that the distribution is quite broad
and has long power law tails [inset of Fig. 4(b)]. We would like
to point out that in the quasistatic limit τ > 100 distribution
becomes more and more peaked and tails become shorter. But
for small τ ∼ 10 tails of the distribution are long with power
law decay.

Similar to engine mode of operation discussed above we
also look at the pump-refrigerator mode. In this case we keep
phase φ = 0.7π , TR = 0.5 fixed, and change TL for different
values of the time period τ . This phase diagram is presented
in Fig. 4(c). Refrigerator mode (〈q̇L〉 < 0, 〈q̇R〉 > 0, 〈ẇ〉 > 0)
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FIG. 4. (a) Phase diagram for Engine mode of operation. Here TR = 0.1, φ = 0.7π , h0 = 0.25, and J = 1.0. Black solid circles represent
engine operation while black open circles heater 2 operation. These modes are also indicated in the figure. (b) Distribution P (ε) of efficiency ε

in the engine mode of operation, parameters used are TL = 1.0, TR = 0.1, φ = 0.7π , h0 = 0.25, and τ = 190. Inset shows the tail part of the
distribution for τ = 10. Tail of the distribution can be fitted to a power law aε−α with exponent close to 2 (solid black line). (c) Phase diagram
for refrigerator mode of operation. Parameters are TR = 0.5, φ = 0.7π , h0 = 0.25. Red portion (middle portion) shows heater 1 operation,
while Black portion represents heater 2 operation (upper right part), and green refrigerator operation ( bottom right part ) is indicated in the
figure. For refrigerator mode of operation one requires the temperature difference between TL and TR to be small. (d) Distribution P (η) of
coefficient of performance η in the refrigerator mode of operation. Parameters used are TL = 0.5, TR = 0.5, φ = 0.7π , h0 = 0.25, and τ = 225.
Inset shows the tail part of the distribution. Tail of the distribution can again be fitted to a power law bη−α with exponent close to 2 (solid black
line).
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FIG. 5. Plot of 〈q̇L〉, 〈q̇R〉, 〈ẇ〉 as a function of time period of external driving τ in different modes of operation. Here h0 = 0.25, φ = 0.7π .
(a) Engine mode, TL = 1.0, TR = 0.1. (b) Refrigerator mode, TL = 0.5, TR = 0.5. (c) Efficiency ε̄ as a function of time period of external
driving τ in engine mode, TL = 1.0, TR = 0.1. Zero line is just a guide for the eyes.

occurs in a thin band for τ � 100 for temperature differences
TL − TR ∼ 0.005. Other regions of the phase diagram are
namely dominated by heater 1 (〈q̇L〉 < 0, 〈q̇R〉 < 0, 〈ẇ〉 > 0),
for τ < 100 and TL − TR > 0.005. Heater 2 mode (〈q̇L〉 > 0,
〈q̇R〉 < 0, 〈ẇ〉 > 0) appears for larger values of τ > 200 and
larger temperature differences. We also plot the distribution of
COP P (η) in Fig. 4(d). We see that distribution is broad with
many distinct minima and long power law tails [inset Fig. 4(b)]
with exponent ∼−2.

We also look at the behavior of different average heat
currents namely 〈q̇L〉, 〈q̇R〉, 〈ẇ〉, as a function of the driving
period τ . This is crucial in order to understand how this engine
performs when compared to the Carnot engine. In Fig. 5(a),
we plot these currents for the engine mode, where as expected
〈q̇L〉 > 0, 〈q̇R〉 < 0 for all τ values, and they saturate to some
finite value in the quasistatic limit τ → ∞. However, work
done is negative only for a short interval when τ ∼ 100 [inset
of Fig. 5(a)]. Figure 5(b) shows the refrigerator mode where
behavior changes from heater 1 for τ ∼ 10 to refrigerator
(τ ∼ 50) and then to heater 1 for τ ∼ 100. Refrigerator mode
recurs for τ ∼ 500 before all heat currents vanish in the
quasistatic limit. Last, in Fig. 5(c) we plot average efficiency
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0.5

Po
w
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TL > TR
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FIG. 6. Plot of Power generated namely 〈ẇ〉/τ as a function of
time period of external driving τ . For two sets of parameters h0 =
0.25, φ = 0.7π , TL = 1.0, TR = 0.1 and TL = 0.5, TR = 0.5.

ε̄ as a function of τ where for τ < 100 system is in the heater
2 mode (〈q̇L〉 > 0, 〈q̇R〉 < 0, 〈ẇ〉 > 0 [see Fig. 5(a)], reaches
a maximum value ε̄ ∼ 0.025 at τ ∼ 190, and then vanishes
as τ → ∞, in quasistatic limit. This is consistent with the
fact that though 〈q̇L〉 is finite at large τ [see Fig. 5(a)], work
done actually approaches zero in the quasistatic limit [inset
of 5(a)]. This behavior is absent in usual colloidal engines
where efficiency actually approaches Carnot efficiency in the
quasistatic limit, distinguishing our model from earlier models
[13,14]. Finally, in Fig. 6 we plot power 〈ẇ〉/τ , as a function
of the time period τ for fixed TL, TR , and φ. As expected, for
τ ∼ 1 finite amount of power is generated but it approaches
zero as τ is increased.

IV. CONCLUSION

To conclude we have studied a model of two classical
Ising spin interacting simultaneously with two heat baths and
driven by time dependent, phase different magnetic fields.
Unlike earlier models, the working substance is in contact
with heat baths for the full duration of the driving protocol.
We also found that the performance of the system as an
engine or a pump is highly affected by thermal fluctuations.
For usual heat engines, e.g., colloidal particles in contact
with multiple baths, one expects that the efficiency should
approach Carnot limit 1 − Tc/Th in the quasistatic or under
zero power generation limit [4]. Since our model is in contact
with both heat baths simultaneously, efficiency never reaches
the Carnot limit due to nonzero entropy production, even in the
quasistatic limit. This is consistent with the Büttiker-Landauer
model [28–31]. This nonzero entropy production rate defined
as 〈Ṡ〉 = 〈−(q̇L/TL) − (q̇R/TR)〉, can be seen from Fig. 5(a),
where 〈q̇L〉, 〈q̇R〉 are nonzero in the quasistatic case. In fact, in
our model the efficiency goes to zero as the time period τ → ∞
as seen Fig. 5(c). We also point out that when the limit of small
temperature difference and small driving frequency is taken
simultaneously, the efficiency still remains much smaller than
the Carnot efficiency. Similarly, the COP is much smaller than
the Carnot bound for the same reason. Reliability of the engine
is an important technological issue. Here reliability implies
for how many cycles out of the total cycles, over which the
averages are calculated, the device actually performed as an
engine. We found that for optimal parameters in engine mode
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of operation with τ = 190 the reliability was about 75%. It was
also seen that for τ ∼ 10 reliability was about 35%. As the time
period increased (τ ∼ 2000), reliability almost reached 100%,
showing similar behavior as that of macroscopic engines. COP
also shows similar behavior. This again points to the fact that
fluctuations largely affect the performance. One interesting
issue would be to look for possible ways to optimize the
power and efficiency, on which we are currently working.
To quantify fluctuations more concretely, we also numerically
obtained probability distribution functions for efficiency P (ε)
and COP P (η). We found distributions to be very broad with
power law tails, with exponent ∼−2. This points to the fact
that fluctuations about the mean are much larger than unity.
Currently we are studying the possibilities of an optimal

protocol to increase the reliability of the engine, which may
be independent of the time period.
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