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We present an alternate method to close the master equation representing the continuous time dynamics of
interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation
for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of
the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results
comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite
connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
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I. INTRODUCTION

Understanding complex systems with many interacting
particles is at the forefront of the research activity in many
scientific communities including statistical physics [1], chem-
ical kinetics [2], population biology [3], neuroscience [4],
and more. A general approach to gain proper insight in these
systems is to develop simple models that, although composed
of many interacting particles, can be treated analytically and/or
computationally on reasonable time scales.

A prototypical example of this class of simple systems is
the Ising ferromagnetic model whose equilibrium properties,
despite still lacking a proper analytical solution in three
dimensions, are globally well understood [5]. The addition of
disorder to this model yields a more complicated scenario,
but first the replica trick, together with the possibility of
a replica symmetry breaking scheme [6–8], and then the
later-introduced cavity approach [9,10] opened the doors to
the analytical treatment of this and other models [11–13].
Provided the model is defined on fully connected or on
random graphs, and leaving aside technical difficulties as-
sociated to each particular problem, there are proper tools
to correctly understand the equilibrium properties of these
families of disordered models [14]. Along this direction,
only finite-dimensional systems continue to be elusive albeit
some progress has been obtained in the last few years
[15–18].

The situation is completely different once the interest
turns to the dynamical properties of complex systems. First,
because it is clear that approximations that work for short time
scales are not necessarily valid at long time scales and vice
versa. Second, because, regardless of the approximation, the
selection of the local dynamical rules that define the processes
turns out to be fundamental to characterize the evolution of
the macroscopic quantities of the model [19,20]. Progress in
this direction has been slower. The introduction of disorder
further complicates the issue, generating new families of
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models and behaviors that still lack a complete understanding
[21].

As for the equilibrium, a first classification of complex
systems in the dynamical scenario can be made between con-
tinuous and discrete state variables. The dynamical modeling
in the former case is usually done by using a Langevin equation
[20] as it is possible to write the differential of a spin variable
in a rigorous form. For the same reason, in these models time
is in most of the cases considered a continuous variable. The
dynamics of the fully connected (FC) spherical p-spin model,
for instance, has been studied in Ref. [22] and solved by
writing equations for the correlation and response function.
The FC case p = 2 has been considered in Ref. [23] whereas
random network architectures have been studied in Ref. [24]
introducing a series of approximate equations.

For discrete variables, the discontinuous nature of the spin
values makes it cumbersome, if not improper, to formulate
the problem starting with Langevin-like equations. Thus, in
this case, instead of writing differential equations for the spin
variables, one describes the stochasticity of the dynamics by
writing equations for the probability of the spin state. The
literature has focused on two different possible choices for
the dynamics: either time evolves in discrete steps, or in
continuous time.

Furthermore, due to the possible relevance of these models
to understand the dynamics in biological and neural networks,
studies have focused also on cases with different network
connectivity symmetries. The exact solution of a dilute fully
asymmetric neural network model, for both parallel and
asynchronous dynamics, dates back to Ref. [25]. Directed
random graphs have been investigated by using different
approaches. Path integral techniques for this case have been
introduced in Ref. [26] for parallel dynamics on graphs with
finite connectivity. The treelike structure of such graphs led
then to the extension of equilibrium techniques such as the
cavity method or belief-propagation message passing [14]
to the dynamical scenario. The pioneering contribution [27],
followed by Ref. [28], generalized the cavity technique to
the parallel dynamics of the Ising model on a Bethe lattice
but the approach was limited to stationary solutions. Random
sequential updates rules were considered in Ref. [29] but also
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limited to stationary states. In Ref. [30] a similar technique
has been applied to study models with majority dynamics
update rules (i.e., linear dynamics with thresholding). A
generalization to nonstationary states of these techniques for
models with reversible dynamics was made in Ref. [31],
followed by Ref. [32] where further improvements of the
dynamic reconstruction have been introduced at the price
of a more involved formalism. More recently, variational
approaches have shown to give accurate results for the transient
dynamic of disordered spin systems by using a simple and
systematic theory [33,34].

Another line of research that considers discrete state
variables focuses on irreversible dynamics, as for instance
the study of cascade processes or SIR models [35,36], and
poses different types of challenges compared to those of the
reversible dynamics studied in this paper and mentioned above.

The above historical overview shows that the field is active
but also that progress has been limited to discrete-time update
rules. The continuous-time counterpart has indeed been less
investigated. In this case, a proper dynamic description of
the spin-state configuration, follows a master equation (ME)
for the probability density of the states of N -spin interacting
variables [37,38]. Once the ME is defined one must select the
rules of the dynamical evolution. Although this approach can
be stated easily, the full solution of the master equation in the
general case is a cumbersome task and exact solutions have
been limited to simple models [37,39]. A way out of this issue
has been proposed through the dynamical replica analysis for
fully connected [40] and diluted graphs [41] where the authors,
instead of looking for an estimation of the out-of-equilibrium
probability of the spin state, derive dynamical equations for the
probability of some macroscopic observables. Therefore, if, on
one side, this approach obviously reduces the dimensionality
of the problem, on the other, it loses detailed information about
the microscopic state of the system.

In this paper we focus on continuous-time dynamics for
discrete-spin variables and derive a set of closed equations for
marginal probabilities of the microscopic spin configuration.
In Sec. II we define the model in its more general form
and present the main result of our paper, a cavity master
equation (CME) stated as (5), and derived in Secs. III–V. The
organization of the paper and the respective contributions of
the following Secs. III–VII are outlined at the end of Sec. II.

II. MODEL DYNAMICS

We consider a system of N interacting discrete spin
variables σ = {σ1, . . . ,σN }, with σi = ±1, where the spins
may flip spontaneously. The transition rate ri(σ ) of having a
spin flip for spin i at time t may in general depend on the
instantaneous values of all the spin variables in the system.
The master equation describes the evolution of the probability
of the system to be in state σ (t) at time t as [37,38]

dP (σ )

dt
= −

N∑
i=1

[ri(σ )P (σ ) − ri(Fi(σ ))P (Fi(σ ))], (1)

where we omitted the time dependence in P (σ ,t) to shorten
notation and Fi represents the inversion operator on spin i,
i.e., Fi(σ ) = {σ1, . . . ,σi−1, − σi,σi+1, . . . ,σN }. Equation (1)

is a first-order differential equation and encodes the Markov
property that the future development of the system only
depends on the present state of the system and not on the past
history before the present. Although (1) is a simple equation
to state formally, in practice it implies the daunting task of
tracking the evolution in time of 2N discrete states.

If the transition rate ri(σ ) does not depend on the whole
system state but only on the configuration of spin i and some
neighbors ∂i, the master equation can be reduced to a local
form. The evolution in time of the probability of the spin
configuration σi is then obtained by tracing (1) over all the
spin states except σi . The resulting equation reads

dP (σi)

dt
= −

∑
σ∂i

[ri(σi,σ∂i)P (σi,σ∂i)

− ri(−σi,σ∂i)P (−σi,σ∂i)], (2)

where σ∂i stands for the configuration of all the spins in the
neighborhood of i. As for P (σ ,t) in (1), in the equation above
and hereafter we omit for brevity the time dependence of every
probability distribution, all them should be taken at time t .

Contrary to (1), Eq. (2) is not closed. On the left-hand side
we have the probability P (σi) that spin i is in a particular
state whereas, on the right-hand side, P (σi,σ∂i) stands for
the probability of a certain configuration for spin i and its
neighbors. To consistently describe the evolution of the single
site probability (2) in time, we then have to search for a closure
of this equation. Different approximations could be made on
the joint probability P (σi,σ∂i) appearing on the right-hand side
of (2). A reasonable one, that we will use through this work,
is to assume that

P (σi,σ∂i) =
∏
k∈∂i

P (σk|σi)P (σi), (3)

which has the desirable property of being exact at equilibrium
for trees and random graphs where loops are large compared
to the system size. Assuming a treelike topology and the
factorization in (3), the master equation (2) can then be written
as

dP (σi)

dt
= −

∑
σ∂i

[
ri(σi,σ∂i)

[∏
k∈∂i

P (σk|σi)

]
P (σi)

− ri(−σi,σ∂i)

[∏
k∈∂i

P (σk| − σi)

]
P (−σi)

]
. (4)

The above equation is also not closed, as we do not know
how P (σk|σi) changes with time. The knowledge of a closed
equation for this latter probability would allow us to describe
the evolution of the probability distribution of the variable σi

and of the conditional probability P (σk|σi) at each time in the
dynamics.

In the following sections we derive a master equation for
a cavity probability distribution p(σi |σk) that approximates
P (σi |σk) and under certain conditions is equal to it (as
discussed in Appendix A). Our derivation is guided by general
probabilistic principles and as a result we obtain a closure
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scheme for p(σi |σk). We here present the final result

dp(σi |σj )

dt
= −

∑
σ∂i\j

⎡
⎣ri[σi,σ∂i]

⎡
⎣ ∏

k∈∂i\j
p(σk|σi)

⎤
⎦p(σi |σj )

− ri[−σi,σ∂i]

⎡
⎣ ∏

k∈∂i\j
p(σk| − σi)

⎤
⎦p(−σi |σj )

⎤
⎦,

(5)

which we call the cavity master equation for reasons that will
be clear below.

Equation (5) is the main result of our work and together
with (4) provides a closed set of equations for the dynamics
of the single site. We note that (5) can be obtained formally
by conditioning both sides of (4) on the value of spin σj . A
derivation starting from (2) and (4) of such a formal operation
is not valid, as we discuss for completeness in Appendix B.
The outcome of the analysis in Secs. III–V is that if the
interactions are organized in a locally treelike geometry so
that the dynamic cavity method can be applied, the result
of the formal operation nevertheless holds. In Sec. VI we
show that Eq. (5) reproduces analytical exact results for both
the mean-field and the one-dimensional Ising ferromagnet. In
Sec. VII we test the performances of the closure scheme (4)
and (5) for different models defined on random graphs. The
reader not interested in the analytical derivation of (5) can skip
the following sections and continue from Sec. VII.

For completeness, we also note that Eq. (5) shares similarity
with Eq. (10) of Ref. [27], for a discrete-time dynamics case,
however, cannot be obtained as a continuous time limit of it.
The main reason is that the basic cavity construction in that
work is fundamentally different from ours. It is, nonetheless,
an interesting point to check if starting from a similar discrete-
time formalism may lead to the same result (5).

III. RANDOM POINT PROCESSES

In this section we introduce the random point process
formalism, which will be used to parametrize probability
distributions of spin histories in continuous time. To get
familiar with the notation we first concentrate on just one
independent spin.

The probability of having a single spin in state σ at time t

given the initial condition σ0 at time t0, p(σ,t |σ0,t0), can be
specified by the sum of the probability weight of all trajectories
that transform this initial state σ0 into σ after a time t − t0.
A specific spin history or trajectory X is parametrized by the
number of spin flips, the time in which they occur and the initial
state of the system. The spin trajectory is then nothing but a
random point process (RPP) [20,42,43] and the probability
measure in this sample space may be denoted as

Q(X) = Qs(t0,t1, . . . ,ts,t |σ (t0) = σ0), (6)

which represents the probability density of having a trajectory
with s jumps at (t1,t1 + dt1) . . . (ts,ts + dts), etc. given the
initial state σ0. We here stress a detail on notation: there is
a difference between σ (τ ), which is the value of the spin
orientation at the particular time τ and the complete trajectory
X of such spin, which is specified by the value that σ (τ ) takes

for every time in the interval [t0,t]. When needed, we may
write X as X(t) to emphasize that the final time of the spin
history is precisely t .

To recover p(σ,t |σ0,t0) from Q(X), one integrates
Qs(t0,t1, . . . ,ts,t |σ (t0) = σ0) over all times for a fixed s and
sums over all possible values of s. For example, in order to
find p(σ = σ0,t |σ0,t0), the probability of having the same
orientation at time t as in the initial state, we have to sum
over all s = 2k possible values:

p(σ0,t |σ0,t0) = Q0 +
∞∑

k=1

∫ t

t0

dt1

∫ t

t1

dt2

. . .

∫ t

ts−1

dtsQ2k(t0, . . . ,t). (7)

In a nutshell, we sum the probability density of all trajectories
with an even number of jumps because those, and only those,
transform the initial state into itself.

If the spin flips occur independently at a rate that depends
only on the instantaneous orientation σ and not on previous
values, the interjump waiting time is exponentially distributed
and

Qs=2k = r(σ0)e−r(σ0)(t1−t0)r(−σ0)e−r(−σ0)(t2−t1)

. . . r(−σ0)e−r(−σ0)(ts−ts−1)e−r(σ0)(tf −ts ). (8)

The term r(σ ) above is the jumping rate that, in this case of one
single spin, only depends on the spin configuration σ at time
t , whereas each exponential term accounts for the probability
rate of remaining in a spin configuration for a time ts − ts−1.

If instead of a single spin we deal with the more general
case of N interacting spins, the set of the individual histories
X1, . . . XN can still be parametrized by the number of jumps
of the corresponding spin si and the time coordinate of
each trajectory, so Xi ∼ {si,(t i1,t

i
2, . . . ,t

i
si

)} ∼ {si,�t i}. Loosely
speaking we may say that the system is at some time t in
some global state σ (t) and can jump out of this state by
flipping any of the spins σi . Each of these events happen at
instantaneous rate ri(σ (t)) and the conditional probability that
the state does not flip at all in a short time window [t,t + �]
is hence exp (−�t

∑
i ri). Putting these pieces together the

probability density on the collection of spin histories is

Q(X1, . . . ,XN )

=
N∏

a=1

⎧⎨
⎩

sa∏
la=1

ra(σa(tla ),σ∂a(tla ))e− ∫ t

t0
ra [σa (τ ),σ∂a (τ )])dτ

⎫⎬
⎭. (9)

Rigorous versions of this argument can be found in the
mathematical literature, e.g., in Appendix A of the monograph
of Kipnis and Landim [44].

We can write the quantity inside the curly brackets in (9) as
�a(Xa|X∂a), since it represents the probability density of the
history Xa with the histories of the neighborhood X∂a fixed.
Equation (9) can therefore be rewritten in a compact form as

Q(X1, . . . ,XN ) =
N∏

a=1

�a(Xa|X∂a), (10)

which will be used below.
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IV. DYNAMIC MESSAGE PASSING EQUATIONS

In this section, starting from Q(X1, . . . ,XN ), we rederive
the dynamic message passing (or dynamic cavity equation)
as presented in Ref. [31] for the case of discrete-time update
dynamics. This equation is an iterative relation for conditional
probabilities of spin histories, exact on treelike graph in
the thermodynamic limit. Then by using the RPP formalism
we parametrize these probabilities and we give a proper
mathematical description of how to marginalize them over
time for the case of continuous-time processes. The combined
use of the dynamic message-passing equation and the RPP
formalism is our starting point to obtain Eq. (5).

Assuming a treelike architecture network, we start by
selecting a spin, say i, and rewrite Eq. (10) expanding the
tree around it and making use of its structure:

Q(X1, . . . ,XN ) = �i(Xi |X∂i)
∏
k∈∂i

⎡
⎣�k(Xk|X∂k)

×
∏

m∈∂k\i

⎛
⎝�m(Xm|X∂m)

∏
l∈∂m\k

. . .

⎞
⎠

⎤
⎦.

(11)

Let G
(i)
k be the subgraph extended from the site k after

removing the link (ik). We define as {X}ik the set of histories
of the spins included in G

(i)
k except Xk itself. With these

definitions we express (11) as:

Q(X1, . . . ,XN ) = �i(Xi |X∂i)
∏
k∈∂i

Mki(Xk,{X}ik|Xi). (12)

Here Mki is just a shorthand for the expression inside brackets,
i.e.,

Mki(Xk,{X}ik|Xi)

≡ �i(Xi |X∂i)
∏

k∈∂i\j

⎡
⎣�k(Xk|X∂k)

∏
m∈∂k\i

. . .

⎤
⎦. (13)

Marginalizing Q on all histories except Xi,X∂i we get the joint
(density) probability distribution of the history of spin i and
its neighbors

Q(Xi,X∂i) = �i(Xi |X∂i)
∏
k∈∂i

μk→(ki)(Xk|Xi), (14)

where the new functions μk→(ki)(Xk|Xi) are the marginals of
Mki(Xk,{X}ik|Xi):

μk→(ki)(Xk|Xi) ≡
∑
{X}ik

Mki(Xk,{X}ik|Xi) (15)

and have the interpretation of the probability of history Xk

holding Xi fixed. Let us observe that Eq. (11) can be rewritten
by expanding the tree around two nodes, say i and j , as follows:

Q(X1, . . . ,XN ) = Mji(Xj,{X}ij |Xi) Mij (Xi,{X}ji |Xj ).

(16)

Marginalizing the above equation over all trajectories ex-
cept Xi,Xj and using the definition of μ given in (15),

we obtain

Q(Xi,Xj ) = μi→(ij )(Xi |Xj )μj→(ji)(Xj |Xi). (17)

The final step in order to derive the dynamic message-passing
equation is to marginalize (14) on X∂i\{i,j} and combine with
(17). Simplifying terms, we get

μi→(ij )(Xi |Xj ) =
∑

{Xk},k∈∂i\j
�i(Xi |X∂i)

∏
k∈∂i\j

μk→(ki)(Xk|Xi),

(18)

where Xi = Xi(t) is the history of spin i up to time t and the
trace is over all the spin trajectories for k ∈ ∂i\ j , each term
in the sum to be interpreted as

∑
Xk

(·) =
∑
sk

[∫ t

t0

dtk1

∫ t

tk1

dtk2 . . .

∫ t

tksk−1

dtksk
(·)

]
. (19)

Structurally (18) is what in the computer science and infor-
mation theory literature is referred to as a belief propagation
update equation. To simplify notation we will alternatively
write μi→(ij )(t) for the cavity conditional probability and, fol-
lowing the belief propagation literature [14,45], we may refer
to it as a “message”. In contrast to the use of belief propagation
to compute marginals of Gibbs-Boltzmann distributions (18) is
not very useful as it stands since the sum on the right-hand side
is over a very high-dimensional object. Further approximations
are therefore needed, which for the case of discrete dynamics
were discussed in Ref. [31].

A. Differential update equations

In Eq. (9) we showed how to properly parametrize prob-
ability densities within the RPP formalism. The messages
introduced through Eq. (15), according to the RPP framework
[20,42,43], can then be written as

μi→(ij )(Xi(t)Xj (t))

=
si∏

li=1

λi→(ij )(tli ) exp

{
−

∫ t

t0

λi→(ij )(τ )dτ

}
, (20)

where above tli are the jumping times for the Xi history,
which has si jumps. In this equation, λi→(ij ) is interpreted
as the jumping rate of i at each time, in a cavity where Xj

is the history of spin j . In the more general case λi→(ij ) is a
function of the spin history of the variable i and j and thus,
for a spin dynamics up to time τ we may more explicitly
write λi→(ij )(τ ) = λi→(ij )(Xi,Xj ,τ ). On the other hand, the
interaction term �i(Xi(t)|X∂i(t)) in (18), already introduced
through (9) and (10), can be interpreted as the probability
density of Xi conditioned on the histories of spins in ∂i. where
ri is the jumping rate of spin i. For a Markov dynamics this
is an instantaneous quantity, meaning that at time τ it depends
only on the values of σi(τ ) and σ∂i(τ ).

In principle, through the parametrization (20), if we write
(18) for every pair (i,j ) in the network we get a system of
coupled equations for the λ’s. Solving them we may describe
the dynamics of the system. Unfortunately (18) is a very
involved expression that needs to be transformed into a more
tractable one. We here propose to differentiate it with respect
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to the parameter t , the final time, in order to have a differential
equation for the messages.

Differentiation in this context should be handled carefully
since increasing t means we are changing the sample space
itself. Writing μi→(ij )(Xi(t + �t)Xj (t + �t)) in terms of
μi→(ij )(Xi(t)Xj (t)) is mapping the probability of one sample
space (that of all possible histories up to time t) onto another
(histories up to time t + �t). Instead of using standard
differentiation rules it is safer to go by the definition. Therefore,
for the left-hand side of Eq. (18) we will compute the
limit:

lim
�t→0

μi→(ij )(Xi(t + �t)Xj (t + �t)) − μi→(ij )(Xi(t)Xj (t))

�t
.

(21)

A very important question arises at this point. What is the
relation of [Xi(t + �t),Xj (t + �t)] and [Xi(t),Xj (t)]? Or in
other words, what happens in the interval (t,t + �t)? The
answer is important because expressions for μi→(ij )(Xi(t +
�t)Xj (t + �t)) are different whether we consider that there
can be jumps in the small �t interval or not. The first
thing that makes sense to impose is that histories must
agree up to time t . In (t,t + �t) we can have several
combinations.

An implicit assumption throughout all this theory is that
on an infinitesimal interval only two things can happen to a
spin; it can stay on its current state or make one and only
one jump to the opposite orientation. Two or more jumps
are not allowed. Considering this we have four cases to
analyze:

(i) There are si,sj jumps in (t0,t) and neither i nor j jumps
in (t,t + �t). This occurs with a probability (1 − λi�t)(1 −
λj�t).

(ii) There are si,sj jumps in (t0,t) and i XOR j jumps in
(t,t + �t). This occurs with a probability (1 − λi�t)(λj�t)
or (1 − λj�t)(λi�t). These are two cases in one.

(iii) There are si,sj jumps in (t0,t) and both i and j jumps
in (t,t + �t). This has a probability of λjλi�t2.

When �t goes to zero, from the previous analysis we con-
clude that the derivative should be computed, with probability
1, using the first option, where histories for i and j have no
jumps in the interval of length �t .

To differentiate the left-hand side of (18) we use the
parametrization (20). Writing shortly μi→(ij )(t) for the mes-
sage μi→(ij )(Xi(t)Xj (t)) at time t , we get

μi→(ij )(t + �t)

=
si∏

li=1

λi→(ij )(tli ) exp

{
−

∫ t+�t

t0

λi→(ij )(τ )dτ

}

≈ [1 − λi→(ij )(t)�t]
si∏

li=1

λi→(ij )(tli )

× exp

{
−

∫ t

t0

λi→(ij )(τ )dτ

}
+ O(�t2)

= [1 − λi→(ij )(t)�t] μi→(ij )(t) + O(�t2). (22)

Then, with probability 1, the derivative of the left-hand side of
(18) is equal to −λi→(ij )(t) μi→(ij )(t).

To calculate the derivative of the right-hand side of Eq. (18),
we should compute the limit of the difference quotient for
this side of the equation. To shorten notation, we define
F as the argument of the sum in (18), i.e., F (Xi,X∂i,t) ≡
�i(Xi |X∂i)

∏
k∈∂i\j μk→(ki)(Xk|Xi). So, the trace on the right-

hand side of this equation can be written as

[t0,t]∑
{Xk},k∈∂i\j

F (Xi,X∂i,t)

=
∑

{sk},k∈∂i\j

[
d∏

k=1

∫ t

t0

dtk1

∫ t

tk1

dtk2 . . .

∫ t

tksk−1

dtksk

]
F (Xi,X∂i,t)

(23)

and to obtain its derivative we must compute:

lim
�t→0

∑[t0,t+�t]
{Xk},k∈∂i\j F (Xi,X∂i,t+�t)−μi→(ij )(Xi(t)Xj (t))

�t
.

(24)

Let us focus on the first term in the numerator of the
above expression. It can be expanded to first order in �t .
It is important to remember that �t appears in the integration
limits as well as in the integrand of F . In addition, we should
keep in mind that all jumps for Xi and Xj must occur before
t . This restriction, however, does not apply to the histories Xk

for k in ∂i \ j .
The expansion of (24) can be explained as follows. First,

let us remember that F is the joint probability of Xi and {Xk}
with k ∈ ∂i \ j , conditioned on Xj . All the histories of interest
are in the interval [t0,t + �t]. The expression:

[t0,t+�t]∑
{Xk},k∈∂i\j

F (Xi,X∂i,t + �t) (25)

is the marginalization of the mentioned joint probability
distribution. The previous sum, to order �t , has two main
contributions. One comes from summing over {Xk} with all
Xk having no jumps in [t,t + �t]:

A =
[t0,t]∑

{Xk}, k∈∂i\j
F (Xi,X∂i,t)

×
{

1 −
[∑

k

λk→(ki)(t) + ri(t)

]
�t

}
. (26)

The other considers all the possibilities of having one of the
Xk with a jump in the interval of length �t :

B =
∑

k

[t0,t]∑
{Xk}, k∈∂i\j

F (Xi,X∂i,t)λk→(ki)(t)�t. (27)

The expansion to first order in �t of Eq. (25) then reads

[t0,t+�t]∑
{Xk},k∈∂i\j

F (Xi,X∂i,t + �t) = A + B + O(�t2). (28)

Writing the right-hand side of the above equation explicitly
we observe that B cancels out with the λ part of A in (26) and
the remaining term of order 1 is μi→(ij )(Xi(t)Xj (t)), which
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cancels when inserted in the limit expression. Then, the final
outcome of the differentiation of Eq. (18) reads

λi→(ij )(Xi,Xj ,t) μi→(ij )(Xi |Xj )

=
[t0,t]∑

{Xk},k∈∂i\j
ri(σi(t),σj (t),σ∂i\j (t))F (Xi,X∂i,t). (29)

We can now marginalize the right-hand side of the above
equation of all the spin histories of the spins k ∈ ∂i\ j by
keeping the configuration of these spins at the last time t fixed.
The results reads

λi→(ij )(Xi,Xj ,t) μi→(ij )(Xi |Xj )

=
∑

σ∂i\j (t)

ri(σi(t),σj (t),σ∂i\j (t))p(σ∂i\j (t),Xi |Xj ), (30)

where we introduced the function p as the marginalization of
the function F over all the spin histories of the i neighbors
except j , with the configuration at the final time fixed. Note
that the notation σ∂i\j (t) is equivalent to {σk(t)}k∈∂i\j and that
in p above appears again explicitly the conditional nature of
the probability distribution F .

Equation (30) represents the differential dynamic message-
passing update equation obtained by differentiating (18) in
time. It connects the derivative of the dynamic message μi→(ij ),
and so the jumping rate λi→(ij ) of spin i in the cavity used to
parametrize the message in (20), with the transition rate of the
same spin ri(σi(t),σj (t),σ∂i\j (t)) at time t . This result will be
used in next section for our final derivation. In what follows we
will use the same symbol p for different probability densities
and distinguish them only on the basis of their arguments.

V. CAVITY MASTER EQUATION

The cavity message μi→(ij )(Xi |Xj ) is a complicated object
with high dimensionality. It is a real valued functional of
Xi given the history Xj , where both μ and X depend
parametrically on t . For our purposes, it is convenient to reduce
the dimensionality of this message by partially marginalizing
over the spin history of spin i. We therefore introduce an
easier mathematical object to deal with, which is the marginal
of μi→(ij )(Xi |Xj ) with the final state fixed

p(σi,t |Xj ) =
∑

Xi |σi (t)=σi

μi→(ij )(Xi |Xj ). (31)

By differentiating the above equation we can obtain an
equation for the evolution of this probability distribution. As
we have seen in the previous section, the derivative must be
computed by using the standard definition of the limit of the
increment ratio:

ṗ(σi,t |Xj )

= lim
�t→0

p(σi,t + �t |Xj (t + �t)) − p(σi,t |Xj (t + �t))
�t

.

(32)

We hereafter write p(σi,t + �t |Xj (t + �t)) as the marginal-
ization of μi→(ij )(Xi(t + �t)|Xj (t + �t)) and then, following
the procedure developed in the last section, we expand it to

first order in �t , similarly to what we did for (24). Using the
shorthand notation for μ, we get:

p(σi,t + �t |Xj (t + �t))

=
∞∑

s=0

∫ t+�t

t0

dt1

∫ t+�t

t1

dt2 . . .

∫ t+�t

ts−1

dts μi→(ij )(t+�t).

(33)

Let us call the series of the s integrals above as It+�t and note
that they can be written separating the O(�t2) terms as follows

It+�t
.=

∫ t+�t

t0

dt1

∫ t+�t

t1

dt2 . . .

∫ t+�t

ts−1

dts

=
∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t+�t

ts−1

dts + O(�t2) (34)

and that, furthermore, the last one can be split into two intervals
from [ts ,t] and [t,t + �t]

It+�t =
∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−1

dts

+
∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t+�t

t

dts + O(�t2). (35)

The first term in (35) is a trace over trajectories that have all
jumps in [t0,t]; the second term considers that the sth jump
occurs in [t,t + �t]. We then insert μi→(i,j )(t + �t) into It+�t

expressed as above in order to compute (33). Let us observe
that in the first integral μi→(ij )(t + �t) should be expanded to
first order in �t , whereas in the second integral it can be left
to the order zero expansion since the integral has an order �t

itself.
In compact notation the expansion of μi→(i,j )(Xi(t +

�t)|Xj (t + �t)) reads:

μi→(i,j )(t + �t) =
[

s∏
i=1

λ(ti)

]
e
− ∫ t+�t

t0
λ(τ )dτ

= μi→(i,j )(t)(1 − λ(t)�t + O(�t2)), (36)

where hereafter we omit the subscript of λ to further shorten
notation. Adding all together these results as described above
we obtain:

p(σi,t + �t |Xj (t + �t))

=
∑

Xi |σi (t)=σi

[1 − λ(t)�t]μi→(i,j )(Xi(t)|Xj (t))

+
∑

s

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t+�t

t

dts

[
s∏

i=1

λ(ti)

]
e
− ∫ t

t0
λ(τ )dτ

+O(�t2). (37)

As previously mentioned, the last integral on the second term
of (37) corresponds to the probability of having the last jump
s in the interval [t,t + �t]. Since the orientation before the
last jump is −σi , the corresponding jumping rate in this case
is λ(t) = λ( − σi(t),X

−
i ,Xj ), where to stress this difference

we separated the value of the last spin of i at time t from its
previous history and X−

i denotes that the final state of this
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history is −σi . With this notation, the last integral in (37) can be expanded as

∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t+�t

t

dts

[
s∏

i=1

λ(ti)

]
e
− ∫ t

t0
λ(τ )dτ

=
∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−2

dts−1

{[
s−1∏
i=1

λ(ti)

]
e
− ∫ t

t0
λ(τ )dτ

λ( − σi(t),X
−
i ,Xj )

}
�t + O(�t2)

=
∫ t

t0

dt1

∫ t

t1

dt2 . . .

∫ t

ts−2

dts−1{μi→(i,j )[X
−
i (t)|Xj (t)]λ( − σi(t),X

−
i ,Xj )}�t + O(�t2). (38)

We highlight that the histories X−
i and Xj as arguments of λ above run up to time t and, as mentioned, the superscript in X−

i

is included to explicitly state that the corresponding integrals are tracing histories of i with s − 1 jumps and it means that the last
state is the opposite to σi(t).

Combining together the results in (33), (37), and (38) and taking the limit �t → 0 we get that the derivative expressed in (32)
reads

ṗ(σi,t |Xj ) = −
∑

Xi |σi (t)=σi

λi→(ij )[σi(t),Xi,Xj ] μi→(ij )(Xi |Xj ) +
∑

X−
i |σi (t)=−σi

λi→(ij )[−σi(t),X
−
i ,Xj ] μi→(ij )(X

−
i |Xj ). (39)

Finally, plugging (30) into (39) and after some rearrangement:

ṗ(σi,t |Xj ) = −
∑
σ∂i\j

⎡
⎣ ∑

Xi |σi (t)=σi

ri[σi,σ∂i]p(σ∂i\j ,Xi |Xj ) −
∑

X−
i |σi (t)=−σi

ri[−σi,σ∂i]p(σ∂i\j ,X−
i |Xj )

⎤
⎦ (40)

= −
∑
σ∂i\j

[ri[σi,σ∂i]p(σ∂i\j ,σi |Xj ) − ri[−σi,σ∂i]p(σ∂i\j ,−σi |Xj )], (41)

where in the second equality we performed the traces inside the brackets.
To arrive at the result expressed in Eq. (41) we only assumed that the graph topology is treelike. In what follows, in order to

finally derive Eq. (5), we will make two further approximations.
Approximation I. The conditional distributions are short range and factorize:

p(σ∂i\j ,σi |Xj ) = p(σ∂i\j |σi,Xj )p(σi |Xj )

≈ p(σ∂i\j |σi)p(σi |Xj ) ≈
⎡
⎣ ∏

k∈∂i\j
p(σk|σi)

⎤
⎦p(σi |Xj ). (42)

This first approximation is equivalent to say that there are short-length correlations between the variables and the stories
of their neighbors. Indeed p(σ∂i\j |σi,Xj ) = p(σ∂i\j |σi) assumes that the states of the neighbors of i different from j do not
depend on the story of j . The factorization that follows is an immediate consequence of the treelike structure of the system.
Indeed, the approximations in the equation above become very accurate on a treelike topology, in the thermodynamic limit.
Consider, for this network architecture, a node i and its neighbors ∂i. The influence of j on the other i neighbors {∂i\j}
can propagate only through either i itself or through loops of O(log N ). Therefore, when σi is conditioned as in Eq. (42),
p(σ∂i\j |Xi,Xj ) ≈ p(σ∂i\j |Xi). Similarly, since the nodes ∂i\j are connected to each other through the node i, conditioning on
Xi makes its neighbors probabilistically independent, as in the last approximation of Eq. (42). On a more general topology, the
accuracy of the above approximations is a matter of local degree connectivity and presence of short loops and so, in other words,
of the correlation regime among spin variables.

Approximation II. The probability distribution of an instantaneous variable, conditioned on the history of a neighbor, depends
only on the last state of that neighbor:

p(σi |Xj ) ≈ p(σi |σj ). (43)

The nature of this assumption is that of a short memory, it is equivalent to de facto reintroducing the Markov hypothesis for
the local equation of the cavity probability distribution, and in that sense similar to the Markov assumption introduced by two of
us for the discrete time case in Ref. [31] and more recently improved to consider longer temporal correlations by Ref. [32].

Combining these two approximation into Eq. (42) leads to the cavity master equation, already anticipated in (5):

dp(σi |σj )

dt
= −

∑
σ∂i\j

⎡
⎣ri[σi,σ∂i]

⎡
⎣ ∏

k∈∂i\j
p(σk|σi)

⎤
⎦p(σi |σj ) − ri[−σi,σ∂i]

⎡
⎣ ∏

k∈∂i\j
p(σk| − σi)

⎤
⎦p(−σi |σj )

⎤
⎦. (44)

052119-7



AURELL, DEL FERRARO, DOMÍNGUEZ, AND MULET PHYSICAL REVIEW E 95, 052119 (2017)

The relations between the above conditional probability
density and the probability density appearing in Eq. (4) are
discussed in Appendix A.

VI. COMPARISON WITH KNOWN EXACT RESULTS

In this section we show that the cavity master equation (44)
compares to exact results derived for two specific models, well
studied in the literature. We show that the mean-field (fully
connected) ferromagnet is well described with the help of the
CME. We also use the exactly solvable one-dimensional lattice
to illustrate that (44) gives the right result in a low correlation
limit.

A. Mean-field ferromagnet with Glauber dynamics

In this section we assume a fully connected graph topology
in the thermodynamic limit. We start considering the cavity
master equation (44) and assuming that the Glauber transition
rate [37]

ri(σi,σ∂i) = α

2

⎡
⎣1 − σi tanh

⎛
⎝β

J

N

∑
k 	=i

σk

⎞
⎠

⎤
⎦, (45)

where all the spins are considered to be at time t . One can then
introduce a δ function for the variable m = 1

N

∑
k 	=i σk , and

use its integral representation to rewrite the right-hand side of
(44) as:

ṗ(σi |σj ) = − 1

2π

∫
dm̂ dm e−im̂m ri(σi,m) eim̂

σj

N

×
[∑

σk

eim̂
σk
N p(σk|σi)

]N−2

p(σi |σj )

+ 1

2π

∫
dm̂ dm e−im̂mri(−σi,m)eim̂

σj

N

×
[∑

σk

eim̂
σk
N p(σk| − σi)

]N−2

p(−σi |σj ). (46)

Where we assumed that the initial state is homogeneous and
the probability density p(σk|σi) does not depend explicitly on k

and i. Note now that the term within brackets can be expanded
as:[∑

σk

eim̂
σk
N p(σk|σi)

]N−2

=
N−2∑
k=0

CN−2,ke
im̂( 2(k+1)

N
−1)

×p(1|σi)
k p(−1|σi)

N−k−2,

(47)

which substituted in (46) allows a simple integration over m̂

such that now:

ṗ(σi |σj ) = −
∫

dmP (m,t |σi,σj )ri(σi,m)p(σi |σj )

+
∫

dmP (m,t | − σi,σj )ri(−σi,m)p(−σi |σj ),

(48)

where P (m,t |σi,σj ) = ∑
k CN−2,kp

k(1|σi)pN−k−1(−1|σi)δ
(m− σj

N
− ( 2(k+1)

N
− 1)).

One can then define mi(σj ) = ∑
σi

p(σi |σj )σi as the mag-
netization of spin i at time t , provided that the spin j is in state
σj . By defining P (m,t |σj ) = ∑

σi
P (m,t |σi,σj )p(σi |σj ), it is

then straightforward to show that:

ṁi(σj ) = −α mi(σj ) + α

∫
dm P (m,t |σj ) tanh(βJm).

(49)

A further average of (49) over the single spins (not including
j ) then gives:

˙̄m(σj ) = −α m̄(σj ) + α

∫
dm P (m,t |σj ) tanh(βJm), (50)

which looks similar to the standard results of the literature,
although it may have a more subtle interpretation due to
the conditional distribution on the spin σj . One can proceed
assuming that in the thermodynamic limit the importance of
the state of one individual spin at time t is negligible and
that the average magnetization is defined by only one possible
trajectory, recovering the more standard result:

˙̄m = −α m̄ + α tanh(βJm̄). (51)

B. One-dimensional ferromagnet with Glauber dynamics

One-dimensional (1D) lattices are often a good starting
point to search for analytical results that could be used to
understand the nature and limits of approximations made in
more involved contexts. In this section we consider the 1D
ferromagnet using the CME (44) and compare this solution to
Glauber’s exact result [37].

Let us start by quoting the exact results. Observe that the
transition rate (45) can be written for this 1D case as

ri(σi,σ∂i) = α

2
{1 − σi tanh[βJ (σi−1 + σi+1)]}

= α

2

[
1 − σi

2
(σi−1 + σi+1) tanh(2βJ )

]
. (52)

Note that we only have two neighbors of spin i, therefore
∂i = {i − 1,i + 1}. This rate, put into the exact ME (2),
gives the following closed set of equations for the single site
magnetizations:

ṁi = −α mi + α

2
tanh(2βJ )(mi−1 + mi+1) (53)

and equivalently for the probabilities:

ṗ(σi) = A(mi,mi−1,mi+1)σi

= −α

2

[
mi − tanh(2βJ )

2
(mi−1 + mi+1)

]
σi. (54)

If we now average (53) over all the sites i in the graph,
in order to get the equation for the global magnetization, we
obtain

ṁ = −α (1 − tanh(2βJ ))m (55)

whose solution is m(t) = m(0)e−γ t , with γ = 1 − tanh(2βJ ).
Equations (53), (54), and (55) correspond to the exact results
found by Glauber for the evolution of the magnetization of an
Ising chain.
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Now let us see what would be the dynamics if, instead of the exact ME, we considered the cavity master equation equation
(44) as a starting point in our analysis. Substituting in (44) the transition rate expressed in (52) reads

dp(σi |σi+1)

dt
= −

∑
σi−1

[
α

2

[
1 − σi

2
(σi−1 + σi+1) tanh(2βJ )

]
p(σi−1|σi)p(σi |σi+1)

− α

2

[
1 + σi

2
(σi−1 + σi+1) tanh(2βJ )

]
p(σi−1| − σi)p(−σi |σi+1)

]
. (56)

Now we can multiply both sides of the above equation by σi and marginalize over it. Similarly to what is done for the mean-field
ferromagnet, we define mi(σi+1) = ∑

σi
p(σi |σi+1)σi to be the magnetization of spin i at time t , given that the spin i + 1 is in

state σi+1. Separating terms the above equation then reads

ṁi(σi+1) = −
∑

σi , σi−1

[
α

2
σi(p(σi−1|σi)p(σi |σi+1) − p(σi−1| − σi)p(−σi |σi+1))

− α

4
tanh(2βJ )(σi−1 + σi+1)(p(σi−1|σi)p(σi |σi+1) + p(σi−1| − σi)p(−σi |σi+1))

]
. (57)

Marginalizing we get

ṁi(σi+1) = − α mi(σi+1)

+ α

2
tanh(2βJ )(mi−1(σi+1) + σi+1). (58)

This approximate equation for the local magnetization
reflects the structure of the equation (53) deduced starting
from the master equation, but it has a different meaning. As
already said the quantity mi(σi+1) should be interpreted as the
magnetization of spin i, conditioned to spin i + 1 being in
state σi+1.

To compare to the exact results we need the real mag-
netization mi . It is simply related to mi(σi+1) through mi =∑

σi+1
mi(σi+1)p(σi+1). The time derivative of mi is:

ṁi =
∑
σi+1

[ṁi(σi+1)p(σi+1) + mi(σi+1)ṗ(σi+1) ]. (59)

We can use (58) and (54) in the equation above and obtain:

ṁi = −αmi + α

2
tanh(2βJ )(mi−1 + mi+1)

+A(mi,mi+1,mi+2)[mi(σi+1 = 1) − mi(σi+1 = −1)].

(60)

The first line in (60) is the exact result. The second line is
an extra term that goes to zero for weak correlation or high
temperature because mi(σi+1) becomes independent of σi+1.
Therefore we can conclude that our CME is consistent with
exact results when appropriate limits are taken. For models
with higher connectivities we may expect some agreement
with numerical simulations even for not so high temperatures
since a higher number of neighbors translates directly into a
weaker correlation between spins.

VII. NUMERICAL RESULTS

To test numerically the performance of the approximate
dynamics described by (4) and (5) we compare the numerical
solutions of this set of equations with the results obtained after
running a large number of kinetic Monte Carlo simulations.
The numerical protocol is described below.

Three typical models are considered: an Ising ferromagnet
with zero external magnetic field, the same ferromagnet with
disordered local magnetic field [also known as random field
Ising model (RFIM)] and the Viana-Bray spin-glass model,
where interaction constants Jij = ±1 are drawn positive or
negative with equal probability from a bimodal distribution.
All three systems share the same underlying topology of an
instance of an Erdös-Rényi random graph, generated with
N = 1000 nodes and mean connectivity c = 3. The rate of
change for individual spins is taken according to Glauber’s
rule:

ri(σi,σ∂i) = α

2

⎛
⎝1 − σi tanh

⎡
⎣β

⎛
⎝∑

j∈∂i

Jij σj + hi

⎞
⎠

⎤
⎦

⎞
⎠,

(61)

where α is a constant defining the time unit, t0 = 1/α. For
the actual simulations, the interaction constants are rescaled
by a factor 1/c. Monte Carlo simulations are run on a
(typical) specific realization of the graph (single instance)
and a sweep is composed by N sequential MC single-spin
updates. The new state probability W (σi |σ∂i) used in the update
rule is determined from the transition rates: W (σi |σ∂i) =
ri(−σi,σ∂i)/α. Final results correspond to an average over
105 MC trajectories, obtained starting from the same initial
conditions and with a different random sequence for each run.

The solution of the CME is not substantially affected by
finite-size character of available simulations. A similar exper-
iment using 102 spins was performed, obtaining essentially
the same results for global quantities. This behavior is natural
given the local character of the approximation. We may say
that even for rather small systems, the CME behaves as in
the thermodynamic limit. On the other hand, kinetic MC
simulations are indeed affected by the system size; the smaller
the system the more likely a transition between different basins
of attraction of the dynamics.

The CME for the conditional probabilities (5) is solved
using Euler’s method for ODEs. The integration step size h is a
fraction of this time unit, �t = 0.05 t0. Initial conditions, both
for the differential equations and the stochastic simulations,
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(a) (b) (c)

FIG. 1. Evolutionary dynamics of the global magnetization parameter for three spin models defined on a single instance of a random
graph. (a) the Ising ferromagnet (Tc ≈ 0.96). (b) the RFIM (Tc ≈ 0.78). (c) the Viana-Bray model (TSG = 0.506). Dots represent kinetic MC
simulation on a single instance realization of an ER graph, averaged over 105 runs starting with the same initial conditions. Solid lines represent
the cavity master equation approach presented in the main text. The insets show the mean error in local magnetization, as defined in the main
text.

correspond to a frozen state with all spins pointing in the
same (positive) direction. At finite temperature this is not
an equilibrium state and the system will evolve and relax
towards it. Once integrated, the derived equations give the
time evolution of conditional pairwise probabilities, but for
observables we need complete probability distributions. These
can then be obtained by integrating the factorized master
equation for a local variable (4) where the conditional
probabilities that appear in the previous equation are given
by the solution of (5). For a fixed length of the total time
interval to analyze, [t0,t], the running time of the numerical
integration is inversely proportional to the time update step size
h. A typical computational time value for the results shown
here is in the order of a few minutes on a desktop PC. On
the other hand, for the equivalent numerical accuracy, the MC
simulation time was much longer; in the order of several hours.
Therefore, when local marginals are the relevant quantity to
determine and for a model where CME performs well, it is a
convenient choice to use this method rather than MC.

Starting with local probability distributions, local magne-
tizations are defined as usual, mi(t) = ∑

σi (t) σi(t) p(σi(t)),
where p(σi(t)) is estimated by (4) and (5). Global magne-
tization is computed as the average of local ones over the
network m(t) = 1

N

∑
i mi(t). For disordered systems it is also

useful to investigate the evolution of the Edwards-Anderson
(EA) parameter, defined as the average of the squared local
magnetization qEA(t) = 1

N

∑
i m

2
i (t).

Figures 1 and 2 show, respectively, the relaxation of global
magnetization m(t) and qEA(t) for our three test models, using
MC simulations (dots) and the CME formalism (lines). The in-
sets include the mean error of local magnetization with respect

to the MC predictions, δm =
√

1
N

∑
i[m

CME
i (t) − mMC

i (t)]2.
For the EA parameter we define the equivalent error
measure.

The CME approach for the ferromagnetic case shown in
Figs. 1(a) and 2(a) displays a good agreement with MC
simulations for both the transient regime and the long time
behavior at temperatures above and below the critical one of
this model, i.e., Tc ≈ 0.96. For a value T = 1, quite close to the
phase transition, the qualitative behavior of the magnetization
dynamics is fairly reproduced but its accuracy, as expected,
diminishes. An important part of the procedure leading to (5)
relies on the factorization of distributions and this is equivalent
to set almost all (connected) correlations to zero. It is therefore
natural to find a failure near a region where correlations
become fundamental, as it is the case for a second-order phase
transition.

(a) (b) (c)

FIG. 2. Dynamics of the global EA parameter for three spin models defined on a single instance of a random graph. (a) The Ising ferromagnet
(Tc ≈ 0.96). (b) The RFIM (Tc ≈ 0.78). (c) The Viana-Bray model (TSG = 0.506). Dots represent kinetic MC simulations on a single instance
realization of an ER graph, averaged over 105 runs starting with the same initial conditions. Solid lines represent the cavity master equation
approach presented in the main text. The behavior for low temperatures in the Viana-Bray model shows that even though global magnetization
is close to zero for long times [see Fig. 1(c)], spins are locally magnetized for long times, as it is expressed by the non zero value of qEA(t) for
T = 0.25. The insets show the mean error of local quantities, as defined in the main text.
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(a) (b) (c)

FIG. 3. Maximum mean error dependence with temperature between MC simulations and the CME approach presented in the main text
for three spin models defined on a single instance of a random graph. (a) The Ising ferromagnet (Tc ≈ 0.96). (b) The RFIM (Tc ≈ 0.78).
(c) The Viana-Bray model (TSG = 0.506). Simulation details are the same as for Figs. 1 and 2. For the ferromagnet and the RFIM, error
increases before and decreases after the ferromagnetic transition as the temperature changes. For the Viana-Bray spin glass, error grows
monotonically lowering the temperature.

For the RFIM, which is one of the standard literature
examples of disordered system, the dynamic cavity equation
reproduces the dynamical behavior with a quality comparable
to the ferromagnetic case, see Figs. 1(b) and 2(b). In this case
we used a value hi = ±0.3 chosen from a bimodal distribution
for the external field acting on each node, which is kept
constant in time. The corresponding ferromagnetic transition
temperature for this case is Tc(h = 0.3) ≈ 0.78. The critical
transition errors found in this case are of the same order of
magnitude to the situation where hi = 0.

The Viana-Bray model, on the other hand, shows errors one
order of magnitude larger than the previous models, which
worsen as temperature decreases, see Figs. 1(c) and 2(c). It
is known that this model has a spin-glass 1RSB transition at
TSG = 0.506 and this implies a fundamental difference with
respect to the previously considered models. The state space
collapses for low temperature into a hierarchy of low-energy
configurations and it is no longer well described by only one
equilibrium solution.

Note that in the insets of Figs. 1 and 2 errors are low
at very short times as well as in the stationary regime for
both the ferromagnet and the RFIM [Figs. 1(a), 2(a) and 1(b),
2(b)]. For these cases, the error is maximum at intermediate
times, during the transient regime. The SG model shows a
different behavior instead [see Figs. 1(c) and 2(c)]. In this
case, indeed, the error increases monotonically with time for
low temperatures in opposition to what happens with the
ferromagnet and RFIM. As we said before, this indicates that
there is a wrong assumption regarding the structure of phase
space.

In Fig. 3 we present, for all models, the temperature
dependence of the maximum value of the mean error. More
precisely, for each given temperature T at which simulations
are run, there is a time t̄(T ) at which the error is maximum.
Figure 3 illustrates the behavior of this error as a function
of the temperature. Let us note that for the ferromagnet and
RFIM the error increases by decreasing the temperature from
high value towards the critical transition temperature and
start decreasing when the temperature is decreased below the
transition temperature, see Figs. 3(a) and 3(b). Differently,
for the Viana-Bray model, the performances of our approach
progressively worsen near the SG phase transition and the error

monotonically increases by decreasing the temperature in the
low-temperature regime [see Fig. 3(c)].

VIII. CONCLUSIONS

In this work we have derived a method to close the master
equation for the continuous dynamics of interacting spins.
The approach relies on the factorization of the conditional
distribution of the state of spin i and its neighbors and on the
formalism of the theory of random point processes. By assum-
ing a treelike graph topology, using this formalism, we are
able to rederive a known equation for conditional probabilities
of spin histories, which is called dynamic message-passing
or dynamic cavity equation in the literature. Combining this
result with the approximated master equation and using the
random point process formalism, we are able to parametrize
probability distributions of the spin histories and obtain a
rigorous derivation of a dynamic equation for the conditional
distribution of spin variables, the cavity master equation. This
equation together with the master equation for the single spin
dynamics completely determine the temporal evolution of the
model.

We have shown that our approach reproduces the known
analytical solution of two prototypical models and we have
tested numerically the performances of the method for three
more complex cases defined on random graphs. Numerical
results show a quantitative good agreement with Monte Carlo
simulations for those models, which do not have a spin-glass
phase. For the Viana-Bray model, the technique fails below
the glass transition.

We believe that the general nature of our method allows
us to apply it on models with different transition rates and
networks with various connectivity symmetries (asymmetric
and partially symmetric graphs), and therefore could bring us
to several further developments to investigate the dynamics of
physical and biological systems. Extension to models with a
glassy phase is a topic for future research.
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APPENDIX A: RELATIONS BETWEEN PROBABILITY
DENSITIES AND CAVITY PROBABILITY DENSITIES

In this Appendix we discuss the relation linking the
probability density P (σi |σk) shown in (4) with the cavity
conditional probability p(σi |σj ) appearing in Eqs. (5) and (44).
We start showing that the probability of spin i conditioned
on the history of spin j is properly defined by a density
distribution of spin histories such as those introduced in
Sec. III:

P (σi |Xj ) =
∑

Xi |σi (t)=σi

Q(Xi |Xj ) =
∑

Xi |σi (t)=σi

Q(Xi,Xj )

Q(Xj )
.

(A1)

On the other hand, the cavity probability density p(σi |σj ) has
been defined, in the main text, by Eq. (31), which we here
report for completeness

p(σi |Xj ) =
∑

Xi |σi (t)=σi

μi→(ij )(Xi |Xj ). (A2)

To clarify the mathematical relation between the two above
probability densities, let us write more explicitly Eq. (A1),
with the use of (17), it becomes:

P (σi |Xj ) =
∑

Xi |σi (t)=σi

μi→(ij )(Xi |Xj )

× μj→(ji)(Xj |Xi)∑
Xi

μi→(ij )(Xi |Xj )μj→(ji)(Xj |Xi)

=
∑

Xi |σi (t)=σi

μi→(ij )(Xi |Xj )�μj→(ji)(Xj,Xi),

(A3)

where in the second equality we introduced the quantity
�μj→(ji)(Xj,Xi) as the rate appearing on the right-hand side
of the first equality. The comparison of (A2) with (A3) shows
that the difference between P (σi |σk) and p(σi |σj ) resides in
this rate. From its definition, such rate can be trivially rewritten
as

�μj→(ji)(Xj,Xi)

= 1+μj→(ji)(Xj|Xi)−
∑

Xi
μi→(ij )(Xi|Xj )μj→(ji)(Xj |Xi)∑

Xi
μi→(ij )(Xi |Xj )μj→(ji)(Xj |Xi)

.

(A4)

In a fully asymmetric network, where if a link connecting
i to j is present then the opposite link (j to i) is ab-
sent, it is immediate to show [31] that the cavity message
μi→(ij )(Xi |Xj ) = μi→(ij )(Xi). Therefore, in this case, from
Eq. (A4), it follows that �μj→(ji)(Xj,Xi) = 1, and so Eq. (A3)

reduces to (31) or, in a nutshell, P (σi |Xj ) = p(σi |Xj ). In a
more general setting, from Eqs. (A3) and (A4) it follows that
the conditional probability P (σi |Xj ) can be rewritten as

P (σi |Xj ) = p(σi |Xj ) + correction terms, (A5)

where the correction terms are equal to the second term on the
right-hand side of (A4) traced over the spin history of spin i as
expressed in (A3). In more general topologies and dynamics
rules the magnitude of these correction terms depends on the
reciprocal influence that the trajectories of spin i and j have
on each other and on their degree of statistical independence.

Therefore, more generally, if the history of i and
j are weakly temporally correlated we expect that
�μj→(ji)(Xj,Xi) 
 1 and so P (σi |Xj ) ≈ p(σi |Xj ). This rea-
soning motivates us to use (44) to close (4) with regard to
the conditional probabilities and obtain a closure scheme to
approximate the dynamic of the system.

APPENDIX B: CONDITIONING THE LOCAL EXACT
MASTER EQUATION

In the main text, when discussing (5) we mentioned the
possibility of a different derivation of that result, based solely
on the conditioning of the exact ME (2). This straightforward
approach, appealing as it is, is not formally correct. The
problem is that conditioning a ME on a specific variable is not
a procedure that can be done without further considerations.

Suppose for example that we take a master equation such
as the one in (1), but conditioned to one of the spins:

dP (σ |σj )

dt

= −
∑

i=1..N,i 	=j

[ri(σ )P (σ |σj ) − ri(Fi(σ ))P (Fi(σ |σj ))] ,

(B1)

from which one can marginalize both sides to obtain [after the
factorizations (42)] the cavity equation presented in (44). We
give two arguments why this approach is formally wrong.

The first argument is that one cannot get the conditional
probability P (σ |σj ) or the marginal P (σi |σj ) directly from
the full probability distribution P (σ ). What one can do is
to use the definition of conditional probability P (σi |σj ) =
P (σi ,σj )
P (σi )

and then compute P (σi,σj ) by marginalizing
from P (σ ).

Doing so one will obtain a differential equation for the joint
probability of two spins, analogous to (2), and which we write
out as

dP (σi,σj )

dt
= −

∑
σ∂i

[ri(σi,σ∂i)P (σi,σ∂i,σj )

− ri(−σi,σ∂i,σj )P (−σi,σ∂i,σj )]

−
∑
σ∂j

[rj (σj ,σ∂j ,σi)P (σj ,σ∂j ,σi)

− rj (−σj ,σ∂j ,σi)P (−σj ,σ∂j ,σi)]. (B2)

In the above we implicitly understand that the arguments of
the various terms are only counted once, i.e., if j ∈ ∂i the
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argument σj is already included in σ∂i and vice versa. The
time derivative of the conditional probability of interest can
then be written as

dP (σi |σj )

dt
= dP (σi,σj )

dt

1

P (σi)
− P (σi |σj )

dP (σi)

dt

1

P (σi)2

(B3)

and (2) and (B2) inserted in the right-hand side. It is clear that
this will give something different than (44), e.g., (B2) contains
terms from flipping both spin i and spin j while (44) only has
flips of spin i.

As a second argument, let us imagine that we get (B1)
starting as usual from the Chapman-Kolmogorov equation
where a specific spin, say σj , is actually fixed, and should
be treated like a local field. In this sense, the conditioning
notation P (· · · |σj ) is only a formal statement. However, then
it must be defined from outside, because it is not implicity in

this equation, the dynamical equation for σj or its probability,
and this information is naturally hidden in the model and there
is not fundamental reason to choose for it the local master
equation that one derives for all the other spins. Worse, this is
true for every spin you fix and therefore for each spin in the
model.

Alternatively one may start over and over from different
Chapman-Kolmogorov equations in which different spins
are fixed and get different master equations such as (B1).
Then, to trace over these master equations and get, again
following (42), the set of equations represented by (44)
in the manuscript. However, this procedure is clearly not
consistent. All the CMEs were derived from different master
equations that in turn were derived starting from different
Chapman-Kolmogorov equations. Therefore, there is not a
physical reason that justifies the fact that they are coupled
in a rigourous sense. The failure of these approaches justify
the more involved analysis followed in the main body of this
paper.
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