
PHYSICAL REVIEW E 95, 052118 (2017)

Capturing Brownian dynamics with an on-lattice model of hard-sphere diffusion

Claudia Cianci, Stephen Smith, and Ramon Grima
School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JR Scotland, United Kingdom

(Received 4 October 2016; revised manuscript received 13 February 2017; published 11 May 2017)

Conventional master equation approaches approximate the diffusion of molecules in continuum space by the
process of particles hopping on a spatial lattice. The hopping probability from one voxel (spatial lattice point)
to its neighbor is usually considered to be constant throughout space. Such an assumption is only consistent
with pointlike molecules and thus neglects volume-exclusion effects due to finite particle size. A few studies
have attempted to introduce volume-exclusion effects by choosing the hopping probability from one voxel to a
neighboring one to be a linear function of the number density. Here, we formulate an alternative master equation
in which the hopping probability is equal to the fraction of available space in the neighboring voxel as estimated
using scaled particle theory. This leads to the hopping probability being a nonlinear function of the number
density. A mean-field approximation (mfa) leads to a partial differential equation of the advection-diffusion type.
We show that the time evolution of the particle number density sampled using the stochastic simulation algorithm
associated with the new master equation and the number density obtained by numerical integration of the mfa
are in good agreement with each other. They are also distinctly different than the time evolution predicted by
the conventional master equation and those with hopping probabilities which are linear functions of the number
density. The results from the new lattice description are also shown to be in very good agreement with the
lattice-free method of Brownian dynamics, even for highly crowded scenarios.

DOI: 10.1103/PhysRevE.95.052118

I. INTRODUCTION

Reaction-diffusion processes have a long history of be-
ing modeled using partial differential equations [1]. This
deterministic approach is fine when the standard deviation
of intrinsic noise is small compared to the mean molecule
numbers, a condition which is typically satisfied in the limit
of large molecule numbers. However, when such conditions
are not met, such as inside cells [2], the stochastic nature
of the reaction and diffusion processes becomes important
and a nondeterministic mathematical description becomes
necessary.

Two such stochastic descriptions are in popular use: (i)
Brownian dynamics (BD) and (ii) the reaction-diffusion master
equation (RDME). BD consists of a set of stochastic differen-
tial equations for the velocity of each molecule, assuming low
Reynolds number (inertia is neglected), and sample paths are
generated with an Euler-Maruyama scheme [3–5]. Generally,
the particles interact via a prescribed potential which models
the fact that they have a finite size and given shape. The
velocity of each particle is then a sum of the forces acting
on it by all other particles plus white noise, where the latter
models diffusion. When the particles are within interaction
range, a reaction is simulated. While BD describes processes in
continuum space, the RDME assumes a finite discretization of
space into well-mixed regions called voxels. Reactions occur
in each voxel, diffusion is modelled as hopping from one voxel
to a neighbouring one, and sample paths are generated with the
stochastic simulation algorithm (SSA) [6–9]. The hopping rate

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

is chosen to be some constant, which can only be true if one
assumes point particles. This is a disadvantage of the RDME
compared to BD; the advantage is the RDME is typically
computationally much less expensive than BD since it is a
coarse-grained description. The assumption of point particles
is particularly a problem for describing reaction-diffusion
processes in crowded conditions where clearly the size of
particles has a considerable impact on the dynamics. Such is
the case inside cells where it is estimated that up to about 40%
of the cell’s volume is occupied by various macromolecules, a
condition termed macromolecular crowding [10,11]

A few studies have reported modifications of the chemical
master equation (the well-mixed and nonspatial version of the
RDME) to account for excluded volume effects due to finite
particle size [12,13]. Similar modifications of the (spatial)
RDME have also been devised, and are as follows. In [14,15]
all particles are assumed to be of the same size and voxels
are chosen to be of the same length scale as particles, such
that only one particle is allowed per voxel. Reactions occur
between particles in neighboring voxels (for a similar approach
but which ignores reactions, see [16]). This approach has been
shown to be in good agreement with BD [15], however, the
computational cost is very similar due to the fine lattice. Other
modifications of the RDME involve neglecting reactions, i.e.,
considering only diffusion and assuming particles of same
size but choosing the length scale of the voxel to be an integer
multiple m of the particle length scale [17,18]. The hopping
rate from a voxel to a neighboring one containing n particles is
then chosen to be proportional to 1 − (n/m), i.e., the fraction
of unoccupied space. The main limitation of these approaches
is that particles are assumed to be all of the same size. For
those in which the voxels can contain many particles, a further
problem is the assumption that the particles in each voxel pack
on an “invisible” fine regular lattice. This eases calculations
but of course is unrealistic and tends to underestimate the effect
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of volume exclusion on diffusion [19]. A different approach
consists of deriving nonlinear diffusion equations directly from
the stochastic differential equations of BD; remarkably, this
can be done for particles of different sizes but is limited to
cases where the volume exclusion is small [20,21]. The case
where volume-exclusion effects are induced only by stationary
obstacles is simpler to treat and accurate modified stochastic
simulation algorithms have already been devised [22,23].

In this paper, we present an alternative modification of the
RDME which overcomes the problems of previous formu-
lations. In particular, (i) the new RDME is not restricted to
describing particles of one size but rather any size distribution
of mobile particles is allowed and (ii) a comparison of this
RDME with BD shows that the former is a faithful coarse-
grained version of the latter, even in cases where the volume
exclusion is very high. A restriction of the present formalism
is that only diffusion is allowed; reaction dynamics presents
problems which require further research.

The paper is divided as follows. In Sec. II, we show how
the propensities of the conventional RDME can be adjusted to
account for volume exclusion due to finite particle size using
scaled particle theory. In Sec. III, we derive deterministic
advection-diffusion equations by applying a mean-field ap-
proximation to the new RDME. In Sec. IV, we test the accuracy
of the modified RDME and its mean-field approximation by
comparison with BD; the results show very good agreement
of all three methods for the case of the diffusion of particles
of one size and the diffusion of particles of two different sizes,
for exclusion-volume fractions which are typical of cells. We
conclude with a summary and discussion in Sec. V.

II. MODIFYING THE REACTION-DIFFUSION
MASTER EQUATION

The conventional RDME models diffusion through jumps
of particles between neighboring voxels. Let X

j

i denote the
molecular species i present in voxel j , N be the total number
of voxels, and m be the total number of molecular species. The
RDME of the diffusion process can then be written as

d

dt
P (n,t) =

∑
n′ �=n

T (n|n′)P (n′,t) − T (n′|n)P (n,t), (1)

where P (n,t) is the probability that the system at time t is in
state n = (n1, . . . ,nN ). In particular, nj represents the vector
nj = (nj

1, . . . ,n
j
m) where n

j

i is the number of molecules of
species i in voxel j . With T (n|n′) we indicate the transition
probability per unit time (the propensity) from state n′ to state
n. The propensity describing the diffusion of species i from
voxel j ′ to a neighboring voxel j takes the form

T
(
n

j ′
i − 1,n

j

i + 1
∣∣nj ′

i ,n
j

i

) = Di

�x2
n

j ′
i , (2)

where we have written explicitly only the components of the
state vectors that are changed. The diffusion coefficient of
species i (in the absence of volume exclusion) is Di and
we are here assuming a regular lattice of cubic voxels of
length �x.

An intuitive way to modify the conventional RDME such
that it incorporates volume exclusion involves changing the

above propensity to

T
(
n

j ′
i − 1,n

j

i + 1
∣∣nj ′

i ,n
j

i

) = Di

�x2
n

j ′
i p

j

i (nj /V ), (3)

where p
j

i is the probability that a random spatial allocation
of molecule i in voxel j will not intersect with any other
molecule in the voxel and V is the voxel volume. Note also
that this probability is a function of the number density of
molecules of each type in voxel j . Note also that this is an
approximation since of course real molecules do not jump but
rather meander through the maze created by other molecules
in continuum space.

Let us now consider the calculation of p
j

i . Clearly, the
probability that the center of a molecule i falls in a molecule-
free region is simply given by 1 − �j where �j is the volume
occupied by all molecules in voxel j divided by the volume
of the voxel. However, generally this quantity overestimates
p

j

i because the center of a molecule can be in a free space
region, but the molecule’s spherical body could still intersect
with that of neighboring molecules. Hence, pj

i � 1 − �j only
if the size of molecule i is much smaller than the size of all
molecules in voxel j .

A more accurate estimate of p
j

i is, however, possible
through statistical mechanics. The activity coefficient is a
statistical measure of deviations from ideal gas behavior due to
interaction between the molecules of a fluid; conveniently for
our purposes, it turns out that p

j

i is the inverse of the activity
coefficient of species i [24]. Scaled particle theory (SPT)
estimates the activity coefficients for a fluid of hard-sphere
molecules in three-dimensional space [25]. Inverting the SPT
expression for the activity coefficient of species i [see Eq. (11)
in [10]], we obtain

p
j

i = (1 − �j ) exp

{
− Ri

1 − �j

[
B +

(
4πA + B2

2(1 − �j )

)
Ri

+ 4πR2
i

3

(
d + B3

12π (1 − �j )2
+ AB

(1 − �j )

)]}
, (4)

where �j = (4π/3)
∑

k dkR
3
k , d = ∑

k dk , A = ∑
k dkRk ,

B = ∑
k 4πR2

kdk , dk = n
j

k/V , and Ri is the radius of molecule
of species i. Note that the sums are over all molecular
species, i.e.,

∑
k denotes

∑m
k=1. Note also that in the limit of

small molecular size of species i, i.e., Ri → 0, p
j

i � 1 − �j

as we predicted from intuition above. However, generally
p

j

i < 1 − �j due to the fact that Eq. (4) takes into account
statistical correlations between particle centers induced by
hard-sphere volume exclusion.

Equation (4) is valid for a system with m species, each of
which has a (potentially) different radius. For a system of only
one molecular species with radius R, Eq. (4) reduces to the
simpler form

pj = (1 − �j ) exp

[
− �j

1 − �j

(
7 + 15�j

2(1 − �j )

+ 3�2
j

(1 − �j )2

)]
, (5)
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with �j = (4π/3)R3nj/V . Note that we dropped the subscript
denoting molecular type since in this case we have only one
species.

We have tested the accuracy of the SPT equations (4) and (5)
by comparing it with the numerical estimate of p

j

i that one ob-
tains directly from Monte Carlo simulations (see Appendix A
for details). SPT agrees to a high degree with the numerical
estimate provided the radius of the largest sized particle in the
voxel is about an order of magnitude smaller than the voxel
length. SPT is also found to be much more accurate than the
linear law p

j

i = 1 − �j used in previous studies [17,18].
We conclude this section by emphasizing that although the

activity coefficient was approximated a long time ago using
SPT in a quest for an equilibrium theory of hard-sphere fluids,

it has never been used before, to our knowledge, to renormalize
the jump propensities of the RDME. In what follows, we shall
refer to the RDME equation (1) with propensities of the form
given by Eqs. (3) and (4) as the SPT-RDME and the associated
stochastic simulation algorithm [9] as the SPT-SSA.

III. MEAN-FIELD THEORY

In this section, we obtain the deterministic limit of the SPT-
RDME. We will derive this by an intuitive mean-field type of
approximation, as follows. We want to obtain a time-evolution
equation for 〈nj

i 〉 (the angled brackets signify the ensemble
average). Multiplying both sides of Eq. (1) by n

j

i and summing
over all possible states n we obtain
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, (6)

where the symbol Ne(j ) represents the neighboring voxels of voxel j . The first line in the equation above describes the diffusive
influx of particles of type i to voxel j while the second line describes the diffusive out flux from voxel j to neighboring voxels.
Note that only these four terms on the right-hand side of the RDME equation (1) contribute to the time-evolution equation for
〈nj

i 〉 since all other terms do not describe diffusive movement into or out of voxel j by particles of type i. It is easy to show that
Eq. (8) can be simplified to
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which using the definition of the ensemble average can be written in compact form as

d
〈
n

j

i

〉
dt

=
∑
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. (8)

Given the form of the propensities of the SPT-RDME equation (3), it is easy to see that Eq. (8) simplifies to

d
〈
n

j

i

〉
dt

= Di

�x2

∑
j ′∈Ne(j )
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j
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j
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〉]
. (9)

The equation, as it is, is analytically intractable since we are dealing with the statistical average of nonlinear functions of the
molecule numbers. To circumvent this problem we make two approximations of the mean-field type as follows:

d
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These approximations are expected to be accurate in the deterministic limit of large molecule numbers when intrinsic noise is
small [26].

Explicitly writing out Eq. (10) in one dimension and dividing by the volume of a voxel V , we obtain an equation for the
temporal evolution of the average number concentration in space:

∂
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. (11)
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Equating j with spatial position x and j ± 1 with x ± �x, we
make the substitutions 〈nj

i 〉/V → θi(x), 〈nj±1
i 〉/V → θi(x ±

�x), p
j

i (〈nj 〉/V ) → pi(θ (x)), and p
j±1
i (〈nj±1〉/V ) →

pi(θ (x ± �x)). Furthermore, taking the limit of small lattice
spacing �x → 0, Eq. (11) reduces to the continuum partial
differential equation

∂θi(x,t)

∂t
= Di{θ ′′

i (x,t)pi(θ (x,t)) − [pi(θ (x,t))]′′θi(x,t)},
(12)

where the prime indicates a partial derivative with respect to
x and pi(θ (x,t)) is Eq. (4) with n

j

k/V replaced by θk(x,t).
Note that the continuum equation should be here understood

to be an approximation for the case that the true three-
dimensional space in which the particles diffuse can be
represented as a line of three-dimensional voxels each with
a small volume. When this is not the case, e.g., when the true
three-dimensional space can be approximated by a planar array
of three-dimensional voxels, then one can show that the same
Eq. (12) is obtained but with the double prime replaced by the
Laplacian.

A. One species case

In this case, the term [pi(θ (x,t))]′′ is only a function of θi(x)
which implies that the previous expression can be written as a
nonlinear diffusion equation of the form

∂θ (x,t)

∂t
= D[γ (θ (x,t))θ (x,t)′]′, (13)

where Dγ (θ (x,t)) is the new effective diffusion coefficient.
Note that since we have only one species, we have dropped the
subscript notation throughout. The function γ (θ (x,t)) is given
by

γ (θ (x,t)) = p(θ (x,t)) − θ (x,t)
∂

∂θ
p(θ (x,t)), (14)

where p(θ (x,t)) is Eq. (5) with nj/V replaced by θ (x,t).
Hence, the (instantaneous) effective diffusion coefficient for
one species can be finally written as

Dγ (θ (x,t))

= D
[1 + 2�(x,t)]2

[1 − �(x,t)]3

× exp

[
−�(x,t){14 + �(x,t)[5�(x,t)−13]}

2[1 − �(x,t)]3

]
, (15)

where �(x,t) = (4/3)πR3θ (x,t) is the volume fraction oc-
cupied at time t by particles in the voxel centered on spatial
coordinate x. A plot of the above function shows that, as
expected, the effective diffusion coefficient is a monotonically
decreasing function of the occupied volume fraction; it is equal
to D at zero volume fraction and becomes negligibly small for
volume fractions larger than approximately 0.4. Note that since
the effective diffusion coefficient is a function of the volume
fraction which itself is a function of time, the mean-square
displacement predicted by Eq. (13) is not linear with time.
This implies that the dynamics is consistent with anomalous
diffusion as found by previous studies (see for example [27]).

Note also that if we had to use the linear law p(θ (x,t)) =
1 − �(x,t) = 1 − (4/3)πR3θ (x,t) instead of the SPT law,
then Eq. (14) implies γ (θ (x,t)) = 1, i.e., Eq. (13) is simply the
pure diffusion equation. In other words, the linear law up to
mean-field level of approximation does not lead to a reduced
effective diffusion coefficient for one species, a phenomenon
which one would expect from volume-exclusion effects. This
is consistent with the results in [28] [specifically, see the
time-evolution equation for φ in Eq. (5) of that paper]. In
contrast, as we saw above, SPT leads to reduced mobility
which lends another argument in its favor over the linear law.

B. Multiple species case

The general equation for many species (12) is much more
difficult to interpret than the one species case because it cannot
be brought to the form of a nonlinear diffusion equation.
Insight is, however, possible by considering the case of two
different species with the restriction that the number density
θ2 of species 2 is much less than the number density θ1 of
species 1. In this case, Eq. (12) reduces to the pair of coupled
equations:

∂θ1(x,t)

∂t
= D1{θ ′′

1 (x,t)p1(θ1(x,t)) − [p1(θ1(x,t))]′′θ1(x,t)},
(16)

∂θ2(x,t)

∂t
= D2{θ ′′

2 (x,t)p2(θ1(x,t)) − [p2(θ1(x,t))]′′θ2(x,t)}.
(17)

Note that pi are now only functions of θ1 since θ2 is negligible
in comparison. Equation (16) is a nonlinear diffusion equation
of the type (13). However, Eq. (17) is not of this type. Rather,
it can be shown [29] that Eq. (17) can be rewritten in the form
of a diffusion-advection partial differential equation:

∂θ2(x,t)

∂t
= ∂

∂x

[
γ (θ1(x,t))

∂

∂x
θ2(x,t)

]

− ∂

∂x
[v(θ1(x,t))θ2(x,t)], (18)

where the effective diffusion coefficient and drift velocity are
given by

γ (θ1(x,t)) = D2p2(θ1(x,t)), (19)

v(θ1(x,t)) = ∂

∂x
γ (θ1(x,t)) = D2

∂p2(θ1)

∂θ1

∂θ1(x,t)

∂x
, (20)

respectively. Hence, while particles of species 1 perform
only diffusion (with a reduced diffusion coefficient), the
motion of particles of species 2 is a combination of diffusion
(with a reduced diffusion coefficient) and directed motion. In
particular, since the jump rate from a voxel to a neighboring
one monotonically decreases with increasing volume fraction,
we have ∂p2(θ1)/∂θ1 < 0, which implies that species 2
molecules perform a random walk biased in the direction
opposite to the concentration gradient of species 1. Note
that if we assume a linear law p1(θ1(x,t)) = p2(θ1(x,t)) =
1 − �(x,t) = 1 − (4/3)πR3θ1(x,t), then it is straightforward
to show that Eqs. (16) and (17) agree exactly with those
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derived by Galanti et al. [28] [specifically, they agree with
Eq. (5) in their paper]. A similar volume-exclusion induced
directed motion was also predicted in [30]. The interplay of
volume-exclusion modulated diffusion and advection leads
to complex local dynamics which we investigate in the next
section.

IV. COMPARISON WITH BROWNIAN DYNAMICS

In this section we test the accuracy of the SPT-SSA and of
the associated mean-field theory by comparison with BD.

A. One species case

We consider a setup in which the three-dimensional (3D)
space in BD is of length 258, width 1, and height 1. Reflecting
boundary conditions are enforced. The radius of the particles
is 1/20 and initially 1000 particles are packed in a region
1×1×1 in the center of the space. We chose the particles
to be arranged in a cubic lattice in this region since this
eased the time to setup the initial configuration (random
positioning takes up considerable more time due to the large
amount of volume occupancy 52%). The BD algorithm used
is the Cichocki-Hinsen algorithm [3,31] which is described
in Appendix B. The time step used was �t = 10−2. The
SPT-RDME setup approximates the above continuous 3D
space by considering a chain of 258 voxels, each being a
cube of unit dimensions, and the placement of 1000 particles
in the central voxel. Samples of the process underlying the

SPT-RDME were generated using the SPT-SSA where the
propensities are given by Eq. (3) together with Eq. (5); these
were used to obtain a histogram of the particle distribution as
a function of time. The mean-field theory (SPT-mfa) is in this
case given by Eq. (13) with the histogram of the initial particle
distribution from BD as initial condition. In order to integrate
the mean-field equation, we use a Euler discretization method
where we implemented the nontemporal derivatives using
centered difference as this yielded an improved numerical
stability. The time and space steps used were �t = 10−5

and �x = 10−2, respectively. The diffusion coefficient in the
absence of excluded volume interactions is set to unity. The
time evolution of the BD, SPT-SSA, SPT-mfa and of the
pure diffusion equation with no excluded volume (labeled
as “Diffusion”) are compared in Fig. 1. Note that the pure
diffusion equation is also the mean-field approximation when
the linear law p(θ (x,t)) = 1 − θ (x,t) is used rather than SPT
(see Sec. III A).

BD (solid light blue region) predicts a highly non-Gaussian
shape of the distribution of particles which is highly pointed
at the origin for short to intermediate times (t < 1) which
smoothens to a Gaussian profile for long times (t = 3).
The pointed behavior is due to the fact that because of
volume exclusion, only particles at the edge of the rectangular
function (which approximately defines the initial conditions)
can initially diffuse; this is in contrast to the pure diffusion
case (dashed black line) where particles at the edge or center
of the rectangular function can diffuse equally easily. As time
evolves, the highly packed area becomes less and less crowded,

FIG. 1. Comparison of the SPT modified approaches with Brownian dynamics (BD) for a one species system for various times (a) t = 0, (b)
t = 0.8, (c) t = 1.0, and (d) t = 3.0. Both the SSA modified using SPT (SPT-SSA) and the associated mean-field theory (SPT-mfa) reproduce
well the BD dynamics, in particular the strongly non-Gaussian behavior at short to intermediate times. Note that position i on the x axis denotes
the end of voxel i, not the center of voxel i. This convention is used throughout all the plots. The large differences from pure diffusion (dashed
lines) indicate the importance of volume exclusion at intermediate times. See text for further details.
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FIG. 2. Quantitative measure of the difference between the SPT-
SSA and BD (lower blue line), and the pure diffusion and BD (upper
red line) using the Kullback-Leibler (KL) divergence. Parameters as
in Fig. 1. Note the accuracy of the SPT-SSA is reflected in a small
KL divergence at all times. The error in the pure diffusion estimate is
maximum at intermediate times when the non-Gaussian behavior is
most evident.

allowing those particles to move as well hence leading to
the Gaussian behavior at long times. Impressively both the
SPT-SSA (blue dots) and the SPT-mfa (continuous blue line)
are in good agreement with BD at all times; in particular, they
reproduce the strong deviations from a Gaussian profile at short
to intermediate times. The difference between the methods is

quantitatively measured used the Kullback-Leibler divergence
shown in Fig. 2.

B. Two species case

Next, we test the accuracy of our SPT-SSA and mean-field
theory versus BD for a two species scenario. The setup is
as follows. We consider a setup in which the 3D space
in BD is of length 258, width 1, and height 1. Reflecting
boundary conditions are enforced. The radius of the two
types of particles are 1/14 and 1/28. Initially, 343 particles
of the larger radius are packed (on a cubic lattice) in the
region 128.5 � x � 129.5 and 2744 particles of the smaller
radius are packed in a region 1×1×1 centered on the position
129.5 � x � 130.5. The volume occupancy in each of these
two regions is 52%. The setup can be approximated by the one-
dimensional SPT-RDME and its mean-field approximation
with unit length voxels as for the previous case. Samples of the
process underlying the SPT-RDME were generated using the
SPT-SSA where the propensities are given by Eq. (3) together
with Eq. (4); these were used to obtain a histogram of the
particle distribution. The mean-field theory (SPT-mfa) is in
this case given by Eq. (12) with a histogram of the particle
concentration (calculated at 0.1 space intervals) taken as the
initial condition. The size of time and space steps for BD and
the discretization of the mean-field theory PDE are the same
as for the one species case. The diffusion coefficient of each
species in the absence of volume exclusion, i.e., Di is taken to
be unity.

In Fig. 3, we display the time evolution of the distribution
of the two species according to the various methods, with
red denoting the larger species and blue the smaller one.

FIG. 3. Comparison of the SPT modified approaches with Brownian dynamics (BD) for a two species system for various times (a) t = 0, (b)
t = 0.1, (c) t = 0.4, and (d) t = 3.0. Red (dark gray) denotes the species with the larger radius and blue (light gray) the smaller sized species.
Both the SSA modified using SPT (SPT-SSA) and the associated mean-field theory (SPT-mfa) reproduce well the BD dynamics, in particular,
the strongly non-Gaussian behavior in the central spatial region where the two types of particles interact strongly. The large differences from
pure diffusion (dashed lines) indicate the importance of volume exclusion at all times. See text for further details.
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For comparison we also plot the solution of the conventional
diffusion equation (no volume exclusion). It is possible to
observe that the “external” tails of the BD distribution are
actually diffusing almost as much as normal diffusion while the
“internal” tails are spreading much slower compared to normal
diffusion. This is clearly due to significant volume exclusion
induced by particle interaction between the two species in
the central region. In particular, according to the theory of
Sec. III B the larger species (red) will exhibit a lower diffusion
coefficient for positions to the right of the initial central peak
compared to the diffusion coefficient on the opposite side of
the peak; this effect is further exacerbated by a drift velocity
to the left due to the increasing concentration gradient of the
smaller species (blue) on the right side of the central peak of
the larger species. These effects lead to a highly asymmetrical
(and non-Gaussian) shape of the two particle distributions
which is distinct from the symmetrical (and non-Gaussian)
distribution for one species. Note also that the smaller (blue)
particles can be seen moving to the left, whereas the larger (red)
particles are not moving right; this makes sense since it is easier
for the small particles to permeate the space between large
particles than vice versa. Both the SPT-SSA and its mean-field
approximation do a very good job of reproducing the BD data
at all times, thus verifying the accuracy of the modified RDME
for describing heterogeneous systems.

V. SUMMARY AND CONCLUSION

In this paper, we presented an effective rescaling of the
propensities of the RDME such that we obtain a stochastic
spatial description which takes into account volume exclusion
due to the finite size of particles and which is applicable to a
mixture of particles of different sizes. This is in contrast to the
conventional RDME which considers only point particles and
to recent modified versions of the RDME [15,17,18,28] which
consider volume exclusion but implicitly assume all particles
are of the same size. An alternative description to the RDME is
provided by the lattice-Boltzmann method. This has recently
also been modified using SPT [32] to describe the diffusion
of hard disks in a plane; the advantage of our method over the
latter is that it provides a three-dimensional description, that it
can be used to obtain mean-field equations and that it agrees
very well with lattice-free BD simulations.

There are three main assumptions in the SPT-RDME:
(i) that the diffusion process from one region of space to
a neighboring one in BD can be well approximated by a
hopping (Markovian) process between two voxels; (ii) the
rate of this hopping process is proportional to the probability
that a random positioning of the tracer particle will not
intersect with any of the particles in the neighboring voxel;
(iii) the latter probability is accurately given by SPT. The first
assumption is common to the RDME and naturally stems from
the artificial discretization of space, hence unavoidable. The
second assumption is the natural and probably the simplest
choice albeit not the only one. A more accurate choice would
be a rate which is inversely proportional to the mean of the
first exit time distribution of the tracer. However, it is unclear
how to efficiently compute such a quantity for the case of
many particles of arbitrary sizes (see [33] for a recent work

in this direction) and, hence, we abandon it in favor of the
simpler choice mentioned above. The third assumption is at
the heart of our algorithm and indeed it is what foremostly
distinguishes it from existing algorithms. SPT takes into
account the nontrivial statistical correlations between particle
positions (due to volume exclusion) whereas other algorithms
do not. For example, in [17,18] the probability that a random
positioning of the tracer particle will not intersect with any
of the particles in the neighboring voxel is set equal to one
minus the fraction of voxel space physically occupied by
particles; this overestimates the true probability since there
are points of free space between spherical particles which
cannot be accessed by a tracer particle due to its finite size.
SPT is a more accurate alternative as shown in Appendix A.
Also, although in this article we have made use of SPT for a
mixture of hard-sphere particles, SPT has also been derived
for mixtures of hard convex particles such as right circular
cylinders and ellipsoids of rotation [34,35]. Hence, more
generally the SPT-RDME and mean-field theory can be used
to describe the diffusion of mixtures of hard convex particles
which further enhances the applicability and realism of the
presented modeling framework.

Our comparisons of BD and the SPT-RDME show that
the latter is in good agreement with the former, albeit the
stochastic simulations take a fraction of the computational time
of BD. The mean-field theory obtained as an approximation
of the SPT-RDME also does remarkably well, as well as
leading to closed-form expressions for the instantaneous and
space-dependent diffusion and drift coefficients as a function
of particle sizes and local particle numbers. The next clear (and
nontrivial) step is to introduce reactions in the RDME and to
scale the propensities according to take into account volume
exclusion; this will lead to an accurate stochastic description of
reaction-diffusion processes between hard-sphere molecules.
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APPENDIX A: ACCURACY OF SPT TESTED
BY MONTE CARLO SIMULATIONS

In Figs. 4 and 5, we report the results of testing the
accuracy of SPT for the single and two particle species cases,
respectively. The SPT equations (4) and (5) for multiple and
one species, respectively, are compared with the available
volume computed from Monte Carlo simulations (see captions
for details). We also plot on the same graphs, the prediction
of the linear theory which has been used in a number
of previous studies [17,18]. Note that the linear theory
grossly overestimates the available volume calculated using
Monte Carlo simulations, whereas SPT gives an excellent
approximation.

In Fig. 6, we test the accuracy of SPT as a function of

, the ratio of the particle radius, and the box length for the
single particle case. Monte Carlo simulations show that the
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FIG. 4. Accuracy of SPT vs linear theory for the single particle
case. The SPT equation (5) excellently agrees with the proportion of
available volume computed from Monte Carlo simulations. The latter
involves calculating the fraction of time that a randomly allocated
particle location does not intersect with any of the particles in a
random mixture of particles in a cubic box of unit volume. The
radius of all particles is 1/20. The proportion of occupied volume is
increased through the particle numbers. See text for discussion.

Proportion of occupied volume  
0 0.1 0.2 0.3 0.4 0.5

P
ro

po
rti

on
 o

f a
va

ila
bl

e 
vo

lu
m

e

0

0.2

0.4

0.6

0.8

1
SPT
1-
Monte Carlo

FIG. 5. Accuracy of SPT vs linear theory for a two species particle
case. The SPT equation (4) excellently agrees with the proportion of
available volume computed from Monte Carlo simulations. The latter
involves calculating the fraction of time that a randomly allocated
position of a particle of species 1 does not intersect with any of the
particles in a random mixture of particles in a cubic box of unit
volume. The radius of species 1 is 0.02 and of species 2 is 0.05.
The proportion of occupied volume is increased through the particle
numbers. See text for discussion.
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FIG. 6. Accuracy of SPT as a function of 
, the ratio of the
particle radius, and the box length for the single particle case.
The occupied volume fraction is fixed to φ = 0.2. Monte Carlo
simulations show that the accuracy of SPT equation (5) is excellent
for 
 < 0.2. See text for discussion.

accuracy of SPT is excellent for 
 < 0.2. The large error bar
for 
 = 0.2 comes about because when there are only a few
large particles, the position of each particle seriously affects
the outcome of the Monte Carlo simulations (e.g., one large
particle in the middle of the box excludes a lot more volume
than one in the corner) so there is a big variability between
independent simulations. For 
 = 0.33, almost every attempt
to place a particle is rejected, so all Monte Carlo simulations
give a result very close to 0, hence the almost invisible error
bar. Hence, it is preferable to choose the voxel size to be at
least five times larger than the radius of the largest particle;
this has been followed for simulations reported in previous
figures.

APPENDIX B: BROWNIAN DYNAMICS ALGORITHM

The Brownian dynamics algorithm used in this article is the
Cichocki-Hinsen algorithm [3,31], summarized below for the
case of N particles with diffusion coefficient D and time step
δt :

(1) Assign each particle an index 1, . . . ,N and place all N

particles at their initial positions. Set time t = 0.
(2) For i = 1, . . . ,N pick 3 normal(0,

√
2Dδt) random

numbers: the potential new position for particle i is the random
numbers added to the current position. If this new position
would cause i to intersect with another particle or a boundary,
keep the particle in its current position, otherwise move it to
the new position.

(3) Update t to t + δt . Return to step 2 and repeat until
sufficient time has elapsed.
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