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Numerical study of the F model with domain-wall boundaries
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We perform a numerical study of the F model with domain-wall boundary conditions. Various exact results are
known for this particular case of the six-vertex model, including closed expressions for the partition function for
any system size as well as its asymptotics and leading finite-size corrections. To complement this picture we use
a full lattice multicluster algorithm to study equilibrium properties of this model for systems of moderate size,
up to L = 512. We compare the energy to its exactly known large-L asymptotics. We investigate the model’s
infinite-order phase transition by means of finite-size scaling for an observable derived from the staggered
polarization in order to test the method put forward in our recent joint work with Duine and Barkema. In addition
we analyze local properties of the model. Our data are perfectly consistent with analytical expressions for the
arctic curves. We investigate the structure inside the temperate region of the lattice, confirming the oscillations
in vertex densities that were first observed by Syljuåsen and Zvonarev and recently studied by Lyberg et al. We
point out “(anti)ferroelectric” oscillations close to the corresponding frozen regions as well as “higher-order”
oscillations forming an intricate pattern with saddle-point-like features.
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I. INTRODUCTION

The F model for antiferroelectric materials [1] is a special
case of the six-vertex, or ice-type, model that exhibits an
infinite-order phase transition (IOPT) [2]. Among others,
studying the F model may thus be instructive to get a
better grasp of the well-known IOPT of the two-dimensional
XY model as it offers a more simple setting in which the
microscopic degrees of freedom are discrete. By definition, at
an IOPT the physics of a system does not change as abruptly
as it does for finite-order phase transitions, which makes
numerical investigations a rather subtle issue. In Ref. [3],
together with Duine and Barkema, we proposed a new
observable for numerical studies of IOPTs: the logarithmic
derivative of the (smooth but not analytic) order parameter for
the IOPT. By construction this quantity exhibits a peak at the
critical, or rather “transition,” temperature βc of the model,
which makes it a suitable candidate for the analysis of the
physics near the IOPT. We used a finite-size scaling analysis
to compare the performance of our observable with that of
other observables commonly used in the literature, focusing
on the F model with periodic boundary conditions (PBCs) in
both directions. In the present work we test the observable
in a different, yet closely related, setting. At the same time
this allows us to investigate other intriguing features of the F
model, such as the dependence of its thermodynamics, i.e., the
behavior at asymptotically large system size, on the boundary
conditions.

The microscopic degrees of freedom of the six-vertex
model are arrows pointing in either direction along the edges
of a square lattice. Around each vertex the arrows have to
obey the so-called ice rule, which turns out to be rather
restrictive [4]. On the one hand this condition famously allows
for a Bethe-ansatz analysis that provides exact results (see, e.g.,
Ref. [5] and references therein) in the thermodynamic limit. On
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the other hand it causes the model’s thermodynamics to depend
on the choice of boundary conditions used at the intermediate
analysis for finite size [6–8]. (In fact, this phenomenon in
the context of graphene [9] originally motivated Ref. [3] and
the present work.) PBCs are commonly employed and are
compatible with the translational invariance that is present
for infinite systems. For the six-vertex model this choice is
important for the Bethe ansatz; cf. Ref. [2]. This choice was
also used in our previous work [3]. The same thermodynamic
behavior is obtained for “free” and (conjecturally) “Néel”
boundary conditions, where the arrows on the external edges
are respectively left free or fixed to alternate [6,10]. This is not
true for “ferroelectric” boundary conditions, where the arrows
at the boundary all point, e.g., up or to the right, but with
a single allowed microstate the resulting thermodynamics is
trivial.

An interesting intermediate case is provided by domain-
wall boundary conditions (DWBCs), where on two opposite
boundaries the arrows all point outwards whereas on the
other two boundaries all arrows point inwards. Such boundary
conditions first appeared in the calculation of norms of Bethe
vectors in the quantum inverse-scattering method (QISM)
in the work of Korepin [11]. Indeed, the QISM allows for
an algebraic construction of the Bethe-ansatz vectors for
the Heisenberg XXX and XXZ spin chains and the six-vertex
model with PBCs. These algebraic Bethe-ansatz vectors
simultaneously diagonalize the spin-chain Hamiltonian and
the transfer matrix of the six-vertex model provided the
parameters featuring in the ansatz obey constraints known as
the Bethe-ansatz equations; see, e.g., Ref. [5]. The partition
function of the six-vertex model with DWBCs, also known as
the domain-wall partition function, is related to the norm of
the algebraic Bethe-ansatz vectors [11]. Later this quantity was
found to have applications ranging from the combinatorics of
alternating-sign matrices [12,13] (see also the book [14]) to
one-dimensional quantum systems with inhomogeneous initial
conditions that are relevant for cold-atom physics [15] to three-
point amplitudes in N = 4 super Yang-Mills theory [16,17].
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The domain-wall partition function admits a concise closed
expression for all system sizes [18,19]. From this the infinite-
size asymptotics can be found [7,20], as well as the form of
the leading finite-size corrections [21–24]. The phase diagram
of the six-vertex model has the same form for PBCs and
DWBCs, but the details are different [7,20,25]; for example,
even though the F model exhibits an IOPT in both cases,
the free energy per site of the F model is larger for DWBCs
than for PBCs. In the past decade or so DWBCs have also
attracted considerable attention in relation to the arctic-curve
phenomenon: they lead to coexisting phases that are spatially
separated, with an arctic curve separating the “frozen” (or-
dered) and “temperate” spatial regions. This has been investi-
gated from numerical [26–29] as well as analytic [15,30–36]
viewpoints.

The remainder of this paper is organized as follows. In
Sec. II we review the F model with DWBCs, its partition
function, and the relevant observables; in particular we give a
description of the staggered six-vertex model (cf. Ref. [37])
in the framework of the QISM. The Monte Carlo cluster
algorithm and data processing are discussed in Sec. III. The
results are treated in Sec. IV. We fit the exact asymptotic
expressions for the energy, giving best estimates for the
free parameters in the finite-size corrections, and perform
a finite-size scaling analysis to test our observable at the
IOPT. Besides these global averaged properties we use our
simulations to examine local properties: the coexisting phases,
arctic curves, and the structure in the temperate region of the
lattice. We conclude with a summary and outlook in Sec. V.
In the Appendix we review the global symmetries of the F
model and describe how these can be exploited to sample the
full phase space. This work is supplemented by an interactive
Mathematica notebook [38] to illustrate some features in more
detail.

II. THEORY

A. The F model and domain walls

The six-vertex model, or (energetic) ice-type model, is a
vertex model on a square lattice. The arrows on the edges
are restricted by the ice rule, which demands that at every
vertex two arrows point inwards and two point outwards.
This leaves the six allowed vertex configurations shown in
Fig. 1. To each such vertex configuration i one assigns
(local) Boltzmann weight exp(−β εi), with β := 1/(kBT ) the
inverse temperature, kB > 0 the Boltzmann constant that we
put to unity from here on, and εi the energy of the vertex
configuration. The energy is additive, so the weight of a
configuration is the product of these local weights. Summing
these over all allowed configurations, subject to some choice
of boundary conditions, one obtains the model’s partition
function.

The F model can be obtained by taking ε1 = ε2 = ε3 = ε4

and ε5 = ε6 such that the corresponding vertex weights are
related by a = b = exp(−β ε) c for some ε > 0, making ver-
tices 5 and 6 energetically favorable. Interestingly, this model
has experimental realizations using artificial spin ice [39,40]
The phase diagram is shown in Fig. 2. For low enough
temperatures the system is in the antiferroelectric (AF) phase.

FIG. 1. The six vertices allowed by the ice rule and their
weights for the six-vertex model. Often one assumes arrow-reversal
symmetry: a± = a, b± = b, c± = c. The F model is defined by
a = b < c.

As temperature increases there is a transition to the disordered
(D) phase. For PBCs the ground state consists of vertices 5
and 6 alternating in a checkerboard-like manner; this global
AF order persists throughout the AF phase and is destroyed
upon entering the D phase.

The six-vertex model does not have a thermodynamic limit
in the usual sense: the physical properties of macroscopic
systems remain sensitive to the choice of boundary conditions.
Rather than imposing PBCs we consider an L×L portion of
the lattice with domain-wall boundary conditions (DWBCs),
where, e.g., the arrows on external edges are fixed and point
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FIG. 2. The phase diagram of the six-vertex model, parametrized
by the ratios a/c and b/c since common rescalings of the vertex
weights yield only an overall factor for the partition function.
The colors show contours for � at steps of 1/2 for −4 � � � 4.
The dashed arc is the so-called free-fermion line. The dotted line
corresponds to the F model, with an infinite-order phase transition
between the antiferroelectric (AF) and disordered (D) phases. The
thick dot is the ice point a = b = c, which can be interpreted as
β = 0. There are two ferroelectric (FE) phases.
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out (inwards) on all horizontal (vertical) edges. This change
in boundary conditions has several interesting consequences
that will be reviewed momentarily. Similarly to the case of
PBCs (see, e.g., Refs. [25,41] for reviews) one obtains exact
results for the DWBC F model by extending it to the six-vertex
model with general vertex weights a, b, and c as in Fig. 1. The
“reduced coupling constant” is defined as

� := a2 + b2 − c2

2 ab
. (1)

The phase diagram looks again like in Fig. 2. At high
temperatures the system is in the D phase, −1 < � < 1.
As the temperature is lowered it transitions into the AF
phase, � < −1, or one of the two the ferroelectric (FE)
phases, � > 1, depending on the ratio a:b:c. The D-AF phase
transition is of infinite order for PBCs [2] as well as DWBCs
(cf. the end of the following subsection) [20,23], while those
between the D and FE phases are of first order for PBCs [42]
but of second order for DWBCs [7,43].

In the FE phase the DWBCs are compatible with the FE
order, while for � < 1 (including the Fmodel) the boundaries
raise the free energy per site with respect to the case of PBCs.
Zinn-Justin [8] suggested that this can be understood as a con-
sequence of coexisting phases that are spatially separated. This
phenomenon had also been found for various choices of fixed
boundary conditions for the ice model (a = b = c) before [44].
Through the ice rule the DWBCs induce ordered regions that
extend deep into the bulk, and translational invariance is lost
even far away from the boundary. For example, the ground
state is no longer a checkerboard-like configuration of vertices
5 and 6 as for PBCs, which would after all lead to alternating
arrows along the boundary. Instead the DWBC ground state
consists of a central diamond-shaped area with AF order [see
also Fig. 7(a) below], consisting of vertices 5 and 6 like before,
enclosed by corners that each possess FE order, containing
a homogeneous configuration of one of the vertices 1 to 4.
(When L is even there are two ground-state configurations
of this form.) The domain walls thus raise the ground-state
energy per site in the thermodynamic limit from 0 for PBCs
to ε/2 for DWBCs. When the temperature becomes nonzero
a disordered region appears that separates the regions of AF
and FE order, and above the critical temperature the region
with AF order disappears to leave a central disordered region
surrounded by FE-ordered regions [26,27]. There are sharp
transitions between the regions, and the curves separating
the “frozen” (AF or FE ordered) and “temperate” regions
in the scaling limit (i.e.. let L → ∞ while decreasing the
lattice spacing to keep total system size fixed) are known as
arctic curves. These curves have four contact points with the
boundary, which for the F model lie in the middle of each
side [34]. For the “free-fermion point” � = 0 the arctic curve
is a circle [30] up to fluctuations of order ∼L1/3 governed
by an Airy process [31,32]. The arctic curve has also been
conjectured for |�| < 1 [33,34] and � < −1 [35], where the
latter focuses on the curve separating the FE and D regions.

Because we are interested in the F model from now on
we focus on the D and AF phases. The following (real)
parametrization of the vertex weights are often used in these

regimes [45]

D:

⎧⎨
⎩

a = sin(γ − t)
b = sin(γ + t)
c = sin 2γ

, AF:

⎧⎨
⎩

a = sinh(γ − t)
b = sinh(γ + t)
c = sinh 2γ

. (2)

Here t ∈ [−γ ,γ ] is called the spectral parameter, while γ � 0
is the crossing parameter, which for the D phase is further
restricted to γ < π/2; it is related to (1) via � = − cos 2γ for
D and � = − cosh 2γ for AF. The F model then corresponds
to t = 0, with � = 1 − e2βε/2 or γ encoding the temperature
as

eβε = c

a
= c

b
=

{
2 cos γ, γ ∈ [0,π/3] (D),
2 cosh γ, γ � 0 (AF). (3)

The phase transition of the F model occurs at βc ε = ln 2 (� =
−1, γ = 0). At this point the parametrization (2) vanishes
identically, which can be avoided by simultaneously rescaling
the weights to set c equal to unity. At the level of the
partition function this may be implemented by keeping (2) with
t = 0 but considering the “renormalized” partition function
c−L2

ZL(a,b,c) = ZL(a/c,b/c,1). We will denote this quantity
simply by ZL.

B. The domain-wall partition function

In some sense the six-vertex model with DWBCs is a
theorist’s dream. Unlike for PBCs, for which exact results are
only available for asymptotically large systems, the domain-
wall partition function ZL can be found exactly for all system
sizes. In brief the computation goes as follows; see, e.g.,
Ref. [13] for more details. For the ith row (j th column) of
the lattice one introduces a parameter ui (vj ). This allows
one to further extend the model to an inhomogeneous version
where the weight (2) at position (i,j ) features ui − vj instead
of t . Korepin [11] showed that ZL, viewed as a function of
the ui , obeys certain properties that determine it uniquely
in the inhomogeneous setting; most importantly there is a
recursion relation that expresses ZL with one ui specialized
to a specific value in terms of ZL−1. Izergin [18,19] found a
remarkably concise expression in the form of a determinant
of an L×L matrix. Since it meets all Korepin’s requirements,
Izergin’s determinant provides a formula for the domain-wall
partition function valid for all L. Upon carefully evaluating the
homogeneous limit, ui − vj → t for all i and j , this results in
a Hankel determinant:

ZL = (ab/c)L
2

∏L−1
k=0 (k!)2

det
L×L

M, Mi,j := ∂
i+j−2
t

c

ab
, (4)

where the definition of Mi,j assumes a parametrization of the
form (2). Specializing this quantity to the ice (or “combinato-
rial”) point a = b = c (so � = 1/2) one finds that the number
of domain-wall configurations for L = 1,2, . . . is 1, 2, 7, 42,
429, 7436, 218 348, . . .[13]. For the F-model the domain-wall
partition function factorizes as Z2L = 2 X2LX2L+1, Z2L+1 =
X2L+1X2L+2 for certain polynomials XL [13, Thm. 3]; cf.
Ref. [46, Thm. 4].

Using the explicit results found by Korepin–Izergin the
bulk free energy was evaluated in the thermodynamic limit
by Korepin and Zinn-Justin [7] and Zinn-Justin [20]. Prior to
that only some special cases in the D phase were known: the
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free-fermion point (� = 0, γ = π/4) corresponding to the
2-enumeration of alternating-sign matrices [12, Sec. 6], and
the ice point (� = 1/2, γ = π/3) as well as the point � =
−1/2 (γ = π/6) related to the 3-enumeration of alternating-
sign matrices [13]. Here we recall that the “c2-enumeration of
alternating-sign matrices (cf., e.g., Refs. [13,14]) is given by
cL ZL(1,1,c) since the DWBCs imply that # c− = L + # c+.

A rigorous and more detailed analysis for the D and
AF phases and the corresponding transition, which is most
relevant for us, was given by Bleher et al. [21–24]. The
asymptotic expressions for the domain-wall partition function
ZL, together with the first subleading terms in system size,
are as follows for the F model. In the disordered regime one
has [21]

Z
asym
D = CD(γ ) fD(γ )L

2
Lκ(γ ) [1 + O(L−α)], (5)

where CD(γ ) > 0 and α > 0 are unknown (cf. Ref. [47]
below), while

fD(γ ) = π tan γ

4γ
, κ(γ ) = 1

12
− 2γ 2

3π (π − 2γ )
. (6)

For the antiferroelectric regime one finds [22]

Z
asym
AF = CAF(γ ) fAF(γ )L

2
ϑ4(Lπ/2) [1 + O(L−1)], (7)

with CAF(γ ) > 0 another unknown normalization factor, and
the extensive part of the free energy is

fAF(γ ) = π tanh γ

4γ

ϑ ′
1(0)

ϑ1(π/2)
, (8)

where ϑ1 and ϑ4 denote the Jacobi theta functions with
temperature-dependent elliptic nome q := exp(−π2/2γ ).

From these exact asymptotics of the domain-wall partition
function it can be shown that, as for PBCs, the phase transition
is of infinite order [20,23]. Indeed, when subtracting the
regular part, (π/4γ ) tanh γ [differing from (6) only in the
parametrization used], from the AF free energy (8) one is
left with an expression that is smooth but exhibits an essential
singularity as γ → 0+.

C. The staggered polarization

An order parameter for the D–AF phase transition is
defined as follows. For any microstate C one can compute
the spontaneous staggered polarization P0(C). This quantity
is a measure of the likeness of C to one of the two AF
ground states C ′ of the system with PBCs. At each vertex
the local spontaneous staggered polarization can be defined
as

∑
i σiσ

′
i /4, where the sum is taken over the four edges

surrounding the vertex, and σi = ±1 (σ ′
i = ±1) depending on

whether arrows on those edges point outwards or inwards in C

(C ′). Then P0(C) is the sum over all these local quantities; since
the AF ground state is twofold degenerate its sign depends on
the choice of C ′ to which C is compared. Additionally, for
even L states come in pairs with equal energy but opposite
spontaneous staggered polarization. To avoid cancellation of
these contributions one defines the staggered polarization as
the thermal average P0 := 〈 |P0(C)| 〉 of the absolute value of
P0(C). Note that the situation is analogous to what happens
for the magnetization in the two-dimensional Ising model.

For the system with PBCs Baxter derived the exact large-
L asymptotics of P0 for all temperatures [37]. This quantity
becomes smoothly nonzero when the system transitions from
the D to the AF phase. Let us assume that it continues to be
a valid order parameter for the transition of the system with
DWBCs. For this case an expression for P0 that is manageable
for all system sizes is not known. We still have

P0 = d ln Z+
L (s)

ds

∣∣∣∣
s=0

, (9)

where ZL(s) is the partition function of the F model on an L×L

lattice with DWBCs in the presence of an external staggered
electric field of strength s � 0. The superscript “+” in (9)
indicates that the absolute value of each coefficient is to be
taken in order to prevent the aforementioned cancellation.
No analog of (4) is known when s 	= 0. Nevertheless the
framework of the quantum inverse-scattering method (QISM)
does allow for the direct computation of ZL(s) and thus P0,
for low system size. Let us indicate how this works; we refer
to Ref. [5] and references therein for more about the QISM.

Let us give a description of the staggered six-vertex model
based on Baxter [37]. We focus on the homogeneous case;
inhomogeneities may be incorporated as usual. View the
square lattice as being bipartite by dividing its vertices into
two sets in a checkerboard-like manner. The vertex weights
from Fig. 1 are given by a± = a, b± = b, while c± is equal
to e±sc on one sublattice (“black” vertices) and to e∓sc on the
other (“white” vertices). These vertex weights can be encoded
in the so-called R-matrix [48]

(10)

defined with respect to the basis for

the “incoming” lines and for the
“outgoing” lines at the vertex. In the diagrammatic notation
in (10) one should think of time running along the diagonal
from bottom left to top rig+ht. R(s) contains the vertex weights
for the “black” vertices and R(−s) for the “white” vertices.

A row of the lattice is described by the staggered (row-to-
row) monodromy matrix

(11)

where Rj contains the weights for the j th vertex in that row. It
is customary to write B(s) for the 2L×2L matrix sitting in the
upper right quadrant of T (s). This matrix accounts for a row of
the staggered six-vertex model with arrows on the horizontal
external edges pointing outwards as for DWBCs:

(12)
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The staggered domain-wall partition function can then be
expressed as an entry of a “staggered” product of L such
matrices [49]

(13)

For example, if L = 1 then B(s) is (
0 0

es c 0) and Z1(s) = es c.

The ordinary domain-wall partition function is recovered in
this algebraic language as ZL = ZL(0). We have evaluated (13)
for general s up to L = 12, accounting for little over 1016

configurations.
To conclude this section let us comment on whether quan-

tum integrability may be used to get some concise expression
for Z(s) valid for all L. The answer appears to be negative; at
least the Korepin-Izergin approach mentioned in Sec. II B does
not simply extend to s > 0. Indeed, one can still write four
recursion relations obeyed by the inhomogeneous extension
of (13), namely, for u1 = v1 − γ , u1 = vL + γ , uL = v1 + γ ,
and uL = vL − γ . However, for s 	= 0 the inhomogeneous
partition function is not symmetric in the ui , so one does not
get further Korepin-like recursion relations and the conditions
do not uniquely determine Z(s) for general L. The failure of
Z(s) to be symmetric in the ui is of course closely related
to the fact that the staggered R matrices (10) do not obey a
Yang–Baxter equation;– even writing the latter is problematic
since the triangle featuring in that relation is not bipartite. The
latter also obstructs the computation of P0 using the so-called
F-basis [50].

III. SIMULATIONS

Recall that the six-vertex model is equivalent to a height
model known as the (body-centred) solid-on-solid model [51].
In this picture fixed boundary conditions ensure that the height
of a configuration is bounded from below and above. Going
around the boundary in some direction the DWBCs correspond
to the height increasing along two opposite ends, say, from
0 to L, and then decreasing from L back to 0 along the
other two ends. There are unique configurations of minimal
and maximal height: the former corresponds to a valley of
height 0 running along one diagonal, and the latter to a ridge
of height L along the other diagonal. (Note that these are
the ground-state configurations of the two FE phases. The
AF ground state corresponds to a diamond-shaped plateau,
of height as close as possible to L/2, surrounded by steep
slopes to the pits and peaks at the corners.) The existence of
configurations of minimal and maximal height allows one to
use coupling from the past (CFTP) algorithms [52,53], which
ensure that one draws configurations from the equilibrium
distribution making it a perfect simulation. Although CFTP
can in principle be “shelled” around a variety of updating
schemes, in practice it is used only in combination with
local updates due to the difficulties that arise when the same
global update needs to be performed on both the lower and
higher configuration. In this work we prefer speed over sample
accuracy as this allows us to investigate much larger systems,
thus improving the reliability of our subsequent analysis of
the thermodynamic limit. Rather than CFTP we thus use the
full lattice multicluster algorithm [54], as in Ref. [3], with a
reported dynamic exponent z = 0.005 ± 0.022 for PBCs [55],

so that the correlation time can be considered independent
of system size in practice. The accuracy of our simulations
is checked in Sec. IV against the theoretical expressions that
were reviewed in Sec. II.

Our results are procured from Monte Carlo simulations
using the full lattice multicluster algorithm in combination
with parallel tempering [56]. We use the multihistogram
method [57,58] to interpolate observables, the energy and
staggered polarization in particular, in a temperature range
around the critical temperature. The F model is well suited
for both parallel tempering and the multihistogram method as
the specific heat is analytically known and bounded [cf. (14)
below] such that a set of temperatures can be constructed
a priori at which the energy distributions of “adjacent”
configurations overlap significantly. Given a configuration at
inverse temperature β, its neighboring configurations are set
at β ′ = β ± β/

√
Cv . In each simulation the acceptance prob-

ability of swapping two configurations is never less than 47%.
After each update a measurement is taken, with a minimum of
106 measurements per system size per temperature, at up to 30
different temperatures per system size. At each measurement
we determine the total energy and staggered polarization,
calculated based on the description in the first paragraph of
Sec. II C, of the system as well as the local vertex density at
each vertex in the system. In principle one can estimate the
thermal average of any time-independent (local) observable
that can be defined for the system, such as arrow correlations,
in a similar fashion. Note that all cluster updates that would
change the arrows on the boundary are rejected to preserve the
DWBCs.

IV. RESULTS

A. Energy and specific heat

Unlike the energy, the partition function itself can not be
directly measured in Monte Carlo simulations. Exceptions are
very small systems (L � 6) for which our simulations happen
to sample all microstates so that we are able to reconstruct
the full staggered partition function. The resulting expressions
for E(β) = 〈E(C)〉 and P0(β) precisely match those obtained
via the QISM as described in Sec. II C. In general just a part
of the phase space is sampled so the partition function cannot
be reconstructed as the total energy E(β) is not known for
all temperatures. However, the multihistogram method allows
us to use simulations done at finitely many temperatures to
determine the partition function, up to an overall factor, on
some finite temperature range.

Figure 3 shows the energy per site e(β) := E(β)/L2 and
the specific heat per site cv(β) := Cv(β)/L2 as functions of
inverse temperature. The simulation data are shown together
with the exact expressions for infinite size extracted from
Eqs. (5) and (7) using

E(β) = −∂ ln Z

∂β
,

Cv(β)

β2
= −∂E

∂β
= ∂2 ln Z

∂β2
, (14)

which yields e(βc) = 2/3 and cv(βc) = 8 ln2(2)/45. We ob-
serve a convergence of the simulation data to the analytically
known asymptotic values over all simulated temperature
ranges.
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FIG. 3. The average energy per site e(β) (top) and specific heat
per site cv(β) (bottom) as functions of inverse temperature β. The
critical points at βc are indicated by the gray lines. The black
lines are the exact asymptotic expressions extracted from Eqs. (5)
and (7). From the data points, indicating the temperatures at which the
simulations are done, the colored solid lines are calculated using the
multihistogram method. For both observables we see a convergence of
the data to the analytically known expressions in the thermodynamic
limit.

To investigate the effects of the subleading corrections in
the system size for the partition function further we focus on
the critical point. Because of the smoothness of the partition
function we can take the expressions for the disordered regime
and evaluate them at the phase transition. Starting from Eq. (5)
we find the following expression for the energy per site eL(βc)
at the critical point for system size L:

eL(βc) = 2

3
− 4

3π2

ln L

L2
− C1

L2
+ O(L−(α+2)), (15)

with C1 = −limγ→0+C ′
D(γ )/[γ CD(γ )] an unknown param-

eter. Equation (15) can be checked against the expression
for the energy derived directly from (4) for small system
sizes (L � 16) as well as the simulation data for moderate
system sizes. This is shown in Fig. 4 where e∞(βc) − eL(βc)
and E∞(βc) − EL(βc) are plotted versus system size. The
best unweighed fit, including only the asymptotically next-to-
leading correction C1 = 0.669 ± 0.019, already shows very
good agreement with both the exact and numerically obtained
values. For L � 141 this next-to-leading correction, ∼1/L2, is
more important than the asymptotically leading correction, ∼
ln L/L2. This means that even at L ∼ 1021 the two corrections
in (15) just differ by a factor 10. Also note the high precision
at which both the leading and first subleading corrections are
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FIG. 4. The difference between the energy per site (top) and total
energy of the system (bottom), with E∞(βc) := L2 e∞(βc) = 2 L2/3,
is shown as a function of system size. The solid blue disks represent
the exact known values for small system sizes obtained from Eq. (4).
The open red squares denote best estimates obtained from our
simulations. The error bars are estimates based on the fluctuations in
the energy and the number of measurements taken. The expressions
from Eq. (15) with only the leading correction (C1 ≡ C2 ≡ 0)
and with first subleading correction (C1 = 0.669 ± 0.018), as well
as the expression from Eq. (16) (C2 = 1.6 ± 1.2, C3 = 14 ± 12,
α = 1.91 ± 0.36 [47]) are shown as dotted, dashed, and solid curves,
respectively.

measurable for systems as large as L = 256, for which these
corrections are of the order 10−5.

A best estimate for the value of α can be found by assuming
that the subleading terms in (5), i.e., the O(L−α), is of the form
g(γ ) L−α . This yields

eL(βc) 
 2

3
− 4

3π2

ln L

L2
− C1

L2
+ C2

L2 (Lα + C3)
, (16)

where C2 = limγ→0+ g′(γ )/γ and C3 = limγ→0+ g(γ ) are
again unknown. We assume that these limits make sense; the
corrections are finite and must disappear for infinite systems.
If we use our best value for C1 and fit Eq. (16) to the energies
of small systems obtained from direct computation of (13)
(see again Fig. 4), the best estimates are C2 = 1.6 ± 1.2,
C3 = 14 ± 12, and α = 1.91 ± 0.36 [47] The inclusion of
these subleading correction does improve the fit qualitatively,
although error margins for best estimates of the parameters C2

and C3 are very large. With these values the crossover point
where the terms proportional to C1 and C2 become comparable
occurs already at L = 3.9. The exact analytical values for the
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FIG. 5. The observable d ln P0/dβ is shown in (a) as a function
of inverse temperature β for various system sizes up to L = 256.
In the thermodynamic limit, under the assumption that P0 is a valid
order parameter, this function must have its peak at the critical point.
In (b) the peak and the point where the curves attain 95% of their
peak height (at higher β) are scaled on top of each other, with the two
points indicated by black circles. From this collapse we extract the
peak position and typical width for further analysis; cf. Fig. 6.

energy can be computed using (4) or (13). We have done so
for L � 16; in either case most computation time was spent
on the derivation of the energy from the partition function at
the critical point rather than the calculation of the partition
function itself.

B. The logarithmic derivative of P0

Similar to our work in Ref. [3] we now study d ln P0/dβ,
which must have a peak at the critical point for infinitely
large systems if P0 is a true observable of the infinite-order
phase transition. As for the energy the multihistogram method
is used to obtain d ln P0/dβ by interpolation between the
temperatures at which the systems were simulated. Figure 5(a)
shows d ln P0/dβ as a function of inverse temperature for
various system sizes up to linear size L = 256. To obtain
a numerical collapse for each system size we determine the
peak coordinates (βmax,hmax) as well as the typical width w,
which is defined as the absolute difference between βmax and
the lower temperature at which d ln P0/dβ attains 95% of the
peak height. The numerical collapse is shown in Fig. 5(b);

unfortunately it is less clean than its counterpart for PBCs
in [3].

Previously we found behavioral similarities between
d ln P0/dβ and the susceptibility χ of the staggered polar-
ization for PBCs [3]. Since there are no known analytical
expressions for the asymptotic behavior of P0 for DWBCs we
fall back on the leading corrections known for PBCs [59]. In
the case of PBCs the leading correction for the peak position
of χ is of the form ln−2 L, and so for DWBCs one could make
the educated guess that the form of the peak of d ln P0/dβ

scales like

x = Ax + Bx ln−2 L + Cx ln−3/2 L + Dx ln−4 L, (17)

where x is either the inverse peak height h−1
max, the peak

width w, or the position βmax of the peak. Figure 6 shows
these quantities as a function of ln−2 L with the best fit
of Eq. (17) to the three characteristics. The best estimates
from an unweighed fit to all data points for the peak height
are Ah−1

max
= −0.01 ± 0.03, Bh−1

max
= 5.4 ± 1.1, Ch−1

max
= −3 ±

3, and Dh−1
max

= −2 ± 3. For the peak width the best estimates
are given by Aw = −0.009 ± 0.009, Bw = 2.4 ± 0.4, Cw =
−5 ± 1, and Dw = 3.0 ± 0.8. A similar fit for βmax does
not seem to work. Indeed, the best estimate for Aβmax =
0.83 ± 0.02 is far from the analytically known value βc = ln 2.
Alternatively one could fix Aβmax = βc, in which case the fit
does not go through the data in a clean fashion. Although this
method does not reliably give an estimate for the critical point
it does show the convergence of d ln P0/dβ to a Dirac delta-like
distribution as the system size tends to infinity. From Fig. 6
we see that in practice direct computation using (13) cannot
be used outside of the regime in which subleading finite-size
corrections are important. Simulations reveal the decrease in
βmax for increasing system size.

C. Arctic curves

So far we have investigated global quantities. For inho-
mogeneous (not translationally invariant) systems such as the
F model with DWBCs such properties provide rather coarse
information, as a lot of the local information is averaged away.

Figure 7 shows the thermally averaged c-vertex density
ρ(c), together with several contour lines, for a system of
linear size L = 512 at various temperatures: zero temperature
(β → ∞, � → −∞), below the critical point (β = 2βc,
� = −7), at the critical point (βc = ln 2, � = −1), at the free-
fermion point (β = βc/2, � = 0), and at infinite temperature
(β = 0, � = 1/2). For nonzero temperature 10 independent
simulations, each yielding 106 measurements, were performed
per temperature to calculate the local vertex density. We use
the global symmetries described in the Appendix to get a
smoother ρ(c)-profile by averaging at a given �. At the center
ρ(c) is always at a maximum. For zero temperature, the critical
temperature, and the free-fermion point the maximal values
are 1 and about 2/3 and 1/2, respectively. At low temperatures
there is a AF region, with constant ρ(c) close to unity signaling
its ordered nature. As the temperature rises from zero a
temperate region emerges that encloses the central AF region,
completely engulfing it at the critical point; cf. Ref. [27]. The
arctic curves, exactly known for � = −∞ and � = 0 [31,32]
and conjectured for � < 1 [33–35] are also shown in Fig. 7.
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FIG. 6. Values of the inverse peak height h−1
max (upper panel),

peak position βmax (central panel), and peak width w (lower panel)
are shown for d ln P0/dβ up to system size L = 256 as a scaled
function of ln−2 L. Exact values for small system sizes obtained from
Eq. (13) are shown as solid blue disks and best estimates obtained
from our simulations as open red squares. The best unweighed fits
of the form (17) are drawn as black dashed lines. For βmax a fit
through all data points results in a best estimate for the critical point
Aβmax = 0.87 ± 0.03 far from the analytically known value βc =
ln 2 ≈ 0.69. For h−1

max (Ah−1
max

= −0.01 ± 0.03, Bh−1
max

= 5.4 ± 1.1,
Ch−1

max
= −3 ± 3, Dh−1

max
= −2 ± 3), and w (Aw = −0.009 ± 0.009,

Bw = 2.4 ± 0.4, Cw = −5 ± 1, Dw = 3.0 ± 0.8) the fits work well
and are in agreement with d ln P0/dβ becoming a Dirac delta-like
distribution as L → ∞.

The outer contours are drawn at temperature-dependent values
for ρ(c) (see Table I) chosen such that those contours are
qualitatively comparable to the known and conjectured forms
of the arctic curves. We see that our data match very well with
the analytic expressions; for nonzero temperature the deviation
from zero of the values given in Table I is a measure of the
influence of finite-size effects.

TABLE I. The values for β and � at which the simulations for
Figs. 7(a)–7(e) were performed are given together with the values for
ρ(c) at which the outer contours are drawn. For finite � this gives a
measure of the deviation from the asymptotic values ρ(c) = 0 due to
finite-size effects.

(a) (b) (c) (d) (e)

β ∞ 2βc βc= ln 2 βc/2 0
� −∞ −7 −1 0 1/2
ρ(c) 0.500 0.012 0.021 0.018 0.014

D. Oscillations in vertex densities

Finally we turn to the structure inside the temperate region.
In Fig. 8 we show the thermally averaged densities ρ along
the diagonal from the FE region dominated by b−-vertices
(r = L/

√
2, bottom left corner in Fig. 7) to the center (r = 0)

of a system of size L = 512 at the critical point � = −1.
Along this diagonal one has ρ(a+) = ρ(a−). Moreover if one
considers r to cover the full diagonal, −L/

√
2 � r � L/

√
2,

then ρ(a±) and ρ(c±) are even as functions of r while r �→
−r reverses ρ(b+) ↔ ρ(b−). This once more allows us to
exploit the global symmetries as explained in the Appendix to
average for the densities of ρ(a±) and ρ(b±) in Fig. 8. Note
that some of these transformations exchange a± ↔ b± as they
involve arrow reversal to preserve the boundary conditions.
The Supplemental Material [38] shows the profiles of the six
vertex densities for L = 100 at different values of �.

Using numerics, Syljuåsen and Zvonarev [26] first noticed
oscillatory behavior (“small wiggles”) of the arrow polariza-
tion density for � < −1; see Fig. 6 therein [60]. Recently
Lyberg et al. [29] recovered these oscillations while studying
the local vertex densities exactly; cf. the asymptotic expression
of the arrow polarization found for � = 0 in Ref. [15], as well
as numerically. In Fig. 8 we observe oscillations for all of the
vertex densities in the temperate region. The wavelengths of
these oscillations are comparable functions of r for each of
the vertices. For lower temperatures these ripples are more
pronounced yet the region in which they appear, viz., the
temperate region, becomes smaller. The thermally averaged
densities ρ(c+) and ρ(c−) are in antiphase (cf. Fig. 8) so these
oscillations are masked if just ρ(c) is considered as in Fig. 7.
The complicated oscillatory behavior in the temperate region
can more clearly be seen from the thermally averaged c-vertex
density difference δρ(c) := ρ(c−) − ρ(c+). Let us emphasize
that we focus on the density difference for the c-vertices
because ρ(c±) are in antiphase, so δρ(c)/2 = ρ(c)/2 − ρ(c+)
allows us to study the oscillations of ρ(c+) about its “average”
by approximating the latter with the average ρ(c)/2 of ρ(c±).
We should also point out that ρ(c) itself exhibits oscillations,
visible near the arctic curve for finite � in Fig. 7; we have
verified, however, that the ρ(c)- and δρ(c)-oscillations have a
phase difference of π/2, so the ripples in Fig. 7 are related to
the “FE oscillations” that we will introduce momentarily.

To study the dependence on the system size of the
oscillations in the temperate region Fig. 9 shows δρ(c) along
the diagonal for system sizes L = 32 up to L = 512. The
wavelength of the oscillations is always largest at the edges
of the temperate region. We observe a sublinear growth of
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FIG. 7. The thermally averaged density ρ(c) of c vertices at L = 512 show phase separation at different temperatures. The density lies
between zero (shown in purple) and one (light red). White solid contour lines are drawn at the values 1/3,1/2,2/3, and 0.98, as indicated, of
ρ(c). The outer white solid contours are drawn at temperature-dependent values of ρ(c) (see Table I) that give the best qualitative match with
the arctic curves [31–35], which are shown as dashed black curves. At zero temperature (a) the AF region is a diamond. At slightly elevated
temperatures (b) the AF and FE regions are separated by a temperate region. As the temperature increases past its critical value (c), at which
the AF region disappears, the arctic curve deforms to a circle at the free-fermion point (d). The system at infinite temperature is shown in (e),
in which the arctic curve is a sort of inflated circle, with the arcs deformed somewhat towards the corners of the domain.

the wavelength in L. A best unweighed fit to the distance
between the center of the system (r = 0) and the position of
the maximum of δρ(c) gives (0.67 ± 0.06)L(0.553±0.016). Such
a fit cannot be made for the maximal amplitude as our data
are not accurate enough to distinguish between logarithmic
or power-law behavior. Still Fig. 9 does clearly show that the
average wave amplitude monotonically decreases with system
size, suggesting that the oscillations are finite-size effects, as
was conjectured in Ref. [26]; cf. Sec. 4 of Ref. [29].

Figure 10 shows the profile of δρ(c) for systems at � = −1
and � = −7. Inside the temperate region there are at least
two types of oscillations: one type, let us call them “AF
oscillations,” follows the boundary between the AF-frozen
and temperate regions (which at � = −1 degenerates to the
horizontal and vertical lines separating the quadrants), while
the other type, “FE oscillations,” follows the contours of the
arctic curve between the temperate and FE-frozen regions.
(Both of these types of oscillations may be discerned in
Ref. [29, Fig. 6] too, and the FE oscillations arguably already

L/ 2 0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ρ

r

c+ c−

b−

a±

b+

FIG. 8. The thermally averaged densities ρ for all six vertices in a
system of linear size L = 512 at the critical point � = −1 are shown
along the diagonal from the b−-dominated FE region to the center at
r = 0. The grey vertical line marks the transition between the FE and
temperate region [35]. Each vertex density oscillates in the temperate
region. Note that ρ(c±) are in antiphase around their average.

in Figs. 10 and 11 of Ref. [26]. We should point out that in
Ref. [26] the term “AF oscillations” is instead used for the
checkerboard patterns of c±-vertices typical for AF order.)

Interestingly, upon closer inspection of Fig. 10 we observe
a checkerboard-like pattern inside the AF oscillations (cf.
Ref. [29, Fig. 6, � = −10]), signaling site-to-site anticorre-
lations for ρ(c±) that persist over long distances along the
oscillations, and justifying the name “AF” for these types
of oscillations. Note that, albeit in a weaker form, these
checkerboards survive thermal averaging: unlike the one in
the AF region for even L it is a physical property of the
system; see also the Supplemental Material to this work [38].
We observe that the checkerboards in adjacent oscillations
are opposite, so the bands separating the oscillations can be
understood as the result of destructive interference between
the two checkerboards. Also note that such checkerboard-
like anticorrelations are invisible when one focusses on
the densities along the diagonal. Next we turn to the FE

L/ 2 0
−0.10

−0.05

0.00

0.05

r

δρ
(c

)

L
32
64
128
256
512

FIG. 9. The difference δρ(c) is shown as a function of distance
r along the diagonal to the center (at r = 0) for systems up to size
L = 512 at � = −1. The colored lines are a guide to the eye, and the
gray vertical line denotes the transition between the FE-frozen and
temperate region as in Ref. [35]. The wavelength of the oscillations
seems to increase sublinearly while the average wave amplitude
decreases monotonically with system size, suggesting that these are
finite-size effects.
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δρ(c)
0.045

0.000

−0.018 Δ=− 1

δρ(c)
0.082

0.000

−0.078 Δ=− 7

FIG. 10. The thermally averaged density difference δρ(c) is
shown for a system of size L = 512 at � = −1 (upper panel) and � =
−7 (lower panel). Each pixel corresponds to a vertex. The FE-frozen
region in the bottom left contains only b− vertices. Below the critical
point the AF-frozen region appears (lower panel) in which δρ(c) = 0
due to the twofold degeneracy for even L. Inside the intermediate
temperate region at least two types of oscillations are visible. There
appear to be checkerboard-like patterns in the “AF oscillations” even
after thermal averaging, with opposite checkerboards in neighboring
oscillations. The “FE oscillations” are dominated by the vertices
constituting the FE-frozen region (here b−), with δρ(c) > 0 between
them.

oscillations. The density profiles of all six vertices for L = 100
can be found in the Supplemental Material [38]. The profile of
ρ(b−) reveals that the interior of the FE oscillations near the

FIG. 11. The thermally averaged c±-density difference δρ(c) for
size L = 512 at � = −1 (upper panel), truncated at 10% of the values
from the upper panel in Fig. 10. Every pixel represents one vertex.
This reveals weak “higher-order” oscillations in the temperate region
with various saddle-point-like features; we can distinguish at least
four of these along the diagonal, and more along the top and right.
The lower panels show δρ(c) at � = 0 (left) and � = 1/2 (right),
each again truncated at 10% of its minimal and maximal value.

frozen region dominated by b− are also dominated by b−, and
similar statements are true for the other quadrants. Figure 10
further shows that the regions between the FE oscillations
are dominated by c−-vertices (δρ(c) > 0) to account for
the constraint # c− > # c+ imposed by the DWBCs. Notice
that as the FE oscillations approach the median, at the
top of Fig. 10, they reduce to a checkerboard pattern on
the median to merge with the interior of the largest AF
oscillation.

To justify our observations let us explain in more detail how
Fig. 10 was obtained. We use the same data as for Fig. 7, based
on 10 independent simulations each with 106 measurements of
local vertex density. We use the model’s global symmetries to
produce further configurations from those obtained from our
simulations and sample over the full phase space as described
in the Appendix. Averaging over these configurations we
obtain the profile for δρ(c) shown in Fig. 10, which correctly
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vanishes both in the FE and AF regions. For even as well as
odd L, however, the site-to-site anticorrelations between the
AF oscillations in the temperate region survive this averaging:
unlike for the checkerboard in the AF region for even L, this
seems to be a statistical property of the system. See also (the
end of) the Appendix and the Supplemental Material [38].

Besides the AF and FE oscillations following the curves
separating the temperate and corresponding frozen regions
there are also additional “higher-order” oscillations in δρ(c)
that form intricate patterns in the temperate region that are
barely visible in Fig. 10. To visualize these oscillations more
clearly we truncate δρ(c) in the upper panel of Fig. 11 at 10%
of the minimal and maximal values from the upper panel of
Fig. 10. Even though the relative errors sometimes exceed
the average value for very small δρ(c) the patterns exhibit
a lot of structure, and cannot be attributed to random noise.
These higher-order oscillations exhibit several saddle-point-
like patterns around the center of the temperate region. The
structure is similar for lower �; we have chosen � = −1 to get
the largest temperate region. Some higher-order oscillations
can be found in Fig. 7 of Ref. [29] for � = −10.

The oscillations persist above the critical point. At � =
−1/2 one can see FE oscillations in Fig. 6 of Ref. [29]. Going
deeper into the D phase the profiles of δρ(c) on the free-fermion
line (� = 0) and at the ice point (� = 1/2) are shown in the
lower panels of Fig. 11. At � = 0 the FE oscillations are
still clearly visible. Interestingly, even though the AF region
has disappeared it leaves behind a “ghost” in the form of AF
oscillations. Close inspection suggests there are higher-order
oscillations too, with at least one saddle-point-like feature. At
� = 1/2 most structure of the temperate region is beyond the
resolution of our data, yet one can still see weak FE oscillations
as well as the tails of AF oscillations in the top-left and bottom-
right corners of that panel.

V. SUMMARY AND OUTLOOK

In this work we have used Monte Carlo simulations to study
the F model with DWBCs. Although a closed form for the
partition function is analytically known for all system sizes, in
practice it is particularly useful for the exact computation of
certain observables for fairly small systems and to obtain the
asymptotic form and its finite-size corrections. Simulations
allow for the investigation of systems of moderate size to
complement such analytic results as well as to study properties
that are not (yet) understood from an analytic point of view.

We have given best estimates for the parameters in the first
three subleading finite-size corrections to the energy derived
from the asymptotic partition function in Eq. (5) at the critical
point by fits to the average energies obtained from simulations.
This tests the reliability of our simulations; they are precise
enough to distinguish the different subleading corrections
(Fig. 4). The best estimates for the parameters suggest that the
first subleading correction is non-negligible in comparison to
the leading correction even for macroscopically sized systems,
with L ∼ 1021. We find α = 1.91 ± 0.39 for a previously
unknown [47] parameter in the asymptotic expression (5) of
the domain-wall partition function in the disordered regime
found by Bleher and Fokin [21].

Following joint work with Duine and Barkema [3] we
have further investigated the order parameter based on the
staggered polarization P0, of which we gave a description in the
framework of the quantum-inverse scattering method (QISM).
From a theoretical point of view it would be interesting to
explore whether it is possible to adapt Baxter’s work [37]
to obtain an exact expression for P0 in the case of domain
walls, at least in the thermodynamic limit, but we have not
done so in the present work. If P0 is a true order parameter
for the model’s IOPT, i.e., it is constant on one side of the
critical temperature and smoothly starts to change at the phase
transition, then the observable d ln P0/dβ must by definition
have a divergence at the critical point for infinitely large
systems. Using finite-size scaling, and extrapolating to the
asymptotic case, we have found that d ln P0/dβ does indeed
converge to a delta distribution (see Fig. 6), although it fails
to give an accurate estimate for the (analytically known)
temperature at which the phase transition occurs. Of course
the DWBCs together with the ice rule make the system that
we have investigated rather special; the observable proposed in
Ref. [3] may still be useful for the investigation of other models
exhibiting an IOPT. One could also try using the susceptibility
of P0 instead; most of its peaks lie outside our simulation range,
though the peaks that are visible appear to have a comparable
quality for finite-size scaling.

In addition to these global (spatially averaged) properties
we have studied local properties of the system. The profiles of
the c-vertex density ρ(c) obtained for systems of size L = 512
at various temperatures with � � 1/2 are shown in Fig. 7. In
the antiferroelectric (AF) phase our simulations corroborate
the coexistence of three spatially separated phases as found
in Refs. [26,27], with a flat central region exhibiting frozen
AF order surrounded by a disordered (D) “temperate” region
and ferroelectrically (FE) ordered corners. Our data agree
very well with the arctic curves conjectured by Colomo and
Pronko [34] and Colomo, Pronko, and Zinn-Justin [35]. It
would be desirable to have similar analytic expressions for
the “antartic curve” separating the temperate and AF-frozen
regions for � < −1.

Regarding the structure inside the temperate region our
simulations confirm the oscillations first found by Syljuåsen
and Zvonarev [26] and recently recovered by Lyberg et al. [29].
Our findings agree with those works, reproducing the patterns
visible there, and uncover interesting additional features.
Each vertex density oscillates with the same dependence of
the wavelength on the position along the diagonal (Fig. 8).
Our data confirm the conjecture of [26], in accordance with
Ref. [29], that these oscillations are finite-size effects: their
wavelengths appear to grow sublinearly, roughly as (0.67 ±
0.06)L(0.553±0.016), and their average amplitudes decrease with
system size (Fig. 9). Our most detailed result regarding
the structure of the temperate region are Figs. 10 and 11.
Here we have chosen to focus on the density difference for
the c-vertices since ρ(c±) are in antiphase (cf. Fig. 8), so
δρ(c) := ρ(c−) − ρ(c+) allows us to study the deviation of one
type of vertex around its “average” without having to know an
expression for the latter. We find several types of oscillations.
The “AF” oscillations close to the AF-frozen region appear to
be made up of checkerboards of c±-vertices that (unlike the
AF region in case of even L) survive thermal averaging for
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even as well as odd L, and are opposite between neighboring
oscillations. The “FE” oscillations near the FE-frozen region
are dominated by the vertices constituting that frozen region;
between these oscillations there is a surplus of the type of
c-vertices favored by the DWBCs. In addition there appear to
be weak “higher-order” oscillations in c±-densities, forming
various saddle-point-like patterns. The oscillations seem to
grow weaker as � increases. Nevertheless the oscillations
persist well into the D phase, with FE and AF oscillations
remaining partially visible at � = 1/2 (Fig. 11). A more
quantitative understanding of these vertex-density oscillations
and arrow correlations in the temperate region is desirable,
both via simulations and through the analytic methods of
Refs. [31,32,36], or [15]. In fact, similar finite-size oscillatory
behavior is known to occur for the eigenvalue distributions in
random-matrix models [61], see e.g. [62]; this might shed light
on the oscillations at least for � = 0; cf. Refs. [31,32].

In the near future we plan to report on phase coexis-
tence, arctic-curve phenomena, and the structure of the D
region for various other choices of boundary conditions; cf.
Ref. [46]. Another interesting direction is the study the case
of quantum-integrable “solid-on-solid” (SOS) models, with
weights associated to the dynamical Yang-Baxter equation.
The trigonometric SOS model is a one-parameter extension of
the six-vertex model, and it would be interesting to understand
the dependence of those phenomena on the additional “dy-
namical” or “height” parameter. It would also be very exciting
if the theoretical and numerical investigations of the F model
with domain walls would be complemented by experimental
work as in, e.g., Ref. [39].
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APPENDIX: RELATING CONFIGURATIONS WITH
OPPOSITE CHECKERBOARDS IN THE AF REGION

In this appendix we show that the F model has symmetries
that can be used to sample the whole of phase space starting
from any initial configuration obeying the ice rule and DWBCs.
We should emphasize that the symmetries we have in mind are
symmetries of the model, not of the individual configurations.

We start locally, with the symmetries of the F model at
the level of individual vertices shown in Fig. 1. Such local
symmetries must certainly preserve the lattice near the vertex,
i.e., the vertex with its four surrounding edges, so we are led to
the dihedral group D4 of symmetries of the square. Concretely
it contains rotations over multiples of π/2 as well as reflections

in the horizontal, vertical, and (anti)diagonal line through the
vertex. These operations clearly preserve the ice rule. In fact,
when the edges carry arrows there is one more thing we can
do that is compatible with the ice rule: reversing all arrows,
yielding an action of Z2 that commutes with the D4.

One can check the preceding operations change the vertex
weights as follows:

where for each reflection we omit the two weights it preserves.
Notice that, when using arrows along the edges to represent
the microscopic degrees of freedom, the F model may be
characterized as the special case of the six-vertex model for
which the vertex weights are invariant under rotations over
π/2, and that they are then further invariant under all of
D4×Z2.

At the global level D4×Z2 acts on the configurations, where
D4 acts by symmetries of the L×L lattice if we would forget
about the arrows. Not all of these global maps are allowed,
though. Regarding the operations corresponding to D4 the
DWBCs are preserved only by a subgroup isomorphic to
Z2×Z2 corresponding to rotation over π and reflection in the
horizontal and vertical symmetry axes of the lattice. However,
that the remaining operations in D4 also preserve the DWBCs
if we combine them with arrow reversal [63].

The next question is how these operations act at the level
of configurations. Recall that there are two AF ground states,
with opposite checkerboard patterns for the alternating c+-
and c−-vertices constituting the AF region; let us call them
“0” and “1.” Below the critical temperature (� < −1) any
configuration is closer (more similar) to one of these two
ground states. Accordingly, the phase space decomposes into
two parts, say, Ci , with i ∈ Ci for i = 0,1. (See also the
Supplemental Material [38].) For sufficiently low temperatures
(or �) and large enough L it costs a macroscopically large
amount of energy to go from the energetically favorable part of
C0, i.e., configurations close enough to 0, to the corresponding
part ofC1: the system is practically trapped in one of these parts.
Since we start our Monte Carlo algorithm from one of the two
AF ground states we thus expect to stay in the corresponding
part of the phase space as the system thermalizes for � < −1
and large enough L.

Now we return to the model’s symmetries. Consider the
two AF ground states, 0 and 1. When L is even the four axes
of reflection symmetry meet in the middle of the central face
of the lattice, and it follows that the model’s symmetries fall
into two classes:

(A1)

where “∗” means combination with arrow reversal. More
generally, (A1) indicates how the model’s global symmetries
relate the Ci .
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Since for the F model these operations do not change the
vertex weights, they preserve the energy of the configurations.
Given any configuration we can act by the model’s symmetries
to generate further configurations of the same energy; we
get up to eight configurations in this way, though it may be
only four or two if the original configuration happened to
possess some amount of symmetry. (One should really check
for such symmetries of the original configuration to avoid

overcounting, but at high enough L we can skip this step as
such symmetric configurations make up a negligible portion
of the phase space.) Half of the configurations we get in this
way lie in C0 and the other half in C1. The upshot is that
after having run the Monte Carlo simulation we can use the
model’s symmetries to sample the full phase space, even from
simulations that correctly sample around one of the two ground
states.

[1] F. Rys, Helv. Phys. Acta 36, 537 (1963).
[2] E. H. Lieb, Phys. Rev. Lett. 18, 1046 (1967).
[3] R. Keesman, J. Lamers, R. A. Duine, and G. T. Barkema, J. Stat.

Mech. (2016) 093201.
[4] To see that the ice rule is crucial here consider the eight-vertex

model, where the ice rule is slightly relaxed. This model cannot
be tackled with a straightforward Bethe-ansatz analysis, and
its thermodynamics are insensitive to the choice of boundary
conditions; cf. Ref. [46] below.

[5] J. Lamers, PoS Modave2014, 001 (2014).
[6] H. J. Brascamp, H. Kunz, and F. Y. Wu, J. Math. Phys. 14, 1927

(1973).
[7] V. Korepin and P. Zinn-Justin, J. Phys. A: Math. Gen. 33, 7053

(2000).
[8] P. Zinn-Justin, arXiv:cond-mat/0205192 (2002).
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