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Universal spatiotemporal scaling of distortions in a drifting lattice
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We study the dynamical response to small distortions of a lattice about its uniform state, drifting through
a dissipative medium due to an external force, and show, analytically and numerically, that the fluctuations,
both transverse and longitudinal to the direction of the drift, exhibit spatiotemporal scaling belonging to the
Kardar-Parisi-Zhang universality class. Further, we predict that a colloidal crystal drifting in a constant electric
field is linearly stable against distortions and the distortions propagate as underdamped waves.
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I. INTRODUCTION

It is well known from elastic theory that distortions in
a crystal at thermal equilibrium propagate as waves with a
speed determined by the elastic constants of the lattice [1,2].
The response of a lattice drifting due to an external force
through a dissipative medium was first addressed by Lahiri
and Ramaswamy (LR) in Ref. [3]. The linear stability of the
lattice was predicted to depend on certain model parameters
that govern the strain dependence of the mobility of the
lattice. The role of anharmonic effects and random fluctuations
(possibly of nonequilibrium origin) on the macroscopic nature
of steady states, including scaling properties, is still unknown.
This potentially opens up the possibility that either the
anharmonic effects drive the ensuing steady state away from its
equilibrium counterpart, or leave the system macroscopically
indistinguishable from a crystal in equilibrium. In this paper,
we address these issues. Specifically, we ask: What is the
macroscopic nature of the drifting nonequilibrium state?

The study of drifting lattices began with the work of
Crowley [4] who predicted that an array of particles moving
through a viscous fluid is unstable to clumping due to
hydrodynamic forces alone, a result he verified experimentally
by dropping steel balls into turpentine oil. The role of elastic
and Brownian forces on this lattice instability was analyzed
by Lahiri and Ramaswamy [3]. A set of continuum equations
for the displacement fields of the drifting lattice, constructed
using symmetry arguments, showed that the lattice was linearly
unstable to clumping, even in the presence of elasticity. The
role of nonlinearities and noise on the linear instability was
not analyzed. Numerical studies of an equivalent lattice-gas
model describing the coupled dynamics of concentration and
tilt fields showed that the lattice was stable to distortions up
to a critical Péclet number at which a nonequilibrium phase
transition to a clumped state occurred.

In this work, we find that the nonequilibrium steady state of
the drifting lattice is phenomenally different from its equilib-
rium counterpart. We show that small, long-wavelength lattice
distortions exhibit spatiotemporal scaling both transverse and
longitudinal to the direction of drift of the lattice and establish,
analytically and numerically, that the fluctuations display
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dynamical scaling that belongs to the Kardar-Parisi-Zhang
(KPZ) universality class [5]. As an example of this drifting
nonequilibrium state, we analyze the dynamics of distortions
in a colloidal crystal drifting in a constant electric field and
show that it has a linearly stable state in which long wavelength
distortions propagate as under damped waves. The wave
speeds and the length scale beyond which these propagating
waves can be detected are also calculated in terms of the driving
force and the parameters defining their interactions.

II. DRIFTING LATTICES IN DISSIPATIVE MEDIA

For a driven, nonequilibrium system such as ours, the
equations of motion for the degrees of freedom must be written
down directly, by using symmetry arguments. Physically, the
equations of motion for the displacement field u(r,t) of a lattice
moving in a frictional medium, ignoring inertia completely,
must obey the equation

u̇ = M(∇u) · Ftot = M(∇u) · (F + D∇∇u + η). (1)

Here, M is the mobility tensor that depends on the local
lattice strain, Ftot is the total force consisting of the external
driving force F, elastic forces due to lattice distortions D∇∇u
and the random force η acting on the particle due to the
surrounding fluid. The mobility tensor has the form M =
M0 + A(∇u) + O(∇u)2 where M0 is the mean mobility of

the undistorted lattice, A is the first-order correction to it due
to lattice distortions and the successive terms higher-order
corrections [3]. These terms arise from interactions between
particles in the surrounding viscous medium.

For a lattice in the (x,y) plane drifting along the ẑ direction
the equations of motion for the displacement field (u⊥,uz) are
isotropic in the transverse [⊥ or (x,y) ] plane but not invariant
under z → −z. The equations hence have the form:

u̇⊥ = λ1∂zu⊥ + λ2∇⊥uz + D1∇2
⊥u⊥ + D3∂

2
z u⊥

+O(∇u∇u) + η⊥, (2)

u̇z = λ3∇⊥ · u⊥ + λ4∂zuz + D2∇2
⊥uz + D4∂

2
z uz

+D5∂z∇⊥ · u⊥ + O(∇u∇u) + ηz. (3)

These follow from Eq. (1) albeit in the frame of the drifting
lattice. The constant term in (1) has hence been omitted.
The λi s are phenomenological parameters arising from the
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strain dependence of the mobility and depend crucially on the
details of the hydrodynamic interaction between particles in
the system. They are proportional to the drift speed of the
lattice. The Di s are diffusion constants coming from elastic
restoring forces in Eq. (1). η⊥ and ηz are Gaussian white noise
in the lattice plane and perpendicular to it, respectively. There
are a total of nine quadratic nonlinearities, O(∇u∇u) terms,
in these equations which arise from the dependence of the λi s
on the local concentration and tilt (∇⊥uz).

In this paper, we work with a simplified version of these
equations in one dimension [3]. The displacement field u(r,t)
of the lattice then has only two components (ux,uz) and only
derivatives in x are considered; those along the direction of
drift ẑ are averaged out. With this simplification Eqs. (2), (3)
reduce to

u̇x = λ2∂xuz + γ1∂xux∂xuz + D1∂
2
xux + ηx, (4)

u̇z = λ3∂xux + γ2(∂xux)2 + γ3(∂xuz)
2 + D2∂

2
xuz + ηz. (5)

Only three quadratic nonlinearities are allowed by symmetry
and only Eq. (5) has the KPZ nonlinearity (∂xuz)2 . The
equations are coupled at the linear level and can be de-
coupled, at the linear level, for fields that are appropriate
linear combinations of ux,uz. The resulting equations are
coupled KPZ equations [see Eqs. (12), (13)]. Coupled KPZ
equations arise in various contexts such as the dynamic
roughening of directed lines [6,7], stochastic lattice gases [8,9],
magnetohydrodynamics [10–12], and anharmonic chains on a
mesoscopic scale [13]. We refer the reader to Refs. [9,13–17]
for a perspective on the subject and an extensive analysis of
the equations. Its equivalence with the nonlinear fluctuating
hydrodynamics for multicomponent driven stochastic lattice
gases was established in Ref. [9]. This was tested using a
Monte Carlo simulation of the two-component AHR (Arndt,
Heinzel, and Rittenberg) model, which confirmed that the two
modes satisfy KPZ scaling, including the scaling function
and the dependence on the nonuniversal coefficients. Similar
equations, arising in the context of anharmonic chains, have
been dealt with using a one-loop approximation. Analytic
predictions and numerical solutions of the corresponding
mode-coupling equations establish KPZ scaling, including the
nonuniversal scaling coefficient, for the propagative sound
modes in the system [13]. Even the form of the scaling function
for these modes was shown to be very close (differing by a
few percent) to the KPZ scaling function.

Linearizing and Fourier transforming Eqs. (4), (5) in space
and time, as in Ref. [3], yields the dispersion relations for the
two modes of the system

ω = −ik2(D1 + D2)

2
± 1

2

√
4λ2λ3k2 − k4(D1 − D2)2, (6)

where ω is the frequency and k the wave number of the mode.
For long-wavelength (small-k) distortions this implies that
the crystal is linearly stable only when λ2λ3 > 0. Symmetry
arguments alone cannot a priori determine whether the lattice
is stable as the signs of these parameters depend on the
details of the interaction between particles, which is system
dependent. For a sedimenting lattice the product λ2λ3 was
calculated and found to be negative [3] implying a linear

instability towards clumping. We calculate λ2λ3 for a colloidal
crystal drifting due to an applied electric field before we
address the effect of nonlinearities.

III. COLLOIDAL CRYSTAL IN AN ELECTRIC FIELD

Consider a one-dimensional (1D) lattice of colloidal parti-
cles of radius a with lattice spacing d in the x direction and
the electric field E perpendicular to the lattice (as in Fig. 1). A
single charged colloid drifts in the field with constant velocity,
V = ξE, where ξ is its mobility. Its motion results from a
complex interplay of electrostatic, hydrodynamic, and thermal
forces and its mobility depends on various parameters such as
the thickness of the electric double layer of small counterions,
surface properties, charge density, ion concentration, and
lipophilicity of the colloid and the specific properties of
counterions and salt ions. There is as yet no expression for
the mobility applicable, in general, as a function of these
parameters [18–21]. The mobility of a charged sphere, in the
thin double layer limit, was first derived by Smoluchowski [22]
to be ξ0 = εζ/η̄, where ε and η̄ are the dielectric permittivity
and viscosity of the colloidal solution and ζ the zeta potential
on the surface of the sphere. For double layers of arbitrary
thickness but small ζ , Smoluchowski’s result for the mobility
was modified by Henry to ξ = ξ0f (κa) where κ−1 is the Debye
length [23] and f (κa) Henry’s function, which is an increasing
function of κa. The mobility of a particle is modified in the
presence of other particles due to interactions between them.
For two identical spherical particles of radius a, the mobility
was derived using the method of reflections by Ennis et al.
[24]. The electrophoretic velocity of a sphere in the presence
of an identical sphere at a distance d is given by

V = ξ

4π
{A‖ee + A⊥(I − ee) + [B‖ee + B⊥(I − ee)]} · E.

(7)

Here e is a unit vector along the line joining the two spheres
and I the unit tensor of rank two. A||, A⊥, B||, and B⊥ have
the form (keeping only the leading-order dependence on d ):
A|| = 1 − ( a

d
)3, A⊥ = 1 + 1

2 ( a
d

)3, B|| = ( a
d

)3 L(κa)
f (κa) , and B⊥ =

−( a
d

)3 L(κa)
2f (κa) . The function L(κa) decreases monotonically

with κa. The dominant interaction between two particles, as
implied by this result, decays as 1/d3. Both f (κa) and L(κa)
tend to 1 as κa → ∞. In this limit the result for thin diffuse

z

d

d

ε
θ

δ
x

E

d1

FIG. 1. Schematic diagram to show displacement fields. δ and
ε are the displacements of a particle in x and z direction from its
original position.
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layers is recovered where particles do not interact with each
other.

According to (7) a pair of particles at distance d apart (as in
Fig. 1) move in the z direction with speed v0 given by Eq. (7).
If one of them is displaced by δ and ε along and perpendicular,
respectively, to the lattice at some instant of time, the change
in velocity vx and vz along the x and z directions due to
the displacement are

vx = C

[
3

2

(
ε

d

)
− 6

(
δ

d

)(
ε

d

)]
, (8)

vz = C

[
3

2

(
δ

d

)
− 3

(
δ

d

)2

+ 9

4

(
ε

d

)2]
, (9)

where C ≈ v0( a
d

)3( L(κa)
f (κa) − 1). Using the expressions for L(κa)

and f (κa) from Ref. [24] we find that L(κa)/f (κa) > 1,
for all κa and hence C > 0. This along with Eqs. (9), (8)
implies that the spheres fall slower when they are closer and
a displacement along the field travels in the +x direction.
The implications of this for the drifting lattice are evident.
A perfect lattice drifts uniformly in the z direction. If the
lattice were perturbed, say a region of it compressed, then it
would drift slower in this region. With time, this results in
a tilt of the interfacial region between the compressed and
uncompressed regions. These tilted regions drift laterally as
implied by Eq. (8). The direction of this lateral drift (given
C > 0) is such that the tilted regions move apart dilating the
compressed regions. The lattice is thus stable to distortions. If
we approximate ∂xux ≈ δ

d
and ∂xuz ≈ ε

d
, then the expressions

on the right-hand side (RHS) of Eqs. (8), (9) are exactly
the terms on the RHS of Eqs. (4), (5). The coefficients λ2,
λ3 for the drifting lattice can thus be obtained by summing
the contributions of the nearest neighbors to the change in
velocity vx and vz of a particle in the lattice. Our results
for two particles allow us to conclude that λ2λ3 > 0 since C

is always greater than zero. The speed of the propagating
modes v ∝ √

λ2λ3 ≈ C. For particles of radius a = 1μm,
κa = 2.5, d = 3a in an electric field of strength 150 V/m, we
estimate the speed of the propagating modes to be 10 μm/s.
These propagating modes dominate beyond a length scale
lc ∼ 2πD/

√
λ2λ3. We estimate lc ≈ 50 d for this system. It

should hence be possible to detect these modes in systems that
are larger than lc. A similar analysis for a 1D lattice drifting
parallel to the electric field indicates that the lattice is linearly
stable. This is a general result applicable to all drifting lattices.
Having established that the lattice is linearly stable, we ask
what is the effect of the nonlinearities and noise on this stable
state.

IV. NONLINEARITIES AND FLUCTUATIONS

To analyze the effect of nonlinearities and fluctuations
on the linearly stable state, approximate methods must be
used as Eqs. (4)–(5) cannot be solved in closed form. Exact
results pertaining to their spatial and temporal scaling behavior
can be obtained using a dynamic renormalization group
(DRG) analysis [25,26]. In particular, the roughness exponents
χx,χz and dynamic exponents zx,zz of the fields ux and uz,

respectively, defined by the scaling forms of their correlation
functions

Cxx(x,t) = 〈ux(x,t)ux(0,0)〉 = Ax |x|2χx fx(x/tzx ), (10)

Czz(x,t) = 〈uz(x,t)uz(0,0)〉 = Az|x|2χzfz(x/tzz ) (11)

can be determined using this method. Here the functions fx,fz

are dimensionless scaling functions of their arguments, and
coefficients Ax,Az are constants.

On scaling space as x → bx, time as t → bzi t and the
fields as ui(x,t) → bχi ui(bx,bzi t),i = x,z, the correlation
functions scale as Cxx(x,t) → b2χx Cxx(bx,bzx t), Czz(x,t) →
b2χzCzz(bx,bzz t). If zx = zz, then the model displays strong
dynamic scaling, otherwise weak dynamic scaling [8].

We begin by decoupling Eqs. (4), (5) at the linear level
by defining the fields φ± = ux ± νuz where ν = √

λ2/λ3. In
terms of φ±, they become

φ̇+ − α

2
∂xφ+ + a1(∂xφ+)2 + b1(∂xφ−)2

+ c1(∂xφ+)(∂xφ−) = D+∂2
xφ+ + η+, (12)

φ̇− + α

2
∂xφ− + a2(∂xφ+)2 + b2(∂xφ−)2

+ c2(∂xφ+)(∂xφ−) = D−∂2
xφ− + η−. (13)

The coefficient of the wave term α
2 = √

λ2λ3, η± = ηx ± νηz

and the coefficients of nonlinear terms depend on λ2, λ3,
γ1, γ2, and γ3. The zero-mean Gaussian white noises η+,η−
are appropriate linear combinations of the noises ηx,ηz and
have correlations 〈η+(x,t)η+(x ′,t ′)〉 = 2A1δ(x − x ′)δ(t − t ′)
and 〈η−(x,t)η−(x ′,t ′)〉 = 2A2δ(x − x ′)δ(t − t ′) . D+ and D−
are the new diffusion constants. Noises η+, η− have nonzero
cross correlations of the form 〈η+(x,t)η−(x ′,t ′)〉 = 2A3δ(x −
x ′)δ(t − t ′). Coupled equations of this type have been studied
in considerable detail earlier [9,13–17]. Our approach here
is to use dynamic renormalization group analysis to extract
the scaling properties of these equations. For the special case
with γ1 = 2γ3 and γ2/γ3 = λ3/λ2 Eqs. (12)–(13) reduce to
two separate KPZ equations [3].

Fluctuations of φ+ and φ− propagate with a relative speed
between them, thus one can eliminate the linear propagating
term in either (12) or (13), but not simultaneously in both.
At the linear level, the dynamics of φ+ and φ− are mutually
decoupled. This implies χ+ = 1/2 = χ− and z+ = 2 = z−,
for the roughness and dynamic exponents defined by the
correlation functions for φ+ and φ−, analogous to (10)–(11).
This implies χx = 1/2 = χz and zx = 2 = zz in the linear
theory.

With the nonlinear terms, Eqs. (12), (13) cannot be solved
exactly and naive perturbative expansions in powers of the
nonlinear coefficients yield diverging corrections in the long-
wavelength limit. In order to deal with these long-wavelength
divergences in a systematic manner, we employ perturbative
one-loop Wilson momentum shell DRG [25,26]. This is
implemented by first integrating out the dynamical fields
φ±(q,ω) with wave vector �/b < q < �, b > 1, perturba-
tively up to the one-loop order using (12)–(13). � is the
wave vector upper cutoff. We then rescale wave vectors
by q ′ = bq, so that the upper cutoff is restored to �. The
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frequency ω and the fields are also scaled appropriately
[25,26]. The one-loop perturbation theory is constructed
using the bare propagators and correlators of φ±. We work
in the comoving frame of φ+ where the bare propagators
(in Fourier space) are of the form G+

0 (k,ω) = 1
D+k2+iω

and

G−
0 (k,ω) = 1

D−k2+i(ω−αk) , for φ+ and φ−, respectively. Thus,
at linear order φ+(k,ω) = G+(k,ω)η+(k,ω) and φ−(k,ω) =
G−(k,ω)η−(k,ω) [see Fig. 4 for a diagrammatic representation
of Eqs. (12), (13)]. In a similar manner, correlators of φ± in the
comoving frame of φ+ are defined as Cφ+φ+(k,ω) = 2A1

ω2+D2+k4

and Cφ−φ−(k,ω) = 2A2

(ω−αk)2+D2−k4 . Notice that since each of (12),

(13) can be reduced to the standard KPZ equation [5] upon
setting appropriate coupling constants to zero, the lowest-order
perturbative corrections to D±,A1,A2,a1, and a2 can clearly
be classified into two categories: (i) KPZ type, which survive
in the KPZ limit, and (ii) non-KPZ type, which vanish in
that limit. The KPZ-type diagrams are formally identical to
those in the pure KPZ problem [5]. The relevant one-loop
Feynman diagrams are shown in Fig. 5 and listed in the
Appendix. Retaining only the dominant contributions (all of
which arise from the respective KPZ-type diagrams), we find
the corrections to be

Ã1 = A1

[
1 + a2

1A1

πD3+

∫ �

�/b

1

q2
dq

]
, (14)

Ã2 = A2

[
1 + A2

1a
2
2

πA2D
3+

∫ �

�/b

1

q2
dq

]
, (15)

D̃+ = D+

[
1 + A1a

2
1

πD3+

∫ �

�/b

k2

q2
dq

]
, (16)

D̃− = D−

[
1 + A1a2c1

π2D2+D−

∫ �

�/b

k2

q2
dq

]
. (17)

None of the vertices a1, b1, c1, a2, b2, and c2 receive any
fluctuation corrections at the one-loop order [27]. Under
scalings x → bx, t → bzt , φ+ → bχ+φ+, and φ− → bχ−φ−,
the parameters scale as A1 → bz−1−2χ+A1, A2 → bz−1−2χ−A2,
D± → bz−2D±. On rescaling the momentum cutoff and taking
the limit δl → 0, we get the recursion relations

dD+
dl

= D+[z − 2 + g],

dA1

dl
= A1[z − 1 − 2χ+ + g],

(18)
dD−
dl

= D−

[
z − 2 + 1

2
mnrg

]
,

dA2

dl
= A2[z − 1 − 2χ− + pn2g],

where the coupling constant g ≡ A1a
2
1

πD3+
and dimensionless con-

stants m = D+
D−

, p = A1
A2

, n = a2
a1

, and r = c1
a1

. The renormalized
coupling g then obeys

dg

dl
= g[−2g + 1], (19)

giving the stable RG fixed point g∗ = 1/2. The scaling
exponents can be extracted from the equations dD+

dl
= dA1

dl
=

dD−
dl

= dA2
dl

= 0 at the RG fixed point. This gives z = 3/2
and χ+ = χ− = 1/2, which belong to the KPZ universal-
ity class. Strong dynamic scaling prevails as the dynamic
exponents for both the fields φ+ and φ− are the same.
Since ux and uz can be written as linear combinations
of φ+ and φ−, we have χx = χz = 1/2 and zx = zz =
3/2. The presence of propagating modes here is crucial;
they render the so-called non-KPZ nonlinearities irrelevant
in the long-wavelength limit so the model displays KPZ
universality.

Having obtained the scaling exponents in the comoving
frame of φ+, we now argue that the values of these ex-
ponents are the same in all reference frames connected by
the Galilean transformation [27]. Consider the correlation
function, C+(x1 − x2,t1 − t2) = 〈φ+(x1,t1)φ+(x2,t2)〉: under a
Galilean transformation, t1,2 → t1,2, x1,2 → x1,2 + vt , where
t is the time and v the Galilean boost. x1 − x2 and t1 − t2
are unchanged, hence so is C+. The scaling exponents
are thus the same in all frames connected by Galilean
transformations.

The scaling behavior of the displacement fields ux and
uz can also be obtained numerically by integrating Eqs. (4),
(5). The correlation functions Cxx(x,t) and Czz(x,t) can
be calculated from the solutions of these equations. The
equations of motion for ux and uz are simulated with diffusion
constants D1 = D2 = 1, phenomenological parameters λ2 =
0.1, λ3 = 0.2, coefficients of nonlinear terms γ1 = 1.0, γ2 =
2.0, and γ3 = 10.0 and time step dt = 0.01. We simulate a
system of 2 × 104 particles with random initial conditions.
The initial conditions are specified entirely by the displacement
field u(r,t) at each lattice site. The displacements ux and uz at
each site are chosen from a uniform distribution of random
numbers between 0 and 1. We impose periodic boundary
conditions. The noise in the equations are Gaussian random
variables with zero mean and variances 2N1dt,2N2dt respec-
tively. Log-log plots of Cxx(x,0) and Czz(x,0) are shown in
Fig. 2 (top). The data are averaged over several realizations of
the noise. We obtain χx = 0.47 ± 0.06, χz = 0.485 ± 0.015.
Similarly, the log-log plots of Cxx(0,t) and Czz(0,t) shown
in Fig. 2 (bottom) yield zx = 1.45 ± 0.05, zz = 1.49 ± 0.06,
which are the same as the dynamic exponent for the KPZ
universality class, within error bars. Our numerical results are
thus in close agreement with the DRG results. Figure 3 shows
the correlation functions for different system sizes L collapse
on each other on scaling t by Lz and correlations by Lχi ,
for i = x,z . This clearly establishes universal scaling in the
model. Technical details of our numerical studies can be found
in the Appendix.

V. CONCLUSIONS AND OUTLOOK

We have shown that a colloidal crystal drifting in an
electric field is linearly stable, with long-wavelength lattice
distortions propagating as waves. For particles of radius
a = 1μm, κa = 2.5, d = 3a in an electric field of strength
150 V/m, we estimate the speed of the propagating modes
to be 10 μm/s. Using renormalization group methods we
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FIG. 2. (a) (top) Log-log plot of equal-time correlators Cxx(l,t =
0) and Czz(l,t = 0) versus spatial separation l and (b) (bottom) log-
log plots of equal space-point time-dependent correlators Cxx(l =
0,t) and Czz(l = 0,t) versus t . Slopes yield exponents χx,χz and
χx/zx,χz/zz, respectively (see text).

establish that, in the drifting steady state, lattice distortions
both transverse and longitudinal to the lattice, display strong
dynamic scaling with dynamic exponent 3/2 and belongs to the
KPZ universality class. A numerical analysis of the equations
for the displacement fields confirm these results.

The notion of universality survives even for driven elastic
media. However, unlike equilibrium, this universal behavior
is controlled by the drive, displaying 1D KPZ scaling. While
extending our analysis to higher dimensions may be nontrivial,
we can comment that in higher (D > 1) dimensions there
should be one longitudinal and D − 1 transverse modes.
The presence of propagating waves should make the system
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FIG. 3. Log-log plots of (top) Cxx and (bottom) Czz as functions
of t/Lz, showing data collapse on to single curves after scaling.

anisotropic. Thus, it is unlikely that the fluctuations in higher
dimensions belong to the KPZ universality class. We look
forward to theoretical attempts in understanding the universal
properties of the fluctuations at higher D and experimental
tests of our predictions for propagating modes in drifting
colloidal crystals.
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APPENDIX A: EQUATIONS OF MOTION
AND DIAGRAMMATIC EXPANSIONS

The equations of motion for φ± are

φ̇+ − α

2
∂xφ+ + a1(∂xφ+)2 + b1(∂xφ−)2 + c1(∂xφ+)(∂xφ−)

= D+∂2
xφ+ + η+ (A1)

φ̇− + α

2
∂xφ− + a2(∂xφ+)2 + b2(∂xφ−)2 + c2(∂xφ+)(∂xφ−)

= D−∂2
xφ− + η−, (A2)

where the coefficient of wave term α
2 = √

λ2λ3, noises

are η± = fx ±
√

λ2
λ3

fz and other coefficients are a1 =
− (γ1+γ3)

4

√
λ3
λ2

− γ2

4

√
λ2
λ3

, b1 = − (γ3−γ1)
4

√
λ3
λ2

− γ2

4

√
λ2
λ3

, c1 =
γ3

2

√
λ3
λ2

− γ2

2

√
λ2
λ3

, and a2 = −b1, b2 = −a1, and c2 = −c1. In

the special case with γ1 = 2γ3 and γ2/γ3 = λ3/λ2 Eqs. (A1)–
(A2) reduce to two separate KPZ equations [5].

G+
0 (k,ω) and G−

0 (k,ω) are the bare propagators for φ+ and
φ−, respectively, in the comoving frame of φ+ and have the
form

G+
0 (k,ω) = 1

D+k2 + iω
, G−

0 (k,ω) = 1

D−k2 + i(ω − αk)
.

(A3)

The correlators of φ± in the Fourier space are defined in the
comoving frame of φ+ as

Cφ+φ+(k,ω) = 2A1

ω2 + D2+k4
,

Cφ−φ−(k,ω) = 2A2

(ω − αk)2 + D2−k4
. (A4)

Our perturbative dynamic renormalization group (DRG)
calculation may be represented diagrammatically [25]. The
symbols, that we use are explained in Fig. 4.

APPENDIX B: PROPAGATOR RENORMALIZATION

There are four one-loop diagrams, which contribute to the
propagator renormalization of φ±. Figure 5 shows the relevant
diagrams for propagator renormalization for φ+.

The renormalized propagator G+(k,ω) can be written as

G+(k,ω) = G+
0 (k,ω) + T1 + T2 + T3 + T4, (B1)
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FIG. 4. Diagrammatic representation of the propagators and
noise for φ+ and φ−. Perturbation expansion for the propagators
G+(k,ω), G−(k,ω). Contracted noise A1, A2, A3.

4

2 ++

2++

FIG. 5. One-loop diagrams for propagator renormalization.

where T1 and T2 contain contributions only from φ+ and φ−,
respectively, and T3, T4 are the contributions from both the
fields. We calculate the individual contributions below.

T1 = 8A1a
2
1G

+
0 (k,ω)2

(2π )2

∫
dq

∫ ∞

−∞
d�[q(k − q)][−qk]G+

0 (q,�)G+
0 (−q, − �)G+

0 (k − q,ω − �)

= 8A1a
2
1G

+
0 (k,ω)2

(2π )2

∫
dq

∫ ∞

−∞
d�

[q(k − q)][−qk]

[D+q2 + i�][D+q2 − i�][D+(k − q)2 − i�]
. (B2)

After angular integration T1 behaves as ∼ ∫
dq

πk(k−q)
D2+[k2−2kq+2q2]

≈ k2
∫

dq

k2−2kq+2q2 ∼ k2Ia where Ia ∼ 1
k
. This is the contribution

that survives in the KPZ limit of the model equations. Next we calculate the contribution coming from the second diagram, which
scales as

T2 ≈
∫

dq

∫ ∞

−∞
d�[q(k − q)][−qk]G−

0 (q,�)G−
0 (−q, − �)G−

0 (k − q,ω − �)

≈
∫

dq

∫ ∞

−∞

d�[q(k − q)][−qk]

[D−q2 + i� − iαq][D−q2 − i� + iαq][D−(k − q)2 − i� − iα(k − q)]

≈
∫

dq
πk(k − q)

D−[iαk − D−(k2 − 2kq + 2q2)]
≈ k2Ib, (B3)

where Ib ∼ 1√
k
. Thus, T1 is more divergent compared to T2. The third diagram has a contribution

T3 ≈
∫

dq

∫ ∞

−∞
d�

[q(k − q)][−qk]

[D+q2 + i�][D+q2 − i�][D−(k − q)2 − i� − iα(k − q)]

≈
∫

dq

D−q2 − D−(k − q)2 + iα(k − q)
∼ k2Ic, (B4)

where Ic ∼ − ln k and the contribution from the last diagram is T4 ∼ −k2
∫

dq

[iαq−D−q2−D+(k−q)2] = k2Id with Id ∼ − ln k2. So,
T1 is the most relevant diagram, which gives the renormalized propagator for φ+ of the form

G+ = G+
0 − A1a

2
1G

+
0 (k,ω)2

D2+π

∫ �

�/b

k2

q2
dq. (B5)

Similarly, we find the renormalized propagator for φ− and
will be of the form

G− = G−
0 − A1a2c1G

−
0 (k,ω)2

2D2+π

∫ �

�/b

k2

q2
dq. (B6)

Notice that in the hydrodynamic limit k → 0, the dominant
corrections to both G+

0 and G−
0 are from the contributions that

survive in the KPZ limit of the model. From the corrections
to G+

0 and G−
0 , we obtain the fluctuation corrected diffusion

constants:

D̃+ = D+

[
1 + A1a

2
1

πD3+

∫ �

�/b

k2

q2
dq

]

D̃− = D−

[
1 + A1a2c1

2πD2+D−

∫ �

�/b

k2

q2
dq

]
. (B7)

APPENDIX C: NOISE RENORMALIZATION

Consider now the noise renormalization for φ+ field. The
corresponding one-loop corrections receive contributions from
one diagram that survives in the KPZ limit and one that
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FIG. 6. One-loop diagrams for the renormalization of A1.

vanishes in the KPZ limit. The diagrammatic representation
of the perturbation series for the noise renormalization of A1

is shown in Fig. 6.
The first one is given by

I1 ∼
∫ �

�/b

dq

∫ ∞

−∞
d�

q2(k − q)2

[�2 + D2+q4][�2 + D2+(k − q)4]

∼
∫ �

�/b

dq
1

k2 + 2q2 − 2kq
∼

∫ �

�/b

dq

q2 + k2/2
, (C1)

which survives in the KPZ limit of the model. The additional
contribution that vanishes in that limit is

I2 ∼
∫ �

�/b

dq

∫ ∞

−∞

× d�
q2(k − q)2

[(�−αq)2 + D2−q4][(�+α(k − q))2+D2−(k−q)4]

∼
∫ �

�/b

dq
k2 − 2kq + 2q2

D−k2α2 + (k2 − 2kq + 2q2)2D3−
. (C2)

The first contribution, I1 is the dominant contribution in the
thermodynamic limit k2 → 0 and I2 is subleading. This may be
understood as follows. Notice that the most significant (or the
dominant) contribution to both I1 and I2 from the lower (i.e.,
small-q) limits of the integrals, which are controlled by k2.
Set q = 0 in both the integrands in I1 and I2: The respective
integrands scale as ∼ 1

k2 and ∼ k2

k2+k4 . For small enough k2,
k2 � k4, yielding I1 � I2 in the limit k → 0, establishing the
dominance of I1 over I2 in the limit k → 0.

There are four more diagrams (see Fig. 6) for noise
correlations whose contributions are clearly subdominant to
the contribution from I1 above. Thus, in the long-wavelength
limit, I1, the contribution that is nonvanishing in the KPZ limit
of the model, determines the fluctuation correction to A1. We
then have

Ã1 = A1 + a2
1A

2
1

πD3+

∫ �

�/b

1

q2
dq. (C3)

Similarly, renormalized A2 will be

Ã2 = A2 + A2
1a

2
2

πD3+

∫ �

�/b

1

q2
dq. (C4)

Again, the dominant contribution in the hydrodynamic limit is
the contribution that survives in the KPZ limit of the model.

APPENDIX D: VERTEX RENORMALIZATION

The diagrams that contribute to the vertex renormalization
for a1 are shown in Fig. 7. Renormalized vertex ã1 = a1(1 +
�1 + �2 + �3) where �1, �2, and �3 are three different vertices

as shown in the figure where �1 = 2a2
1A1

πD3+

∫ �

�/b

dq

q2 and �2 =

�3 = − a2
1A1

πD3+

∫ �

�/b

dq

q2 . So ã1 = a1. There are similar relevant

diagrams for b1 renormalization, which also give b̃1 = b1.
Similarly, it can be shown that all the vertices a1, b1, c1, a2,
b2, and c2 receive no fluctuation corrections that diverge in the
limit k → 0. We discard all the finite corrections in the spirit
of DRG calculations.

APPENDIX E: FLOW EQUATIONS

Of the total momentum range 0 < |q| < �, the high-
momenta components �e−δl < |q| < � are integrated out
and we rescale in such a way so that the momentum cutoff
remains the same. Taking the limit δl → 0, we get the recursion
relations

dD+
dl

= D+[z − 2 + g]

dA1

dl
= A1[z − 1 − 2χ+ + g]

(E1)
dD−
dl

= D−

[
z − 2 + 1

2
mnrg

]

dA2

dl
= A2[z − 1 − 2χ− + pn2g],

where the coupling constant g ≡ A1a
2
1

πD3+
and some dimensionless

constants are m = D+
D−

, p = A1
A2

, n = a2
a1

, and r = c1
a1

. The

coupling constant has a flow equation dg

dl
= g[−2g + 1],

which gives the stable RG fixed point g∗ = 1/2. Those
dimensionless constants m, p, n, and r have the flow
equations dm

dl
= m[1 − 1

2nrm]g, dp

dl
= p[2(χ− − χ+) + (1 −

np2)g], dn
dl

= n(χ+ − χ−), and dr
dl

= r(χ− − χ+). Under the
scale transformations x → bx, t → bzt , φ+ → bχ+φ+, and
φ− → bχ−φ−. To get the fixed points we should set the left-
hand side of the flow equations equal to zero. Flow equations
of m, p, n, and r give n∗r∗m∗ = 2, p∗2n∗ = 1, and χ+ = χ−.
We use these relations and put dD+

dl
= dA1

dl
= dD−

dl
= dA2

dl
= 0,

which give the exponents z = 3/2 and χ+ = χ− = 1/2, which
belong to the KPZ universality class.

APPENDIX F: NUMERICAL SIMULATION

We numerically integrate Eqs. (2)– (3) in the main text,
calculate the time-dependent correlation functions of ux and
uz, which yield the scaling exponents in the hydrodynamic

= + +4 4 + 4
ΓΓΓ1 32

FIG. 7. One-loop diagrams that contribute to the fluctuation-
corrections to the vertex a1.
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limit, and compare with the DRG results. The discretized
equations used for numerical simulation are as follows:

ux(x,t + t) = ux(x,t) + λ2

2
[uz(x + 1,t) − uz(x − 1,t)]dt

+ γ1

4
[ux(x + 1,t) − ux(x − 1,t)]

× [uz(x + 1,t) − uz(x − 1,t)]dt

+D1[ux(x + 1,t) − 2ux(x,t)

+ux(x − 1,t)]dt +
√

2N1dt ζ1(x,t) (F1)

uz(x,t + t) = uz(x,t) + λ3

2
[ux(x + 1,t) − ux(x − 1,t)]dt

+ γ2

4
[ux(x + 1,t) − ux(x − 1,t)]2dt

+ γ3

4
[uz(x + 1,t) − uz(x − 1,t)]2dt

+D2[uz(x+1,t)−2uz(x,t)+uz(x−1,t)]dt

+
√

2N2dt ζ2(x,t). (F2)

ζ1 and ζ2 are Gaussian random variables with zero mean
and variances 2N1dt,2N2dt , respectively. In the simulation,
random initial conditions were used with periodic boundary
conditions.

Roughness exponents are defined by the spatial scaling of
the equal-time correlators Cxx(l,0) ∼ lχx and Czz(l,0) ∼ lχz

where l = |x ′ − x|. The growth exponent is defined through
the correlation function with a time delay Cxx(0,t) ∼ tβx

and Czz(0,t) ∼ tβz . These two exponents define dynamic
exponents: zx = χx/βx and zz = χz/βz. These correlation
functions are shown in Fig. 2 of the main text. The exponents
derived from fits to the data are mentioned in the main
text.
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