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Viscosity of a classical gas: The rare-collision versus the frequent-collision regime
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The shear viscosity η for a dilute classical gas of hard-sphere particles is calculated by solving the Boltzmann
kinetic equation in terms of the weakly absorbed plane waves. For the rare-collision regime, the viscosity η

as a function of the equilibrium gas parameters—temperature T , particle number density n, particle mass m,
and hard-core particle diameter d—is quite different from that of the frequent-collision regime, e.g., from the
well-known result of Chapman and Enskog. An important property of the rare-collision regime is the dependence
of η on the external (“nonequilibrium”) parameter ω, frequency of the sound plane wave, that is absent in the
frequent-collision regime at leading order of the corresponding perturbation expansion. A transition from the
frequent to the rare-collision regime takes place when the dimensionless parameter nd2(T/m)1/2ω−1 goes to
zero. The scaled absorption coefficient for sound waves calculated in the rare and frequent-collision regimes is
found to be in qualitative agreement with the experimental data.
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I. INTRODUCTION

As well known, the transport coefficients, such as the
thermal conductivity, diffusion, and viscosity, can be defined
as the linear responses on small perturbations of equilibrium
systems [1–4]. Let us consider a classical gas system of
hard-sphere particles. An important quantity, crucial for the
description of all transport properties of this system, is the
particle mean-free path estimated as l ∼ 1/(nπd2) , where n

is the particle number density and d is the hard-core particle
diameter. This is an internal property of the equilibrium
system. For external (dynamical) perturbations, one has to
introduce another scale L which is the size of the space
region where the gas properties (e.g., temperature, mean
particle density, and collective velocity) undergo essential
changes. Usually, the inequality, l � L, is satisfied. This
corresponds to the so-called frequent-collision regime (FCR),
and the transport coefficients can be calculated as a per-
turbation expansion over a small parameter l/L (see, e.g.,
Refs. [5–9]). The leading terms of these expansions are found
to be independent of the scale L. For example, the shear
viscosity η, calculated by Maxwell within concepts of the
molecular kinetic theory, reads η ∼ n m vT l, where m is
the particle mass and vT = √

2T/m is the thermal particle
velocity.1 Thus, in the FCR, η is a function of only internal
parameters of the equilibrium gas. Since l ∝ 1/(nd2), one
finds η ∼ √

mT /d2 in the FCR, i.e., the shear viscosity is
independent of particle number density at the leading order in
l/L. Similar results are valid for other transport coefficients in
the FCR.

Accurate expressions for the transport coefficients in a gas
of classical hard-sphere particles were obtained by Chapman

*magner@kinr.kiev.ua
1We use the units where the Boltzmann constant is κB = 1 .

and Enskog (CE) by using the Boltzmann kinetic equation
(BKE) and ideal hydrodynamic equations for calculations of
a time evolution in terms of almost the local-equilibrium
distribution function within the FCR [5]. The following
expression for η was obtained [5–9]:

ηCE = 5

16
√

π

√
mT

d2
. (1)

This result was extended to a multicomponent hadron gas in
Ref. [10]. Several investigations were devoted to go beyond
the standard approach; see, e.g., Refs. [11–37]. In the recent
paper [37], the shear viscosity η was calculated for a gas of
particles with both the short-range repulsive and long-range
attractive interactions described by the van der Waals equation
of state [38]. This was realized within the FCR in terms of a
strong suppression of the damping plane waves.

Many theoretical [11,19–21,23,29] and experimental
[14,39,40] investigations were devoted to a weak absorption
of the sound wave in dilute gases. For the sound absorption
coefficient γ , one can use the famous Stokes expression in
terms of the viscosity and thermal conductivity coefficients
(see, e.g., Refs. [29,41]). Most results for the absorption
coefficient γ were also obtained in the FCR.

Much less attention was paid to the rare-collision regime
(RCR) which takes place at l � L; i.e., the so-called Knudsen
parameter l/L becomes large (see, e.g., Refs. [6–8]). Different
analytical methods [20,21,29] and numerical Monte Carlo
simulations [29] (see also the textbook [6]) were used to
calculate the absorption coefficient γ by solving approxi-
mately the BKE. They improved significantly an agreement
with experimental data [39,40] for small sound frequencies.
For high frequencies a progress was mainly achieved within
numerical simulations [29].

The conditions of the RCR can be fulfilled in different
ways. For a small particle number density, a typical RCR
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situation arises because of the finite system size. Note that for
nd3 → 0 the mean-free path behaves as l → ∞. Therefore,
Eq. (1) fails for any finite physical system in the limits, n → 0
and/or d → 0, where a density and/or a diameter of particles is
vanishing. In both these limits, one has nd3 � 1 and, thus, one
results in the relationship l � L. Thus, the FCR is transformed
to the RCR; and Eq. (1), obtained within the FCR, becomes
invalid. Such a situation always appears for a gas expanding to
a free space: the linear size of the system L increases due to a
gas expansion, but the mean-free path l ∝ n−1 ∝ L3 increases
much faster. Thus, the RCR always takes place at the latest
stages of the gas expansion to a free space.

The purpose of the present paper is to develop a general
perturbation method which can be applied in both the FCR
and the RCR for the weakly absorbed plane-wave (WAPW)
solutions of the BKE. The WAPWs play an important role in
both the theoretical studies and physical applications. They
correspond to the plane waves with a given frequency ω for
which the amplitude only slightly decreases within the wave
length λ. The WAPW can take place within both the FCR
and RCR. Thus, the perturbation expansion can be developed
for small and large parameter l/λ for the FCR and RCR,
respectively.

The FCR and RCR can be defined in alternative terms.
Let us consider the sound plane-wave propagation in the
infinite gas system. In this case (L ∼ λ), different regimes
take place because of different relationships between the
mean-free path l and the wavelength λ of the propagating
plane wave: l � λ and l � λ correspond to the FCR and
RCR, respectively [7,11,14]. Introducing the wave frequency
ω and frequency of two-particle collisions τ−1 ∼ vT / l, one
finds another equivalent classification for different collision
regimes: ωτ � 1 corresponds to the FCR, and ωτ � 1 to the
RCR. A dimensionless quantity ωτ plays the same role as
the Knudsen parameter mentioned above. Small (large) values
of ωτ correspond to the collision-term (inertial-terms) dom-
inance in the BKE. Important fields of the RCR applications
are the ultrasonical absorption (see, e.g., Refs. [14,42,43] and
special phenomena in the electronic plasma [7]. In the FCR
we may use the perturbation expansion in power series over
ωτ whereas in the RCR the parameter ωτ becomes large, and
the perturbation expansion over 1/(ωτ ) should be successful.
Therefore, in these two collision regimes, one can expect a
different dependence of η on the equilibrium gas parameters,
n and T , and proper particle parameters, d and m. In addition,
a dependence of η on external (“nonequilibrium”) parameter
ω, absent in Eq. (1) for the FCR at the leading order of the
perturbation approach, is expected to appear in the RCR. To
our knowledge, no explicit analytical expressions for η were
so far presented for the RCR. For completeness, we present
also the viscosity for a small absorption within the FCR using
the same perturbation method but in small parameter ωτ � 1.

The paper is organized as follows. In Sec. II, the BKE
approach with the relaxation time approximation for the
collision term through the WAPW is discussed. In Secs. III
and IV, derivations of the expressions for η in the FCR and
RCR are presented, respectively. The obtained results are used
to calculate the scaled absorption coefficient for a sound wave
propagation in the FCR and RCR. Section V is devoted to
the discussions of the results. Section VI summarizes the

paper, and Appendixes A and B show some details of our
calculations.

II. THE KINETIC APPROACH IN A RELAXATION
TIME APPROXIMATION

For a classical system of hard spheres, the single-particle
distribution function f (r,p,t), where r, p, and t are the particle
phase-space coordinates, and the time variable, respectively,
is assumed to satisfy the BKE. The global equilibrium of this
system can be described by the Maxwell distribution as a
function of the modulus of the particle momentum p (p ≡ |p|):

feq(p) = n

(2πmT )3/2
exp

(
− p2

2mT

)
. (2)

The particle number density n and temperature T are constants
independent of the spacial coordinates r and time t . For
dynamical variations of the equilibrium distribution (2),
δf (r,p,t) = f − feq, one obtains at |δf |/feq � 1 the BKE
linearized over δf ,

∂δf

∂t
+ p

m

∂δf

∂r
= δSt. (3)

The standard form of the Boltzmann collision integral δSt is
used for hard spherical particles [5,7,9,37]. For simplicity, the
attractive long-range interactions discussed in Ref. [37] are
discarded.

In line with Refs. [17,26,36,37], the solutions of Eq. (3) for
δf (r,p,t) can be sought in terms of the WAPW,

δf (r,p,t) = feq(p)A(p̂) exp (−iωt + ikz), (4)

where A(p̂) is a yet unknown function of the angles, p̂ ≡
p · k/(pk). Here, ω and k are, respectively, the frequency and
a wave vector of the WAPW directed along the z axis (k = |k|).
For convenience, the spherical phase-space coordinates with
the polar axis directed to the unit wave vector k/k can be used.
The quantities ω and k are connected by the equation,

ω = k c vT = k c
√

2T/m. (5)

In Eq. (5), ω is a given real frequency, whereas a dimensionless
sound velocity c and wave number k are presented, in general,
as complex numbers,

c = cr + i ci, k = kr + i γ . (6)

A parameter γ denotes the absorption coefficient. The imagi-
nary quantities in Eq. (6) are responsible for a description of
the dissipative process.

We use the standard definition of the shear viscosity [37,41],

η = 3

4
Re

δσzz

∂uz/∂z
, (7)

through the dynamical components of the stress tensor,

δσzz =
∫

dp
(

p2 − 3p2
z

3m

)
δf (r,p,t), (8)

and the z component of the collective velocity,

uz = 1

n

∫
dp

pz

m
δf (r,p,t). (9)
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In what follows, it will be convenient to expand the plane-
wave amplitude A(p̂) in Eq. (4) over the spherical harmonics
Y�0(p̂) [44],

A(p̂) =
∞∑

�=0

A� Y�0(p̂). (10)

To solve uniformly the BKE (3) in both the FCR and RCR, the
integral collision term δSt will be expressed in the form of the
relaxation time approximation [12,17,22,26–28,33,35–37,43]:

δSt ≈ − 1

τ

∞∑
��2

δf�, (11)

with the relaxation time [37],

τ ≈ 2

3

1

n vT σ
, (12)

where σ is the cross section for the two-particle collisions,
which is given by σ = πd2 for the case of the hard-sphere
particles of the diameter d. Note that τ ∼ l/vT determines
(up to a constant factor) the average time of the motion
between successive collisions of the particles, and thus, 1/τ is
approximately the collision frequency in the molecular kinetic
theory [9]. The summation over � in Eq. (11) starts from � = 2
to obey the particle number and momentum conservation in
two-body collisions [17,26,28,36,37]. The shear viscosity η

[Eq. (7)] can be calculated analytically in the two limiting
cases: ωτ � 1 (FCR) and ωτ � 1 (RCR).

III. FREQUENT COLLISIONS

In the FCR, the dispersion equation for a dimensionless
velocity c reads (see Appendix A and Ref. [37])

c

[
c2

(
1 + i

ωτ

)
− 3

5
− i

3ωτ

]
= 0. (13)

For nonzero solutions, c �= 0, at first order in Knudsen
parameter, ωτ � 1, one approximately finds from Eq. (13),

cr = 1√
3
, ci = − 2ωτ

5
√

3
. (14)

According to Eq. (6) at first order of the perturbation
expansion, one then has

kr = ω

crvT

,
γ

kr

= − ci

cr

. (15)

Therefore, for the scaled absorption coefficient γ /kr in the
FCR, one obtains

γFC

kr

= 2

5
ωτ. (16)

Thus, for the scaled absorption coefficient γ /kr in the FCR,
one obtains (Appendix A)

ηFC = 3
√

π nT

10 ω
ωτ =

√
2πmT

10σ
, (17)

where σ = πd2 is the same cross section for collisions of
two hard-core spherical particles as in Eq. (12). In Eq. (17),
the frequency ω is canceled at leading first-order perturbation
expansion over ωτ . The shear viscosity ηFC in the FCR

behaves always as ηFC ∝ √
mT /σ . However, the numerical

factor in this formula appears to be different for different
physical processes. For the strongly suppressed plane waves
(see Ref. [37]), one has |ci | � |cr |, and the shear viscosity
approaches that in Eq. (1). For the WAPW in the FCR, one
finds another relation |ci | � |cr | which leads to a different
numerical factor in ηFC [Eq. (17)] as compared to Eq. (1).

IV. RARE COLLISIONS

Within the RCR, one can use the perturbation expansion
over a small parameter 1/(ωτ ) � 1. After the substitution of
Eqs. (4) and (11) into Eq. (3) we derive the RCR dispersion
equation for the WAPW sound velocity c (see Appendix B),

1 − ic

ξωτ
−

[
i c(3ξ 2 + 1)

ξωτ
− ε0

]
Q1(ξ ) = 0, (18)

where ξ = c[1 + i/(ωτ )], ε0 = +0, and Q1(ξ ) is the Legendre
function of a second kind given by Eq. (B6). From Eqs. (18),
(6), and (15), one approximately finds at 1/(ωτ ) � 1 quite a
different solution as compared to Eq. (14),

cr = 1, ci = − 1

ωτ
. (19)

Using Eqs. (5), (6), (15), and (19), one arrives at

kr = ω

vT

,
γRC

kr

= 1

ωτ
. (20)

For the shear viscosity (7), one straightforwardly obtains
(Appendix B)

ηRC = 9
√

π n T

4ω2 τ
= 27

√
2π

8

n2 T 3/2 σ√
m ω2

, (21)

where σ = πd2 as above. Notice that this viscosity is the lead-
ing first-order term of the perturbation expansion over a small
parameter 1/(ωτ ), and therefore, η ∝ 1/ω2τ . Comparing the
expressions (21) and (17) for the shear viscosity, one observes
several distinct features of the RCR: (i) the dependence on
parameters m, T , and σ in the RCR [Eq. (21)] is completely
different from that in the FCR [Eq. (17)]; (ii) a dependence of η

on particle number density n appears in the RCR and it is absent
in the FCR; (iii) a dependence of ηRC on the external parameter
ω exists in the RCR [Eq. (21)] whereas ηFC [Eq. (17)] depends
only on the internal gas properties and is independent of ω.

V. DISCUSSION OF THE RESULTS

Let us compare the expressions for the shear viscosity in the
RCR [Eq. (21)] and FCR [Eq. (17)]. From this comparison,
one observes quite a different dependence of ηRC and ηFC
on the quantities n,T ,d, and m which describe the equilibrium
classical gas (i) and (ii). Most striking is the difference between
two regimes in the limit of pointlike particles d → 0. In
this limit, ηFC → ∞, whereas ηRC → 0. As even a more
remarkable property, the difference between the RCR and the
FCR is that the leading [first-order in 1/(ωτ )] term of ηRC
[Eq. (21)] depends on a frequency ω, ηRC ∝ 1/ω2, while ηFC
(at the same first order but in ωτ ) is independent of ω (iii).
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FIG. 1. The scaled absorption coefficient γ /kr [Eqs. (20) and
(16)] (in units of the wave number kr ) as a function of the Knudsen
parameter ωτ for the FCR (ωτ � 1, blue line) and RCR (ωτ � 1,
red line). Full dots are the experimental data from Ref. [39] and full
squares are taken from Ref. [40] for 40Ar at normal conditions (see
also Refs. [21,29]).

The definition of δf given by Eq. (4) is the same for both
FCR and RCR. However, as explained in Appendixes A and B,
one has essentially different dispersion equations—(13) in the
FCR and (18) in the RCR—and their solutions c for the wave
velocity [cf. Eqs. (14) and (19)]. As the result, from the same
Eqs. (7)–(9), one obtains different final expressions: Eqs. (17)
for ηFC and (21) for ηRC. As we consider only the leading terms
in the corresponding perturbation expansions for both the RCR
and FCR, these expressions are valid for dilute gases. This is
a general feature of the kinetic approach. Adding higher order
terms, one can hope to reach a wider range of applicability,
including particularly gases at higher density.

According to Eq. (20), the dimensionless (scaled) absorp-
tion coefficient γ /kr has a simple universal behavior in the
RCR [1/(ωτ ) � 1]. This dependence is very different from
that of Eq. (16) in the FCR (ωτ � 1).

Figure 1 shows by solid curves the scaled absorption
coefficients γ /kr [Eqs. (20) and (16)] as functions of the
Knudsen parameter ωτ . Dashed lines in Fig. 1 correspond
to the values of parameter ωτ ∼ 1, where neither the RCR nor
the FCR condition of the leading first-order approximation is
valid, i.e., the expansions neither over ωτ nor over 1/(ωτ )
can be applied. The specific fixed values of ωτ = [0.5,5]
which denote this region, where the leading terms of these
expansions cannot be sufficient, are not really strictly fixed,
and they are used in Fig. 1 for illustrative purposes, only. The
points and squares are the experimental data from Refs. [39]
and [40] (see also Refs. [14,21,29]). The measurements were
done with 40Ar mono-atomic gas at the atmospheric pressure
and room temperature conditions for a wide range of the sound
frequencies. It is shown also from Fig. 1, a dramatic change of
the absorption coefficient γ /kr as a function of the Knudsen
parameter: γ /kr increases in the FCR like ωτ at small ωτ � 1,
according to Eq. (16), and decreases as 1/(ωτ ) at large ωτ � 1
in the RCR. As seen from Fig. 1 our result in the RCR

[Eq. (20)] reproduces fairly well the experimental data2 for a
small sound-wave absorption. A main difference between the
FCR curve [Eq. (16)] and the experimental data, can be perhaps
explained by an additional thermal-conductivity contribution
to γFC/kr .

Equations (21) for ηRC and (17) for ηFC can be also used
within the Stokes formula (see, e.g., Ref. [41]) for a weak
absorption of sound waves. Substituting these equations into
the Stokes equation and neglecting the thermal conductivity,
one finds an agreement with the results for γ /kr , presented in
Fig. 1. Thus, the whole picture looks self-consistent.

VI. SUMMARY

The shear viscosity η is derived for the damping sound in
terms of the plane waves, spreading in a dilute equilibrium
gas of classical particles described by hard spheres. In the
rare-collision regime the leading order of the perturbation
expansion over parameter 1/(ωτ ) � 1 for the shear viscosity
ηRC is quite different from the first-order result in the frequent-
collision regime. First, very different dependencies of ηFC and
ηRC on the internal (equilibrium) gas quantities n, T , d, and
m are found [(i) and (ii)]. Second, a basic difference is that ηFC
is independent of the nonequilibrium (external) frequency ω,
whereas ηRC ∝ 1/ω2 (iii).

For small and large values of the Knudsen parameter ωτ ,
one finds the scaled absorption coefficient γ /kr growing
proportionally to ωτ at ωτ � 1 and decreasing as 1/(ωτ ) at
ωτ � 1, as well in the Stokes approach mentioned above.
Therefore, one can predict a maximum of γ /kr for the
transition between these two collision regimes at ωτ ≈ 1. This
seems to be in a reasonable agreement with the experimental
data [39,40]. Thermal conductivity calculations for both the
FCR and RCR can be done within a more general approach,
e.g., the linear response theory for solving the BKE. Within this
formalism, one can formulate the extended presentation for all
kinetic coefficients suitable for their calculations in the non-
perturbative region, too. We plan to consider these problems in
the forthcoming publications. The results for the kinetic coef-
ficients can be improved by accounting for higher order terms
in the perturbation expansions and numerical calculations,
towards the range of ωτ close to one. Our analytical results in
the rare-collision regime are universal and do not include any
fitting parameters. Their accuracy increases with increasing of
ωτ . They can be extended to more general interactions between
particles as well as, with the help of the linear response theory,
to other transport coefficients such as the thermal and electric
conductivity, and the diffusion coefficients.
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APPENDIX A: THE FREQUENT-COLLISION REGIME

For the shear viscosity η [Eq. (7)], one should calculate
the mean-velocity uz [Eq. (9)] and the stress-tensor δσzz

[Eq. (8)] component. Using Eqs. (4), (10) and (2), one finds
(see Ref. [37])

η = Re

(
9i

√
π

4
√

15

nT c

ω

A2

A1

)
. (A1)

For calculations of the ratio A2/A1 and derivations of the
dispersion equation to obtain the velocity c in the FCR, we
substitute the plane-wave solution (4) for the distribution
function δf with the multipole expansion (10) for A(p̂) into the
BKE (3). After simple algebraic transformations, one finally
arrives at the following linear equations for A� [37]:

∞∑
�=0

BL�(c) A� = 0, (A2)

where

BL�(c) ≡ cδL� − C�1;L + iϒ δ�L(1 − δ�0)(1 − δ�1). (A3)

Here, δ�L is the Kronecker symbol,

ϒ = c

ωτ
, (A4)

C�1;L =
√

4π

3

∫
d�p YL0(p̂) Y10(p̂) Y�0(p̂)

=
√

2� + 1

2L + 1

(
CL0

�0,10

)2
, (A5)

CL0
�0,10 are the Clebsh-Gordan coefficients [44].

To derive the dispersion equation (13) for the ratio c =
ω/(kvT ) in the FCR and, then, calculate the amplitude ratio
in Eq. (A1) for the viscosity η, one has to specify a small
perturbation parameter ωτ in the perturbation expansion of
δf (r,p,t). Then, in the FCR (small ωτ ), one can truncate the
expansion of A(p̂) (10) over spherical functions Y�0(p̂), and
relatively, the linear system of equations (A2) at the quadrupole
value of �, � � 2, because of a fast convergence of the sum
(10) over � at ωτ � 1 [17]. Then, for the amplitude ratios
A�+1/A�, one finds from Eq. (A2) (see Ref. [37])

A0

A1
= 1√

3 c
, (A6)

A2

A1
= 2√

15 (c + iϒ)
, (A7)

where ϒ is given by Eq. (A4). Within the FCR, because of large
ϒ [Eq. (A4)], one notes the convergence of the coefficients
A� of the expansion in multipolarities (10) [see Eq. (A7)
and Refs. [17,26,37]]. Therefore, from the zero determinant
of the 3×3 matrix at the quadrupole value � � 2 and L � 2
for nontrivial solutions of the truncated system of Eq. (A2),
we derive the cubic dispersion equation (13) (see Ref. [37]).
Substituting the underdamped (WAPW) solution (14) for the
sound velocity c, from Eq. (A1) one obtains Eq. (17) for the
shear viscosity ηFC.

The volume viscosity ζ can be calculated in a similar way:

ζ = Re
δP

∂uz/∂z
, (A8)

where uz and δP are, respectively, the mean velocity uz

[Eq. (9)] and the dynamical variation of the isotropic kinetic
pressure,

δP =
∫

p2

3m
dp δf (r,p,t). (A9)

Using the WAPW variations δf given by Eq. (4) and
multipolarity expansion (10) (ω = krcrvT is real), one finds

ζ =
√

3π nT

2ω
Re

(
cA0

iA1

)
. (A10)

According to Eq. (A6) for A0/A1, the complex sound velocity
c is canceled, and therefore, for a weak plane-wave absorption,
one obtains ζ = 0 (see also Refs. [9,29]).

APPENDIX B: THE RARE-COLLISION REGIME

For the integral collision term δSt of the BKE (3) in the τ

approximation, one writes [28]

δSt = −δf

τ
+ 1

τ
[A0Y00(p̂) + A1Y10(p̂)]

× feq(p) exp(−iωt + ikz). (B1)

We introduce now new notations, p̂ = cos θ = x and ξ = c +
iϒ [see Eq. (A4)]. Using the expansion (10) of the amplitude
A(p̂) over spherical functions Y�0(p̂) with their orthogonal
properties, and the explicit expressions for Y00 and Y10, one
obtains

A(x) = − i√
4π (x − ξ )

[(ϒ − ixε0)A0 +
√

3 xϒA1]. (B2)

For convenience of calculations we introduced also ε0 = +0
as an infinitesimally small parameter. Integrating over the
spherical angles of d�p = sin θdθdϕ with the spherical
functions Y�0(p̂), one has

A� =
∫

A(p̂)Y�0(p̂)d�p

=
√

π (2� + 1)
∫ 1

−1
A(x)P�(x)dx, (B3)

where P�(x) = (4π/(2� + 1)1/2Y�0(p̂) is the standard Legen-
dre polynomials [44]. Substituting Eq. (B2) into Eq. (B3), one
finds

A� = i
√

2�+1{ϒA0Q�(ξ ) − (
√

3ϒA1 − iε0A0)[δ�0−ξQ�(ξ )]},
(B4)
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where Q�(ξ ) are the Legendre functions of a second kind,

Q�(ξ ) = 1

2

∫
P�(x)dx

ξ − x
, (B5)

in particular,

Q1(ξ ) = ξ

2
ln

(
ξ + 1

ξ − 1

)
− 1. (B6)

These functions obey the recurrence equations,

Q1 = ξQ0(ξ ) − 1,

2Q2(ξ ) = 3ξQ1(ξ ) − Q0(ξ ) , . . . . (B7)

For � = 0 and 1 one gets from Eq. (B4) the following system
of linear equations with respect to A0 and A1:

[1 − iϒQ0(ξ ) − ε0Q1(ξ )]A0 − i
√

3ϒQ1(ξ )A1 = 0,

i
√

3(ϒ − iε0ξ )Q1(ξ )A0 − [1 − 3iξϒQ1(ξ )]A1 = 0. (B8)

Nonzero solutions of this system of linear equations exist under
the condition of zero for its determinant. This leads to the
dispersion equation (18) for the sound velocity c through ξ .

Using Eqs. (B4) and (B7), one has

A�

A�−1
=

√
2� + 1

2� − 1

Q�

Q�−1
for � � 1. (B9)

With the help of Eq. (A1), we arrive at [37]

η = Re

[
3i

√
π

4

nT c

ω

Q2(ξ )

Q1(ξ )

]
. (B10)

Taking into account the recurrence equations [Eq. (B7)], one
can rewrite Q2/Q1 in terms of Q−1

1 (ξ ) and ξ , which are given
by the RCR dispersion equation (18). In the limit ε0 → +0 at
first order in ϒ ∼ 1/(ωτ ), one then finds from Eq. (18)

1

Q1(ξ )
≈ iϒ

(
3ξ + 1

ξ

)
≈ 4i

ωτ
. (B11)

We used solution (19) of the sound velocity c to the dispersion
equation (18) in the second expression, valid at first-order
perturbation expansion over 1/(ωτ ). Using this expression and
solution (19) for c, from Eq. (B10) for the RCR shear viscosity
η, one obtains Eq. (21).
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