
PHYSICAL REVIEW E 95, 052108 (2017)

Asymptotic prime partitions of integers

Johann Bartel,1,* R. K. Bhaduri,2,† Matthias Brack,3,‡ and M. V. N. Murthy4,§

1Institut Pluridisciplinaire Hubert Curien, Physique Théorique, Université de Strasbourg, F-67037 Strasbourg, France
2Department of Physics and Astronomy, McMaster University, Hamilton, Canada L8S4M1
3Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

4The Institute of Mathematical Sciences, Chennai 600 113, India
(Received 11 January 2017; published 5 May 2017)

In this paper, we discuss P(n), the number of ways a given integer n may be written as a sum of primes.
In particular, an asymptotic form Pas(n) valid for n → ∞ is obtained analytically using standard techniques
of quantum statistical mechanics. First, the bosonic partition function of primes, or the generating function of
unrestricted prime partitions in number theory, is constructed. Next, the density of states is obtained using the
saddle-point method for Laplace inversion of the partition function in the limit of large n. This gives directly the
asymptotic number of prime partitions Pas(n). The leading term in the asymptotic expression grows exponentially
as

√
n/ln(n) and agrees with previous estimates. We calculate the next-to-leading-order term in the exponent,

proportional to ln[ln(n)]/ln(n), and we show that an earlier result in the literature for its coefficient is incorrect.
Furthermore, we also calculate the next higher-order correction, proportional to 1/ln(n) and given in Eq. (43),
which so far has not been available in the literature. Finally, we compare our analytical results with the exact
numerical values of P(n) up to n ∼ 8 × 106. For the highest values, the remaining error between the exact P(n)
and our Pas(n) is only about half of that obtained with the leading-order approximation. But we also show that,
unlike for other types of partitions, the asymptotic limit for the prime partitions is still quite far from being
reached even for n ∼ 107.

DOI: 10.1103/PhysRevE.95.052108

I. INTRODUCTION

Consider N identical ideal bosons that occupy a quantum
system with equispaced single-particle energy levels at integer-
valued n, with the lowest level at n = 0. This is simply
the one-dimensional harmonic-oscillator spectrum with the
zero-point energy set to zero. In the ground state of this system,
all the bosons occupy the lowest level at n = 0. When a large
excitation energy is given to the system, there are many ways
by which this energy can be distributed among the N bosons.
In fact, this is precisely the number P(n) of ways in which an
integer n can be partitioned into a sum of integers less than
or equal to n. The asymptotic form of P(n) (corresponding to
N → ∞ particles) is precisely the Hardy-Ramanujan formula
[1] for the number partitions. The generating function in
number theory is intimately connected to the bosonic partition
function of statistical mechanics. It is interesting to note that
this was written down by Hardy and Ramanujan years before
the Bose-Einstein distribution was discovered in physics. In
an earlier publication by some of the present authors [2], the
asymptotic quantum density of states ρ(E) was shown to be
the P(n = E) known from number theory. This was done by
performing the inverse Laplace transformation of the partition
function using the saddle-point method.

It is obvious that the same technique of statistical mechanics
may be applied to obtain any partition of a positive integer n,
thus in particular also for its partition into primes p, if we
start with a system whose single-particle levels are simply the
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primes p. The total energy now is given as a sum of primes,
and the corresponding density of states is given by the number
of prime partitions P(n). For our calculations, we require to
convert the sum over primes into a continuous integral. For this,
we need the density of primes, which may be deduced from
the well-known prime number theorem (see the Appendix).
The leading-order (LO) analytical expression for P(n) in the
asymptotic limit n → ∞ is available in the literature [3,4].
Corrections to the LO asymptotic result have been derived
by Vaughan [5] using the saddle-point method. While our
LO result, multiplied by a preexponential factor, agrees with
that given by Vaughan [5], our next-to-leading-order (NLO)
term in the exponent has a different coefficient (− 1

2 ) from
that given by Vaughan (+1), which we are convinced is
incorrect. Furthermore, while only an error estimate was
given in Ref. [5] for the remaining terms beyond the NLO
correction, we give a precise analytical expression for the
next higher-order correction in the exponent of P(n). Our
asymptotic result, which is denoted by Pas(n) in Eq. (43),
is compared numerically with the exactly computed P(n).
Although our asymptotic form comes much closer to the true
P(n) than that of Ref. [5] for large n, we find that all asymptotic
expressions discussed here are still quite far from reaching the
exact P(n), even for numbers as large as n ∼ 107. The reason
for this slow approach to the asymptotic form will be discussed
after presenting the numerical results.

The plan of our paper is as follows. In Sec. II A, we
present our tools of statistical mechanics for a system whose
single-particle spectrum is given by distinct primes p and
whose total energy E is distributed among N bosonic particles.
In Sec. II B, an analytical asymptotic form of the canonical
bosonic partition function Z(β) is derived and checked by an
exact numerical computation of Z(β). In Sec. II C, we obtain
the many-body density of states ρ(E) by Laplace inversion
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of Z(β) using the saddle-point approximation. Sections II D
and II E are devoted to deriving our main result Pas(n) for the
number of prime partitions, as given in Eq. (43), whereby the
continuous energy variable E is identified with the discrete
number n. In Sec. III, our asymptotic result, as well as other
expressions, are compared numerically with the exact function
P(n) for the prime partitions, which we have computed up to
n ∼ 8 × 106. We conclude our paper with a short summary in
Sec. IV. Some details about the density of primes, relevant to
our analysis, are presented in the Appendix.

II. PARTITIONS INTO PRIMES

A. N-body system with a single-particle spectrum of primes

We set out to formulate our method for a fictitious
bound system whose discrete, nondegenerate single-particle
energies are given by the primes p = 2,3,5, . . . . We do
not know of any physical system having this property (see
also the last paragraph of our conclusions). But the use
of quantum-statistical methods together with semiclassical
“trace formulas” [6,7] for purely mathematical spectra can
be very enlightening. A famous example is the spectrum of
the nontrivial zeros of the Riemann ζ function. The quest for
a Hamiltonian with this spectrum (see Ref. [8] for a recent
attempt) has motivated the research of many physicists and
mathematicians, and the hope is that it may even lead to a
proof of the Riemann hypothesis. (For two nice reviews about
this topic, see Refs. [9,10].) A trace formula for the prime
spectrum is given in the Appendix.

Consider now a large number N of bosonic particles
occupying these levels described by the prime spectrum. The
total energy E of the system is given by

E =
∑

p

np p. (1)

Here and in the following, the sums
∑

p run over all primes,
and np are the occupancies of the levels, which may be zero
or positive integers such that∑

p

np = N. (2)

In other words, the total energy E in (1) is given by any of
its partitions into primes, restricted by the particle number
conservation (2). The possible number of such partitions shall
be denoted by PN (E), where the subscript N keeps track of
the number of particles. Although E is therefore necessarily
integer, we treat it as a continuous variable as in statistical
mechanics. It is important to realize that PN (E) is identical to
the many-body density of states ρN (E) that is related to the
canonical N -body partition function ZN (β) by

ZN (β) =
∫ ∞

0
dE ρN (E) exp(−βE), (3)

where β = 1/kT is the inverse temperature. Note that this
expression, with ρN (E) = PN (E), has the familiar form of the
generating function of partitions used in number theory [1].
Since Eq. (3) formally is a Laplace transform, the density of
states ρN (E) can be obtained from the partition function by its

inverse Laplace transform

ρN (E) = 1

2πi

∫ i∞

−i∞
dβ ZN (β) exp(βE). (4)

We shall perform this Laplace inversion in the saddle-point
approximation.

In terms of the single-particle spectrum, the canonical
partition function ZN (β) may be written, after taking the limit
N → ∞, as

Z∞(β) =
∏
p

1

1 − e−β p
, (5)

where the product runs over all primes p. For simplicity, we
shall henceforth omit the subscript “∞” from Z(β) as well
as from the functions ρ(E) and P(E). Having taken the limit
N → ∞ implies that the partitions of the total energy now are
unrestricted, admitting any number of summands allowed by
the value of the energy (1). Taking the Laplace inverse of Z(β)
according to (4) thus leads to ρ(E) = P(n = E) in the limit
N → ∞.

In doing the transform Eq. (4), we define the function

S(β) = βE + ln Z(β), (6)

which formally defines the canonical entropy. We now evaluate
the inverse Laplace transform in Eq. (4) using the method
of steepest descent, or the saddle-point method. Hereby one
is looking for a stationary point β0 of the function S(β)
appearing in the exponent of the inverse Laplace integral,
which corresponds to a saddle point in the complex β plane.
This leads to the saddle-point equation (or saddle-point
condition)

∂S(β)

∂β

∣∣∣∣
β0

= E + Z′(β0)

Z(β0)
= 0 . (7)

If this equation has a solution β0, which will be a function
β0(E) of the energy, one evaluates the derivatives of S(β)
at β0:

S(n)(β0) = ∂nS(β)

∂βn

∣∣∣∣
β0

. (8)

The result of the inverse Laplace transform is then given by

ρ(E) = eS(β0)√
2πS(2)(β0)

[1 + · · · ], (9)

where the dots indicate so-called cumulants involving higher
derivatives of the entropy, which become more important for
large β (see, e.g., Ref. [11]). Since we are interested here in
the limit β → 0 relevant for the asymptotics of large E, we
shall neglect them.

B. Asymptotic partition function

Taking the logarithm of the partition function (5) gives a
sum over all primes p, which we may also write as an integral,

ln Z(β) = −
∑

p

ln(1 − e−βp) = −
∫ ∞

x0

dx g(x) ln(1 − e−βx),

(10)
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where g(x) is the exact density of primes given by the sum of
δ-function distributions,

g(x) =
∑

p

δ(x − p), (11)

and x0 is any real number smaller than the lowest prime: x0 <

2 . The sum of distributions (11) may be decomposed, as in
many exact trace formulas for spectral distributions [7], into an
average part gav(x), which is a continuous function of x, and
an oscillating part representing itself as a sum of harmonics
whose superposition results in the discreteness of the spectrum
described by Eq. (11). (See the Appendix for the case of the
prime spectrum.) The main object of the present study is the
asymptotic behavior of P(n) for large n, for which the use of
gav(x) in (10) is sufficient. For large x, the discreteness of g(x)
may be ignored, and the resulting Pas(n) is a smooth function
of n as a continuous variable.

Therefore, we now replace the exact g(x) in (10) by the
average prime density gav(x). In doing so, we define the
logarithm of the average partition function

ln Zav(β) = −
∫ ∞

a

dx gav(x) ln(1 − e−βx), (12)

where the constant a must be chosen carefully as discussed
in the following. As a specific choice of gav(x), we use the
asymptotic prime density that is well-known from number
theory (see the Appendix):

gav(x) = 1/ln(x). (13)

Since we are only interested in asymptotic results, it will be
sufficient to look at the limit β → 0, i.e., the high-temperature
limit of the partition function.

The integrand (13) in (12) has a pole at x = 1, which be-
comes relevant when a < 1. We therefore define the following
principal-value integral:

I (a,β) = − lim
ε→0

[∫ 1−ε

a

dx
1

ln(x)
ln(1 − e−βx)

+
∫ ∞

1+ε

dx
1

ln(x)
ln(1 − e−βx)

]
, (a �= 1), (14)

which in the following is denoted by the symbol
∫−∞

a
dx(· · · ),

so that

ln Zav(a,β) = I (a,β) = −
∫
−

∞

a

dx
1

ln(x)
ln(1 − e−βx). (15)

This integral exists for any a �= 1 and for finite β. We now
make the change of variable y = βx to obtain

I (a,β) = 1

β ln(β)

∫
−

∞

aβ

dy
1[

1 − ln(y)
ln(β)

] ln(1 − e−y). (16)

To make the next step more clear, we define

τ = 1/β (17)

and rewrite (16) as

I (a,τ ) = − τ

ln(τ )

∫
−

∞

a/τ

dy
1[

1 + ln(y)
ln(τ )

] ln(1 − e−y), (18)

which we want to evaluate asymptotically in the high-
temperature limit τ → ∞. We split it into two parts, writing

I (a,τ ) = − τ

ln(τ )

[∫
−

τ

a/τ

dy
1[

1 + ln(y)
ln(τ )

] ln(1 − e−y)

+
∫ ∞

τ

dy
1[

1 + ln(y)
ln(τ )

] ln(1 − e−y)

]
. (19)

If we fix a to an arbitrary value in the limits 1 < a < 2 and
take τ > 1, we may approximate the first integral by the first
term of the binomial expansion of its denominator and write

I (a,τ ) � − τ

ln(τ )

[∫ τ

a/τ

dy

[
1 − ln(y)

ln(τ )

]
ln(1 − e−y)

+
∫ ∞

τ

dy
1[

1 + ln(y)
ln(τ )

] ln(1 − e−y)

]
. (20)

In the limit τ → ∞, the second integral goes to zero and the
first integral gives the asymptotic approximation

Ias(τ ) = − τ

ln(τ )

∫ ∞

0
dy

(
1 − ln(y)

ln(τ )

)
ln(1 − e−y), (21)

which no longer depends on the value of a. Using (17) and (15),
we obtain the following asymptotic form for the logarithm of
the partition function, which we call ln Zas(β) and which we
can evaluate analytically:

ln Zas(β) = 1

β ln(β)

∫ ∞

0
dy

(
1 + ln(y)

ln(β)

)
ln(1 − e−y)

= − f1

β ln(β)
+ f2

β ln2(β)
, (22)

where

f1 = π2

6
, f2 = Cπ2

6
+

∑
k

ln(k)

k2
= 1.887 03. (23)

Here C = 0.577 216 is the Euler constant, and the sum over k

has been evaluated numerically (with kmax ∼ 10 000).
We want now to test the quality of the approximation

(22), which should become accurate in the limit β → 0. To
that purpose we first integrate the principal-value integral
ln Zav(a,β) in (15). Here we choose a = 0 for definiteness;
we emphasize that this choice is a priori independent of the
fact that 1 < a < 2 was used to derive the approximation
(22). Then we compare it to the exact function (10) and to
the approximation ln Zas(β) in (22). The results are shown in
Fig. 1.

We see that both approximations approach the exact values
closely for small β, while ln Zav(β) is better than ln Zas(β) for
the largest values of β. In Fig. 2, we see the same in a region
of smaller values for β. The approximation ln Zas(β) given
in (22) crosses the exact curve near β ∼ 0.008 and appears
to stay below it for β → 0. It reveals itself as an excellent
asymptotic approximation to the exact ln Z(β) in the small-β
limit.

Using the analytical form (22) of the partition function,
the inverse Laplace transform (4) can now be done in the
saddle-point approximation as outlined at the end of Sec. II A.
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FIG. 1. Logarithm ln Z(β) of the partition function plotted vs β.
Solid line (red): exact function (10). Dotted line (green): numerically
integrated principal-value integral ln Zav(a,β) in (15) with a = 0.
Dash-dotted (blue) line: asymptotic approximation ln Zas(β) in (22).

C. Saddle-point approximation

To find the saddle point β0, we isolate the most singular
terms in S(β) in the high-temperature limit. We first write the
entropy, using (22) above, in the form

S(β) = βE − f1

β ln(β)
+ f2

β ln2(β)
. (24)

Since the entropy above is given up to order 1/ln2(β), all
further calculations will be done up to this order. To begin
with, we need the following derivatives of the entropy:

S(1)(β) = E + f1

β2 ln(β)
+ f1

β2 ln2(β)
− f2

β2 ln2(β)
+ · · · ,

(25)

S(2)(β) = − 2f1

β3 ln(β)
− 3f1

β3 ln2(β)
+ 2f2

β3 ln2(β)
+ · · · . (26)

The saddle-point equation (7) can therefore be written in the
following form:

βE = − f1

β ln(β)
+ f2

β ln2(β)
− f1

β ln2(β)
+ · · · . (27)

This is a transcendental equation whose solution β0 can only be
obtained iteratively as outlined in Sec. III D below. However,
we may use the above equation directly to write S(β) in terms

0
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300

ln
Z(
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0.0 0.002 0.004 0.006 0.008 0.01

FIG. 2. Same as Fig. 1, but shown in the limit of small β.

of the as yet undetermined β0 as

S(β0) = 2β0E + f1

β0 ln2(β0)
+ · · · , (28)

and similarly,

S(2)(β0) = 1

β2
0

[
2β0E − f1

β0 ln2(β0)
+ · · ·

]
. (29)

With Eq. (9) we obtain the asymptotic density of states as

ρ(E) =
exp

(
2β0E + f1

β0 ln2(β0)
+ · · · )√(

2π/β2
0

)[
2β0E − f1

β0 ln2(β0)
+ · · · ] . (30)

This is the same as the asymptotic expression for the number
of prime partitions P(n) = ρ(E = n). Any further analysis
requires the explicit solution β0(E), which we derive next.

D. Saddle-point solution to leading order

To leading order O[1/ ln(β0)], the saddle-point equation
(27) reads

βE = − f1

β ln β
. (31)

We now solve this equation iteratively. Let τ = 1/β,

f1

E
= ln(τ )

τ 2
. (32)

We start by assuming the solution to be of the form

τ = a1E
a2 [ln(E)]a3 , (33)

where a1, a2, and a3 are constants to be determined using
Eq. (31). Upon substitution, assuming large E, we get

f1

E
= 1

a2
1E

2a2 (ln E)2a3
[ln a1 + a2 ln(E) + a3 ln ln(E)]

≈ a2

a2
1E

2a2 (ln E)2a3−1
. (34)

First we determine the leading term, comparing powers, to find
the solutions

a3 = 1

2
, a2 = 1

2
, a2

1 = a2

f1
= 3

π2
. (35)

Thus we have the leading solution given by

τ = 1

β0
=

√
3

π2
E ln(E). (36)

To leading order, therefore, we have the following result for
the density, or equivalently for unrestricted prime partitions:

ρ(E) = eS(β0)

√
2πS ′′(β0)

= e2π
√

E/[3 ln(E)]√
4E3/2[3 ln(E)]1/2

. (37)

Apart from the prefactor, it is well known [3,4] that ln[ρ(E)] ≈
2π

√
E/(3 ln E). In the paper by Vaughan [5], the prefactor has

also been given by calculating
√

2πS(2)(β), which agrees with
the calculation given here.

Next we consider corrections to the asymptotic result given
in Eq. (37).
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E. Higher-order corrections

The results of the previous subsection may be further
improved by including additional terms that were neglected
so far. This is done by assuming the saddle-point solution to
be of the form

β0 = π

√
1

3E ln(E)

[
1 + a

ln[ln(E)]

ln(E)
+ b

1

ln(E)
· · ·

]
, (38)

where a,b are arbitrary coefficients to be determined using the
equation above up to order 1/ln(E). The form of the solution
is suggested by the transcendental equation (34) itself. Since
the left-hand side of (34) is a monomial in E, the only way
this can be satisfied is to have additional corrections to cancel
the nonleading terms. The saddle-point condition to go beyond
the leading order is given in Eq. (27), which is rewritten more
conveniently as

E = − f1

β2
0 ln β0

[
1 + 1 − f2/f1

ln β0
+ O(1/ ln2 β0)

]
. (39)

We expand the unknowns on the right-hand side to the desired
order 1/ln(E) in the limit of large E,

β2
0 = π2

3E ln(E)

[
1 + 2a

ln[ln(E)]

ln(E)

+ 2b
1

ln(E)
+ O{1/ln2(E)}

]
,

ln(β0) = −1

2
ln(E)

[
1 + ln[ln(E)]

ln(E)
− ln

(
π2

3

)
1

ln(E)

− 2a
ln[ln(E)]

ln2(E)
− 2b

1

ln2(E)

]
,

and

β2
0 ln(β0) = − π2

6E

[
1 + (2a + 1)

ln[ln(E)]

ln(E)

+ 2b − ln(π2/3)

ln(E)
+ O{1/ln2(E)}

]
.

Substituting these in Eq. (39), we determine the coefficients
a,b as

a = −1

2
, b = ln(π/

√
3) +

(
f2

f1
− 1

)
,

and therefore

β0 = π

√
1

3E ln(E)

[
1 − 1

2

ln[ln(E)]

ln(E)

+ ln(π/
√

3) + (f2/f1 − 1)

ln(E)
· · ·

]
. (40)

The density of prime partitions is then obtained by substituting
the above solution into

ρ(E) =
exp

[
2β0E

(
1 + (β0E)2

2f1E

) + · · · ]√
2π

(
2β0E/β2

0

)[
1 − (β0E)2

2f1E
+ · · · ] , (41)

where we have kept the NLO term in the density consistent
with the order to which the solution has been obtained.
Substituting β0E from Eq. (40), we finally obtain

ρ(E)

=
exp

{
2π

√
E

3 ln(E)

[
1− 1

2
ln[ln(E)]

ln(E) + [f2/f1+ln(π/
√

3)]
ln(E) + · · · ]}√

{4[3 ln(E)]1/2E3/2 + · · · }
.

(42)

Identifying ρ(E) with P(n = E), the above equation gives the
asymptotic prime partitions of an integer n. The first correction
to the exponent given above, proportional to ln[ln(E)]/ln(E),
is similar to that given by Vaughan [5] except that its coefficient
here is − 1

2 instead of +1. In the following section, we shall
test the approximation obtained by ignoring all higher-order
terms indicated by the dots above, thus defining

Pas(n) = 1

2 [3 ln(n)]
1
4 n

3
4

exp

{
2π

√
n

3 ln(n)

[
1 − 1

2

ln[ln(n)]

ln(n)

+ [f2/f1 + ln(π/
√

3)]

ln(n)

]}
. (43)

This is the main result of our paper. A few comments might
be in order here before we compare our result with exact
numerical values.

(i) The leading term in the exponent, namely 2π
√

n
3 ln(n) ,

agrees with the previously known results [3–5].
(ii) The prefactor given by {2 [3 ln(n)]

1
4 n

3
4 }−1 agrees also

with that given by Vaughan [5].
(iii) The first correction term to the exponential, given by

− 1
2

ln[ln(n)]
ln(n) , has also been calculated by Vaughan [5] but with a

coefficient +1 instead of our coefficient − 1
2 , which we believe

is its correct value.
(iv) While Vaughan [5] has only given an estimate of the

remaining error beyond the first correction in the exponential,
we have been able to determine the exact coefficient of the
successive term ∝1/ln(n) in the exponential. As far as we
know, this term has not been given in the literature so far.

III. NUMERICAL STUDIES OF THE ASYMPTOTIC
FUNCTION Pas(n)

A. Evaluation of the exact database for P(n)

We evaluate the prime partition P(n) using a standard
method. Given an integer n, find the distinct primes that
divide n. The sum of distinct prime factors that decompose
n is denoted by S (n) [12]. For example, S (4) = 2 since
4 = 2 × 2 has only one distinct prime that divides it, S (6) =
5 since 6 = 2 × 3, or S (52) = 15 since 52 = 2 × 2 × 13.
(Note: if a prime factor occurs several times, it should only
be counted once.) Once the sum of prime factors S (n) is
generated in a table, the following recursion relation [13] is
used to compute the prime partitions (without any restriction):

P(n) = 1

n

[
S (n) +

n−1∑
k=1

S (k)P(n − k)

]
, (44)
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which involves all prime partitions of integers less than n.
This procedure is very time consuming for large n. We have
been able to compute P(n) for n up to 8 654 775. But, as we
shall see, even this large number is not sufficient to reach the
asymptotics of P(n).

B. Numerical study of Pas(n)

Using the above-derived database for the exact P(n), we
now test various approximations for their asymptotic behavior.
Rather than calculating the exponentially growing full function
P(n), we look at its logarithm. We compare numerically
the logarithm of the exact P(n) with that of the following
approximations:

(i) To lowest order (LO), we set the prefactor of the exponent
in (43) to unity, ignoring its denominator, and just keep the
leading exponential term

P0(n) = exp

{
2π

√
n

3 ln(n)

}
, (45)

an asymptotic result that has been known for a long time [3,4].
(ii) The next expression is that of Vaughan [5]:

PV (n) = 1

2[3 ln(n)]1/4n3/4

× exp

{
2π

√
n

3 ln(n)

[
1 + ln[ln(n)]

ln(n)

]}
. (46)

We repeat the fact that the NLO correction term in the exponent
here has a different coefficient (+1) from the coefficient (− 1

2 )
in our result (43).

(iii) The third approximation we investigate is our asymp-
totic result (43) derived in the previous section.

The numerical comparison of the above three expressions
with the exact prime partitions is now discussed in several
steps.

We first plot lnP(n) versus n for the various approximations
in Fig. 3. The solid (black) curve gives the exact values
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3500

ln
P(
n)

0 6 6 6 6

n
2×10 4×10 6×10 8×10

FIG. 3. Logarithms lnP(n) in various approximations. Solid line
(black): exact numerical values, dashed (red): lnPas(n) (43), dash-
dotted (blue): LO lnP0(n) (45), dotted (green): Vaughan (46).
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[ln
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p(
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n
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n)
]/l
n
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(n
)

0.00025 0.0005 0.00075 0.001
1/n

FIG. 4. Relative differences [lnPapp(n) − lnP(n)]/ lnP0(n)
plotted vs 1/n. Dashed (red): present (43), dash-dotted (blue): LO
term (45), dotted (green): Vaughan (46).

lnP(n). Our present approximation (43), shown by the dashed
(red) line, comes closest to it, improving noticeably over the
LO approximation lnP0(n) (45), shown by the dash-dotted
(blue) line, in that the remaining error is reduced by about
a factor of 2 for n ∼> 106. The expression (46) of Vaughan,
shown by the dotted (green) curve, overshoots the exact
values substantially and is actually much worse than the LO
approximation—which does not appear to have been noticed
so far.

From this figure, however, we cannot assess how the various
approximations approach the correct asymptotics, since all
curves increase monotonously. To this purpose, we next
show in Fig. 4 the relative differences of the approximated
logarithms, [lnPapp(n) − lnP(n)]/ lnP0(n), and plot them
versus 1/n so that they should tend to zero for n → ∞
(i.e., toward the left vertical axis in the figure). Shown are,
with the same symbols (and colors) as above, our present
approximation (43), the leading term (45), and that of Vaughan
(46), all in the region 0 � 1/n � 0.001 (i.e., n > 1000). Here
we see that sign changes occur in the two lowest curves: at
n ∼ 5800 for (43), and at n ∼ 13 000 for (45). They hence
approach zero from below, while the curve of Vaughan (46)
stays far up on the positive side.

To see to which extent the two lower curves approach the
asymptotic result 0, we now focus on the largest values of n

available in our computation and further reduce the scale to
1/n � 10−5, shown in Fig. 5. Vaughan’s curve cannot be seen
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-0.01

0.0
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n
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(n
)

0 -6 4×102×10 8×106×10-6 -6 -6 10-5

1/n

FIG. 5. Same as Fig. 4 in the lowest region 1/n � 10−5. Upper
curve (red): our result (43); lower curve (blue): LO result (45). The
Vaughan curve is not seen at this scale.
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at this scale. Clearly, our result reduces the remaining error
of the LO approximation by nearly a factor 2 in this region.
We also notice that around n ∼ 106, the curves have reached
a minimum and then bend upward, so that they do appear to
go asymptotically to zero. However, the differences are still
finite even for our largest value nmax = 8 654 775. We must
therefore question how far one has to go to reach the correct
asymptotics P(n). Although the two curves in Fig. 5 clearly
bend up toward zero for 1/n → 0, the slopes at nmax are such
that there may still be a long way to go—too long perhaps to
be covered by any numerical computation of the exact P(n).

We conclude that our result Pas(n) in (43) does appear to
have the correct asymptotic behavior, but that even the included
corrections beyond the LO are not sufficient to reach the exact
partitions in our numerically accessible region.

IV. SUMMARY AND CONCLUSIONS

In this paper we have discussed P(n), the number of ways
a given integer may be written as a sum of primes—a central
theme in number theory. We have adopted methods used in
quantum statistical mechanics where the central problem is the
number of ways in which energy is distributed among particles
occupying single-particle states. The partition function in
statistical mechanics plays the role of the generating function
of partitions. We have applied this method to the problem
of prime partitions of an integer. The dominant integral is
evaluated using the saddle-point method.

The main results of the paper may be summarized as
follows:

(i) While the leading-order (LO) asymptotic form Eq. (45)
has been known for some time, we derive non-leading-order
(NLO) corrections to the exponent. There has not been much
discussion in the literature on the prefactor to the exponential
form (45), nor of the NLO corrections. An exception is
Vaughan [5], who derived the same prefactor and also a
NLO correction to the exponent in (45). We obtain a NLO
contribution to the exponent of the same form, but with
a different coefficient (− 1

2 ) than that of Vaughan [5] (+1).
Our coefficient brings a considerable improvement of the
asymptotics compared to that of Vaughan.

(ii) We also obtain a higher-order correction beyond NLO
that, to the best of our knowledge, is not available in the
literature.

(iii) We use a well-known algorithm to compute the exact
prime partitions in order to compare analytical expressions for
asymptotic prime partitions numerically. We have been able to
do this up to more than 8 million in n. To our knowledge,
a numerical comparison of exact results with asymptotic
expressions has not been done up to this range before now. This
is presumably also the reason why it has not been noticed so far
that Vaughan’s asymptotic expression (46) actually performs
far worse than the lowest-order (LO) approximation (45) for
n ∼> 106 (see Figs. 3 and 4).

(iv) It has been known from earlier work (see, for example,
Ref. [2]) that for partitions of integers into integers, the
asymptotic expressions for p(n) are reached very rapidly—for
n of the order of 100 or more. This is so because, as shown
by Radmacher [14], the exact expression for integer partitions
may be written as a convergent series. The kth term in the

series is of order exp (π
k

√
2n
3 ). The leading term with k = 1

gives the Hardy-Ramanujan result. The first correction to the
exponent is at k = 2 and therefore

p(n) ≈ C1(n) exp

(
π

√
2n

3

)[
1 + C2(n) exp

(
−π

2

√
2n

3

)]
,

(47)

where C1 and C2 are n-dependent prefactors. The correction
to the exponent falls off exponentially. However, as seen
from Eq. (43), the correction in the case of primes falls off
logarithmically, which explains why the asymptotic limit is
reached much more slowly for prime partitions, as compared
to that of p(n).

(v) Although both the exact P(n) and the asymptotic
form Pas(n) given in (43) are monotonously increasing, their
difference is not monotonic. In fact, we show that Pas(n)
crosses P(n) around n ∼ 5800 and approaches it from below
for n → ∞ (within the limits of our data). The remaining error
has a maximum absolute value around n ∼ 106 (see Fig. 5),
beyond which it clearly tends toward zero.

(vi) Our main conclusion is that our result Pas(n) given
in (43) is a clear improvement over the LO expression P0(n)
in (45). It appears to have the correct asymptotic behavior
for n → ∞, but even the corrections beyond the LO are not
sufficient to reach the exact P(n) in the numerically accessible
region.

Concerning partitions of integers n into smaller integers
or into squares of integers, there exist physical quantum
Hamiltonians that lead to these partitions, namely the harmonic
oscillator and the infinite square-well potential [2]. Regarding
the spectrum of primes, there have been attempts to construct
potentials whose eigenvalues are the primes. Unfortunately,
these potentials keep changing upon inclusion of more primes,
and they have a fractal-like character [15–17]. That the prime
spectrum can be reproduced from the nontrivial zeros of the
Riemann ζ function is shown in the trace formula given
in Eq. (A7) of the Appendix and illustrated in Fig. 6. As
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1.0

g s
c(x
)

0 10 20 30 40 50
x

FIG. 6. Density of primes g(x) obtained by the semiclassical
expression gsc(x) in (A7), using the lowest 3000 Riemann zeros α

and mmax = 14, coarse-grained with a Gaussian width γsh = 0.1.
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we have mentioned already in the beginning of Sec. II A,
semiclassical trace formulas can give insights into deep-lying
mathematical connections. On the physical side, they provide
the connection between a quantum spectrum and the periodic
orbits of the corresponding classical Hamiltonian, and on
the purely mathematical side, they connect spectral theory
with symplectic geometry (in particular, with geodesics on
Lagrangian manifolds) [6].
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APPENDIX: SOME DETAILS ABOUT THE DENSITY OF
PRIMES

In this appendix, we discuss two approximations to the
density of primes g(x) defined in (11), which is related to the
function π (x) that counts the number of primes p � x by a
differentiation:

g(x) = dπ (x)

dx
. (A1)

Both π (x) and g(x) have been the object of a lot of research
in number theory. π (x) is a staircase function whose average
part is given by the asymptotic form

π (x) ∼ x

ln(x)
, (A2)

which is a consequence of the prime number theorem. A more
refined asymptotic form is (see, e.g., [18])

π (x) ∼ x

ln(x)
+ x

[ln(x)]2
+ · · · + (n − 1)!

x

[ln(x)]n
. (A3)

Differentiating it yields the asymptotic expression for the
density of primes,

g(x) ∼ 1/ ln(x), (A4)

whereby all higher-order terms coming from (A3) have
canceled successively. In Sec. III we have used the above
asymptotic form for the average prime density gav(x).

An alternative expression for π (x) may be derived from a
function studied by Riemann in 1859, called J (x), and further
discussed by Edwards [18],

J (x) =
∞∑

n=1

1

n

∑
p

�(x − pn) (x > 0). (A5)

Here p runs over all primes and n over all integers, and
�(x) is the standard step function: �(x) = 1 for x � 0 and
�(x) = 0 for x < 0. In a seminal paper [19], Riemann gave
an expression for J (x) in terms of zeros of the ζ function. We
use his expression and employ the Mobius inversion formula
(cf. [18])

π (x) =
∞∑

m=1

μ(m)

m
J (x1/m), (A6)

where μ(m) is the Mobius function [μ(1) = 1]. Taking
the derivative according to (A1), we obtain the following
expression for the density of primes (given also in [9]):

gsc(x) = 1

x ln x

∞∑
m=1

μ(m)

m

[
x1/m − 1

(x2/m − 1)

− 2 x1/2m
∑

α

cos
( α

m
ln x

)]
. (A7)

Here α > 0 are the nontrivial zeros of the Riemann ζ function
along the positive half-line, and the validity of the Riemann
hypothesis has been assumed. This expression, which does not
appear to be widely known, has the form of a semiclassical
“trace formula” [6,7] and we have therefore denoted it with
the subscript “sc” for “semiclassical.” Ideally, gsc(x) should
yield the exact prime density g(x) in (11) if the sum over α is
not truncated, and if the Riemann hypothesis is true.

We have tested Eq. (A7) numerically in order to con-
vince ourselves of its validity. For practical purposes, we
have coarse-grained it, replacing the δ functions in (11) by
normalized Gaussians with a width γ , and correspondingly
coarse-grained Eq. (A7) as described in Sec. 5.5 of [7].
Figure 6 shows the results, obtained using the lowest 3000
Riemann zeros α. We see that the coarse-grained trace formula
indeed reproduces the Gaussian-smoothed density of primes,
replacing the δ functions in (11) by Gaussians centered exactly
at the primes p. (Note that the sum over m can be truncated for
any finite value of x; in the situation described here, mmax = 14
was sufficient.)

We note that the average part of gsc(x) in (A7) is not suitable
for use in Eq. (12), because it has a pole structure that cannot
be integrated easily. Numerically we found it to be very well
approximated by the familiar asymptotic expression (A4).
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