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Dynamics of a mechanical system with multiple degrees of freedom out of thermal equilibrium
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Out of thermal equilibrium, an environment imposes effective mechanical forces on nanofabricated devices as
well as on microscopic chemical or biological systems. Here we address the question of how to calculate these
forces together with the response of the system from first principles. We show that an ideal gaslike environment,
even near thermal equilibrium, can enforce a specific steady state on the system by creating effective potentials
in otherwise homogeneous space. An example of stable and unstable rectifications of thermal fluctuations is
presented using a modified Feynman-Smoluchowski ratchet with two degrees of freedom. Moreover, the stability
of a steady configuration depends on its chiral symmetry. The transition rate probabilities and the corresponding
kinetic equations are derived for a complex mechanical system with arbitrary degrees of freedom. This work,
therefore, extends the applicability of mechanical systems as a toy model playground of statistical physics for
active and living matter with multiple degrees of freedom.
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I. INTRODUCTION

Macroscopic machines become unstable and disintegrate
after some threshold load. Stability is, therefore, an important
factor in their design. The same issue will be important for
nanodevices [1] when they develop to maximum capacity. The
stability of future complex devices is a fundamental question of
statistical physics regarding noninear dynamics out of thermal
equilibrium. Dynamics depends on the interaction between the
system’s degrees of freedom and the forces that drive it out of
thermal equilibrium.

A nonequilibrium environment affects the degrees of
freedom of a small mechanical system. A chemical or nanofab-
ricated device out of thermal equilibrium can experience
effective forces even in the absence of external potentials [2].
There exist Brownian machines with a single relevant degree
of freedom, such as a Feynman-Smoluchowski ratchet [3,4],
capable of utilizing these effective forces to generate useful
work out of thermal fluctuations. There is a significant
knowledge gap as to how the same forces affect the dynamics
of a system with multiple degrees of freedom, though there are
theoretical and experimental efforts in this direction [5,6].

The subject of this work is a mechanical system composed
of solid bodies that are connected by a rigid axis or free rotating
joints [7,8]. The different parts of the system, preserving the
connectivity, are immersed in reservoirs containing ideal gases.
Elastic collisions with the gas particles cause the transitions
of the system between its states. In the absence of external
potentials, any configuration of a mechanical system possesses
the same probability at thermal equilibrium under the condition
of a thermodynamic limit, meaning the temperatures of all
baths are equal, their volumes are large, and the mass of a gas
particle is negligible relative to the mass of the system. Let us
address the question of whether a specific configuration may
be favored out of thermal equilibrium and how to calculate this
configuration as a function of the properties of the system.

One advantage of a mechanical framework for a ther-
modynamic system is the possibility of treatment from first
principles by modeling the thermal bath as a gas of small elastic
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particles [7,9]. The disadvantage is the apparent difference
of the mechanical framework from the real and artificial
nanosystems that are driven by chemical or optical sources
out of thermal equilibrium [1]. Nevertheless, the mechanical
Feynman-Smoluchowski ratchet was an inspiration for some
chemical [10,11] and mechanical devices [5,12,13]. The
ratchet mechanism is considered important for verification of
fundamental theorems of statistical physics [14–16], and it is
an essential property of molecular motors [17–23] (though
alternative hypotheses regarding the motion of molecular
motors do exist).

To the best of our knowledge, only systems with a
single degree of freedom have been considered from first
principles so far [7,24]. A system with at least two degrees of
freedom, however, is required to investigate the phenomenon
of interacting degrees of freedom and the influence of this
phenomenon on the dynamics of a complex system out of
thermal equilibrium.

In this article, we present an ab initio path from the elastic
scattering of a single gas particle by a mechanical system to
the transition rate probability between the states of the system
and to the corresponding Masters-Boltzmann equation and the
average velocities of the system’s degrees of freedom as func-
tions of the macroscopic parameters of the out-of-equilibrium
environment (Onsager relations) [25], including the influence
of the different degrees of freedom on each other. The stability
of the steady state of the system depends on the interaction be-
tween its degrees of freedom and the effective forces imposed
on the system by the environment. An interesting finding is
that some of these forces persist even in a single temperature
environment if the thermodynamic limit does not hold. In
addition, the spatial asymmetry of the system’s stable state,
together with the corresponding directed motion, may possess
preferred chiral symmetry. To make the discussion more
visual, we demonstrate all these phenomena using a modified
Feynman-Smoluchowski ratchet with two degrees of freedom.

II. BROWNIAN MOTOR WITH TWO
DEGREES OF FREEDOM

Consider a dumbbell-like macroscopic body consisting of
symmetric and asymmetric parts; see Fig. 1. These parts are
rigidly connected to each other by a thin axis. Each part
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FIG. 1. Dumbbell structure with the asymmetric part in the form
of an isosceles triangle with apex angle 2θ0, which is connected to
a symmetric part by a rigid axis. There are two-degrees-of freedom:
translation velocity V = ∂x/∂t along the x coordinate and frequency
� = ∂φ/∂t , where φ is the angle between the median of the triangle
and axis x. The symmetric part is immersed in a thermal bath
composed of an ideal gas with elastic particles (blue circles) of
mass m at temperature T© and density ρ©. The symmetric part is
in interaction with the particles (red points) of mass m at temperature
T� and density ρ�. The dynamics of the dumbbell structure is driven
by scattering of the gas particles. Scattering from velocity (v′

x,v
′
y) to

(vx,vy) may occur at any point c along the surface of the structure.
Change in the velocity and rotation frequency of the structure due to a
single scattering event depends on the geometry of the surface of the
structure at the point of scattering c, such as an angle θ between axis
x and tangential of the surface and vector −→

r from the axis of rotation
to the point c. The total change in momentum and in the energy of
the structure depends on the cumulative effect of the interactions at
all points c along its surface. The structure is a Brownian motor and
may possess an average velocity 〈V 〉 �= 0 that takes its maximum
absolute values when the triangle is directed along axis x, φ = 0,π .
Velocity 〈V 〉 vanishes due to symmetry at φ = π/2,−π/2. The main
question is as follows: What is the stable direction φ of the dumbbell
structure as a function of the thermal bath temperatures, the shape of
the asymmetric part θ (c), and the position of the rotation axis?

is in contact with a dedicated thermal bath that constitutes
an infinite reservoir of the ideal gas composed of identical
particles of mass m at density ρ� and temperature T� around
the asymmetric part, and density ρ© and temperature T©
around the symmetric part. Gas particles in each thermal bath
move only in the (x,y) plane with velocities (vx,vy) at Maxwell
distribution with temperatures T� and T©, respectively. The
body possesses two degrees of freedom: First, it can move
along the x axis with velocity V . Second, it can rotate around
the z axis with frequency �. The rotation angle coordinate is φ.
The kinetic energy of the body, therefore, is MV 2/2 + I�2/2,
where M is the mass and I is the moment of inertia.
Both degrees of freedom are translation-invariant because no
external potential is present. The system is a multiple-degree-
of-freedom version of a single-degree-of-freedom Triangulita
motor [7], which is an elegant and simple version of the
Feynman-Smoluchowski ratchet.

To analyze the dynamics and stability of dumbbell struc-
tures, one should calculate the velocity V and frequency � as
a function of the corresponding coordinates x and φ. The first
task is to derive transition probabilities W (V,V ′) and W (�,�′)
from velocity V ′ → V and frequency �′ → � due to elastic
scattering of the gas particles [7,24,26]. A single particle may
scatter at any point c along the perimeter of the motor; see
Fig. 1. Then, the transition probability rates W are averaged
over the entire interaction in all points c and all velocities of
the gas particles. Finally, the average moments of 〈V n〉 and
〈�n〉 as functions of x and φ are calculated from W using a
Kramers-Moyal expansion.

Consider the scattering of a single gas particle with mass
m by a macroscopic body with mass M and moment of inertia
I . In the frame of reference of the body, the conservation of
energy, the momentum, the angular momentum, and the tan-
gential velocity of the particle along the surface of the body are

−MV 2 − I�2 + m(v′
x − vx)(v′

x + vx)

+m(v′
y − vy)(v′

y + vy) = 0,

m(v′
x − vx) = MV, (1)

I� + |r × v| = |r × v′|,
v′

x sin θ + v′
y cos θ = vx sin θ + vy cos θ,

where (v′
x,v

′
y) are the velocities of the particle prior to

collision. After the collision, the velocities of the gas particle
together with the velocity and the rotation frequency of
the body are (vx,vy), V , and �, respectively. Angle θ and
radius −→

r depend on the body’s geometry and point c of the
scattering along the surface of the body; see Fig. 1.

Let us define two geometric factors:

�V (c) = sin θ, ��(c) = rx cos θ + ry sin θ, (2)

where c indicates a point of the scattering on the body’s surface,
and, therefore, defines angle θ and radius −→

r = (rx,ry); see
Fig. 1. This is a natural choice because the factors (2) define
linear viscous coefficients for translation and rotation degrees
of freedom, respectively. As an analogy only, a connection of
� to the linear viscous coefficients may be inferred from the
similarity between the equalities:

m2	v2
x + m2	v2

y = M2V 2 1

�2
V (c)

= I 2�2 1

�2
�(c)

, (3)

where 	vi = vi − v′
i , and the expression for the diffusion

coefficient of the body in velocity space according to the
fluctuation dissipation theorem [27] is

DV =
〈
V 2

	t

〉
= T γV

M
, (4)

where DV is the diffusion coefficient in velocity space, and γV

is the linear viscous coefficient. The similarity of (3) and (4)
is evident under the assumption that

∑
	v2

i ∝ T at thermal
equilibrium. Equalities (3) follow from (1). We will see later
that these equalities and their connection to the linear viscous
coefficients hold rigorously in the case of an arbitrary number
of degrees of freedom.

After the transition to the laboratory frames of reference by
adding velocity (−V ′ + �′ry, − �′rx) and rotation frequency
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−� to the degrees of freedom of the system, one gets

−	V − M

m
	V

G2
V (c)

�2
V (c)

− 2V ′ + �′ ��

�V

+ 2v′
x

− 2v′
y

1

tan θ
= 0, (5)

where 	V = V − V ′, and

−	� − I

m
	�

G2
�(c)

�2
�(c)

− 2�′ + V ′ �V

��

− 2v′
x

1

ry + rx/ tan θ

+ 2v′
y

1

ry tan θ + rx

= 0, (6)

where 	� = � − �′. The coefficients G,

G2
V = 1 + m

I
�2

�, G2
� = 1 + m

M
�2

V , (7)

describe the interaction between degrees of freedom imposed
by the environment. The terms �′��/�V and V ′�V /��

correspond to the direct interaction of the degrees of freedom.

III. MECHANICAL SYSTEM WITH N
DEGREES OF FREEDOM

Equations (5) and (6) can be written in a unified form for
the case of an arbitrary number of degrees of freedom. For

each degree of freedom, ξ holds:

−	Ẋξ

[
1 + Mξ

m

(
Gξ (c)

�ξ (c)

)2
]

− 2Ẋ′
ξ

+
∑
ξ ′ �=ξ

�ξ ′(c)

�ξ (c)
Ẋ′

ξ ′ + gx,ξ (c)v′
x + gy,ξ (c)v′

y = 0, (8)

where Ẋξ is the velocity such as V or �, and Mξ is the mass
such as M or I . Geometric factors � depend on the interaction
channel with the thermal bath c, e.g., the point of collision in
the case of the dumbbell structure; see Fig. 1. The effect of
other degrees of freedom comes in the rescaling of the mass
Mξ by the factor

G2
ξ,i(c) = 1 +

∑
ξ ′ �=ξ

m

Mξ ′,i
�2

ξ ′,i(c), (9)

and by the update of the velocity Ẋ′
ξ by other degrees of

freedom,
∑

ξ ′ �=ξ �ξ ′/�ξ Ẋ
′
ξ ′ . The velocities v′

x and v′
y are

velocities of the gas particle before the collision. The weights
gx and gy fit the condition

g2
x,ξ + g2

y,ξ = 1

�2
ξ

. (10)

This condition holds for both (5) and (6). Later we will see that
it is connected to the detailed balance at thermal equilibrium.

The averaging of (8) over all possible velocities of the
colliding gas particles results in the transition rate probability
W :

W (Ẋξ ,	Ẋξ ) = 1

4

∑
i

ρi

√
m

2πTi

∮
dci |	Ẋξ |H

⎧⎨
⎩	Ẋξ�ξ,i

[
1 + Mξ

m

(
Gξ,i(c)

�ξ,i(c)

)2
]

−
∑
ξ ′ �=ξ

Ẋξ ′�ξ ′,i(c)

⎫⎬
⎭

×�2
ξ,i(c)

[
1 + Mξ

m

(
Gξ (c)

�ξ,i(c)

)2
]2

exp

⎡
⎢⎣−

m�2
ξ,i(c)

{
Ẋξ − 1

2

∑
ξ ′ �=ξ

�ξ ′ ,i
�ξ,i

Ẋξ ′ + 1
2

[
	Ẋξ

(Mξ G
2
ξ,i (c)

m�2
ξ,i (c)

+ 1
)]}2

2Ti

⎤
⎥⎦,

(11)

where the index i goes over all thermal baths; see the Appendix
for details. In the limit G = 1 and

∑
ξ ′ �=ξ = 0, expression (11)

converges to the results obtained for a single-degree-of-
freedom system [7,24].

The transition rate probability in the form of (11) makes it
possible to calculate the average velocities’ momenta 〈Ẋn〉 of
a mechanical system as a function of the velocities of other
degrees of freedom, the external forces, and the forces as a
consequence of an out-of-equilibrium environment. This is
done using a Kramers-Moyal expansion of the corresponding
Masters-Boltzmann equation for the probability to possess a
specific velocity:

∂P (Ẋ,t)

∂t
=
∫

W (Ẋ − 	Ẋ,	Ẋ)P (Ẋ − 	Ẋ,t)d	Ẋ

−P (Ẋ,t)
∫

W (Ẋ, − 	Ẋ)d	Ẋ, (12)

with probability P (Ẋ,t) for velocity Ẋ at time t . This
description is valid in the overdumped regime and if the
velocities are uncorrelated. Therefore, we omit index ξ .

The first three moments are

∂〈Ẋ〉
∂t

= 〈a1(Ẋ)〉,
∂〈Ẋ2〉

∂t
= 2〈Ẋa1(Ẋ)〉 + 〈a2(Ẋ)〉,

∂〈Ẋ3〉
∂t

= 3〈Ẋ2a1(Ẋ)〉 + 3〈Ẋa2(Ẋ)〉 + 〈a3(Ẋ)〉, (13)

where the coefficients an are defined by a Kramers-Moyal
expansion:

∂P (Ẋ,t)

∂t
=

∞∑
n=1

(−1)n

n!

dn

dẊn
[an(Ẋ)P (Ẋ,t)], (14)
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where

an(Ẋ) =
∫

	ẊnW (Ẋ,	Ẋ)d	Ẋ, (15)

and W corresponds to (A5).

To demonstrate the influence of thermal fluctuations in the
system and to simplify the presentation, let us consider
Kramers-Moyal expansion (13) in the case Ẋξ ′ = 0 for ξ ′ �= ξ .
Velocities of other degrees of freedom impose drag force
that can be added later. The first three moments of the
Kramers-Moyal expansion in this case are

∂〈Ẋ〉
∂t

=
∑

i

ρi

√
Ti

m

[
−
√

Ti

MX

∮
�Ẋ,i(c)

G2
Ẋ,i

(c)
ε1
Ẋ

− 2

√
2

π

∮ �2
Ẋ,i

(c)

G2
Ẋ,i

(c)
〈Ẋ〉ε2

Ẋ
+
(∮ �3

Ẋ,i

G4
Ẋ,i

√
Ti

MX

−
∮ �3

Ẋ,i

G2
Ẋ,i

√
MX

Ti

〈Ẋ2〉
)

ε3
Ẋ

]
,

(16)

the second order:

∂〈Ẋ2〉
∂t

=
∑

i

ρi

√
Ti

m

[
−2

√
Ti

MX

∮
�Ẋ,i

G2
Ẋ,i

〈Ẋ〉ε1
Ẋ

+ 4

√
2

π

(∮ �2
Ẋ,i

G4
Ẋ,i

Ti

MX

−
∮ �2

Ẋ,i

G2
Ẋ,i

〈Ẋ2〉
)

ε2
Ẋ

− 2

(
−4

∮ �3
Ẋ,i

G4
Ẋ,i

√
Ti

MX

〈Ẋ〉 +
√

MX

Ti

∮ �3
Ẋ,i

G2
Ẋ,i

〈Ẋ3〉
)

ε3
Ẋ

]
, (17)

and the third order:

∂〈Ẋ3〉
∂t

=
∑

i

ρi

√
Ti

m

[
−3

√
Ti

MX

∮
�Ẋ,i

G2
Ẋ,i

〈Ẋ2〉ε1
Ẋ

+ 6

√
2

π

(
2
∮ �2

Ẋ,i

G4
Ẋ,i

Ti√
MX

〈Ẋ〉 −
√

MX

∮ �2
Ẋ,i

G2
Ẋ,i

〈Ẋ3〉
)

ε2
Ẋ

]
, (18)

where X is a coordinate, MX is the mass of the corre-
sponding degree of freedom, εẊ = m/MX, the index i goes
over the thermal baths, and the index ξ is omitted. The
expressions (16), (17), and (18) are derived with the help of
Wolfram MATHEMATICA software.

If there is no interaction between degrees of freedom,
then G = 1 and Eqs. (16), (17), together with (18) converge
to the corresponding results of the system with a single
degree of freedom [26], taking into account that

∮
� = 0. The

nonvanishing term proportional to �/G2 is, therefore, a unique
property of systems with multiple degrees of freedom.

The leading term for the average velocity at a steady state
follows from (16), (17), and (18), after neglecting the time
derivatives, as

〈Ẋξ 〉� = − 1

2
√

Mξ

√
π

2

∑
i ρiTi

∮ �Ẋξ ,i (c)

G2
Ẋξ ,i

(c)

∑
i ρiT

1
2

i

∮ �2
Ẋξ ,i

(c)

G2
Ẋξ ,i

(c)

ε−1
Ẋξ

. (19)

It is of the order ε2
Ẋξ ′ /εẊξ

taking into account that
∮

� = 0 and

1/G2
Ẋξ

≈ 1 − ε2
Ẋξ ′ �

2
Ẋξ ′ . This result vanishes when G = 1, e.g.,

in the systems with a single degree of freedom.
The next-order contribution to the velocity is

〈Ẋξ 〉�3

= 1

2

√
π

2

∑
i ρi

(
Ti

∮ �3
Ẋξ ,i

G4
Ẋξ ,i

− MξẊ
2
0ξ

∮ �3
Ẋξ ,i

G2
Ẋξ ,i

)
∑

i ρiT
1
2

i

∮ �2
Ẋξ ,i

(c)

G2
Ẋξ ,i

(c)

εẊξ√
Mξ

,

(20)

where

Ẋ2
0ξ = 1

Mξ

∑
i ρiT

3
2

i

�2
Ẋξ ,i

G4
Ẋξ ,i∑

i ρiT
1
2

i

�2
Ẋξ ,i

G2
Ẋξ ,i

. (21)

This term describes rectified Brownian velocity and remains
finite even in the case of a single degree of freedom [7,24].

Brownian velocity (20) vanishes if the temperatures of all
thermal baths are equal, Ti = Tj . The velocity (19), however,
remains finite. It is still an out-of-equilibrium phenomenon
because (19) vanishes at the thermodynamics limit m/M → 0.

The drag force imposed on the degree of freedom ξ by
all other degrees of freedom ξ ′ �= ξ is derived by substitution
of finite velocities of other degrees of freedom, Ẋξ → Ẋξ −
1
2

∑
ξ ′ �=ξ

�ξ ′ ,i
�ξ,i

Ẋξ ′ , to (16):

〈Ẋξ 〉 = 1

2

∑
ξ ′ �=ξ

∑
i ρiTi〈Ẋξ ′ 〉 ∮ �Ẋξ ,i (c)�Ẋ

ξ ′ ,i (c)

G2
Ẋξ ,i

(c)

∑
i ρiT

1
2

i

∮ �2
Ẋξ ,i

(c)

G2
Ẋξ ,i

(c)

. (22)

It is important to note that by substituting (25) in (22), one gets
the same order of magnitude as (19).

IV. STABILITY OF BROWNIAN MOTOR WITH TWO
DEGREES OF FREEDOM

Following previous general results, the dynamics of a
dumbbell structure near the point φ = 0 can be presented
as Onsager relations [25] with nonlinear corrections due to
interaction between translation and rotation degrees of
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freedom:

∂x

∂t
= Fx

γx

+ Lx,	T

	T

T 2
+ Lx,φ

∂φ

∂t
,

(23)
∂φ

∂t
= M

γφ

+ Lφ,φφ + Lφ,x

∂x

∂t
,

where Lx,	T , Lφ,φ , Lφ,x , and Lx,φ are Onsager coefficients:
Lx,	T corresponds to the rectified velocity (20), Lφ,φ corre-
sponds to the effective force (19), while Lφ,x and Lx,φ describe
the mutual influence of degrees of freedom (22). The linear vis-
cosity for translation and rotation degrees of freedom is γx and
γφ , respectively. Nonlinearity emerges because Lx,φ,Lφ,x ∝ φ

in the vicinity of φ ≈ 0 due to symmetry considerations. As
a next step, we will evaluate these Onsager coefficients with
the help of Eqs. (19), (20), and (22), and we will estimate the
main properties of a dumbbell structure dynamics.

The linear dissipation coefficient γξ = ∑
i γξ,i follows

from (16):

γξ =
∑

i

4ρi

√
mTi

2π

∮
c

�2
Ẋξ ,i

(c). (24)

At this moment, one can see the connection between �2 and
the linear dissipation coefficient.

The translation velocity of the dumbbell structure follow-
ing (20) is

〈V 〉rec =
√

m

M

√
π

8M

∑
i ρi

(
Ti − MV 2

0

) ∮
c
�3

V,i(c)∑
i ρiT

1/2
i

∮
c
�2

V,i(c)
. (25)

Near thermal equilibrium, it can be presented as a function of
the affinity 	T/T 2:

〈V 〉rec = Lx,φ

	T

T 2
; (26)

see Eq. (23). It corresponds to the rectified velocity of a
Triangulita motor with a single translation degree of free-
dom [7,24,26]. Maximum velocity is achieved when φ = 0
or φ = π . No motion occurs for φ = π/2 and −π/2 because∮

�3
V vanishes in these cases.

The rotation dynamics of the dumbbell structure depends
on the interaction with the translation degree of freedom (22).
The corresponding Onsager coefficient is

Lφ,x = 1

2

S�ρ�T
1/2
�

∮
��,��V,�∑

i=�,© ρiT
1/2
i

∮
�2

�,i

, (27)

which vanishes at φ = 0 due to symmetry considerations. In
the vicinity of φ ≈ 0, one can write

Lφ,x = Kφ,xφ, (28)

where the coefficient K follows from (27). The effective
rotation frequency imposed by the out-of-equilibrium envi-
ronment (19) is

〈�〉rec = 1

2

√
m

M

S�ρ�T
1/2
�

∮
��,��2

V,�∑
i=�,© ρiT

1/2
i

∮
�2

�,i

. (29)

In the case of the dumbbell structure with the apex direction of
the asymmetric part, φ ≈ 0, due to symmetry considerations,

Eq. (29) can be rewritten as

〈�〉rec = Lφ,φφ, (30)

where Lφ,φ is an Onsager coefficient; see (23).
Following (23) and (28), in the absence of external force,

the condition for the stable direction φ = 0 of the dumbbell
structure is

Lφ,φ + Kφ,x

∂x

∂t
< 0. (31)

The state of the system changes from stable to unstable and
vice versa at a critical velocity Vcr = ∂x/∂t :

Vcr = −Lφ,φ

Kφ,x

= − lim
φ→0

√
m

M

∮
���2

V∮
���V

, (32)

where the expression inside the lim function corresponds to
〈�〉rec/Lφ,x ; see (29), (30), and (27). The dumbbell structure
may possess transition (32) as shown later in the article.

Let us first consider the dynamic of the dumbbell structure
with θ0 = π/24 and the axis of rotation near the apex; see
Fig. 2. This figure presents velocity (25) and stability (31) as
functions of the temperature difference T© − T�, under the
constraint that T© + T� = 20. The velocity of the triangle
with a median along the x axis (φ = 0 or φ = π ) is directed

FIG. 2. Stability (blue) and velocity (red) of dumbbell structure
with the asymmetric part composed of an isosceles triangle with an
apex angle θ0 = π/24. The rotation axis is located near the apex of
the triangle. Velocity (25) and stability (31) presented in arbitrary
units as functions of temperature difference T© − T� (under the
assumption that T© + T� = 20). There are three regions indicated by
roman numerals: First, stable motion toward the base of the triangle.
Second, the motion is unstable while the symmetric orientation of
the triangle part is stable, φ = ±π/2. The structure that enforces
the direction along the x axis, φ = 0 or φ = π , would move with
velocities (dashed black) beyond the critical allowed velocity Vcr.
This region may disappear for less acute apex angles and therefore
lower velocities. Third, the stable motion toward the apex of the
triangle. Stable motion toward the base is surprising because viscous
forces in this case act to change the direction of the triangle. It is
possible due to the potential imposed on the structure by the thermal
equilibrium environment that stabilizes the motion. Nevertheless,
motion toward the base is less stable than motion toward the apex. It
can be considered as a chiral symmetry break.
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FIG. 3. Stable orientation and the corresponding translation motion of the dumbbell structure as a function of its shape and the temperatures
of the thermal bathes. The asymmetric part is an isosceles triangle with an arbitrary angle of the apex 0 < θ0 < π . The phase diagram is
presented as a function of θ0 and the difference of the temperatures, T© − T� (under the assumption that T© + T� = 20). The white region
indicates the stable motion toward the base of the triangle. The orange region corresponds to the stable motion toward the apex. No stable
motion exists in the dashed region. (a) Rotation axis near the apex. The motion is stable for the majority of the temperatures and triangle shapes,
but for the region of acute apex angle and negative temperature difference (dashed region). This region corresponds to high velocity toward the
base of the triangle. (b) Rotation axis near the base. Motion is stable if the apex angle is obtuse, 2θ0 > π/2. Motion toward the base is also
stable in the case of a very acute apex angle that corresponds to high velocities.

toward the apex if T� < T© and toward the base otherwise,
T� > T©. Motion toward the base becomes unstable beyond
the critical velocity Vcr (32). In this case, the stable position
of the triangle’s median is perpendicular to the axis x (φ =
±π/2). Motion in the direction of the apex is always stable.

Stability depends on the gases’ temperatures, the shape of
the structure, and the position of the rotation axis. Consider two
cases when the axis of rotation is located on the median of the
triangle either near the apex or near the base. Figure 3 presents
stability in both cases as a function of apex angle θ0 together
with the temperature difference T© − T�. If the rotation axis
is located near the apex of the triangle, then the motion in
either direction is mainly stable, but for a small region of high
velocities toward the base, as in Fig. 2. At the same region
of high velocities in the direction of the base, however, the
motion is stable if the axis of rotation is located near the base.
In addition, in the case of the rotation axis near the base, the
motion is unstable if the apex angle is acute, 2θ0 < π/2, and
it is stable for an obtuse triangle, 2θ0 > π/2.

V. DISCUSSION

The dynamics of the dumbbell structure possesses intuitive
and counterintuitive features. For instance, consider an isosce-
les triangle with the axis of rotation near its apex. Intuitively,
the motion of this triangle is stable in the direction of the apex,
while the motion of the same triangle in the direction of its base
is unstable. In this case, motion toward the base creates angular
momentum (27), which rotates the triangle from this direction.
In a similar way, the stable motion of the triangle with the axis
of rotation near its base toward the apex is counterintuitive.
The motion becomes stable due to the effective potential (29)
imposed on the system by the out-of-thermal-equilibrium
environment. This motion becomes unstable only above some

critical velocity (32) when the imposed angular momentum
becomes high. This instability occurs only if the apex angle is
acute enough to achieve this velocity.

The main finding of this work is the important role
of local potentials imposed on the system by an out-of-
thermal-equilibrium environment. The potential imposed by
this environment on a mechanical system corresponds to the
Onsager coefficient, such as Lφ,φ in (23). Moreover, these
potentials are present even if the temperatures of the thermal
baths are equal (zero affinities) but the system deviates from
the thermodynamic limit, e.g., the mass of gas particles is not
negligibly small compared to the mass of the system.

According to (11), the mass of the ξ degree of freedom
is rescaled by the factor of G (9). The average factor G is a
function of linear viscous coefficients (24):

〈G − 1〉 ∝
∑

ξ ′ �=ξ,i

1

ρi

√
mTi

γξ ′,i . (33)

One can hope for experimental verification of this prediction
using mass correction measurements [28]. It may be relevant
for discrete transition state models [29].

The predictions for the imposed potential (19) and rectified
velocity (20) are valid in the limit of m/M → 0. Both
expressions, however, vanish at the same limit. Nevertheless,
the results of a molecular-dynamics simulation of the system
with a single degree of freedom (see Fig. 9 of [30]) indicate that
Eq. (20) remains valid for large ratios of m/M ≈ 1. This work
neglects memory effects in the dynamics of a thermal bath.
This condition is wrong in the real world, and it is difficult to
achieve in an experimental realization except with computer
molecular dynamics. It is a common limitation of mechanical
ratchet models. Investigation of memory effects is beyond the
scope of the current work.
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According to this work, the stability of a thermal ratchet
depends on the relative directions of its motion and of its
spatial asymmetry, e.g., the direction of the apex. It can be
connected to chirality because two triangles that move toward
the apex and toward the base cannot be superimposed on each
other (strictly speaking, motion along a circular or at least
a curved path is required) [31]. In biology, there is an open
question regarding the homochirality of the living systems that
are composed of L-chiral isomers, though from a chemical
point of view R-chiral life would possess the same physical
properties [32]. This work provides an example in which
chirality is broken dynamically [33]. It may be interesting
in motility-based theories on the origin of life [34,35].

This work may be useful to estimate the properties of the
kinetic coefficients of active matter [36], such as asymmetric
particles in an external flow [37,38]. This work, however,
considers interaction with a rare gas, while the experiments
are performed in a liquid. In addition, an assumption of
translationally invariant degrees of freedom was made. Both
of these shortcomings of the approach do not appear explicitly
in the predicted dynamics (23) of a system. The results of
this work may be extended to the nonlinear regime [39]. This
work contributes to the recently discussed issue of the forces
as well as the stability and rigidity increase for probes in an
out-of-thermal-equilibrium environment [40–46].

An Ab initio microscopic approach is essential to predict the
steady state of a system with multiple degrees of freedom out
of thermal equilibrium. Macroscopic results such as Onsager
relations [25], Prigogine’s principle of minimum entropy

production at steady state [47], the Onsager Machlup func-
tion [48], together with recent Jarzynski [49] and Crooks [50]
relations for dissipation in a driven system describe the proper-
ties of a steady state as a function of the system’s symmetries.
On the contrary, the microscopic approach makes it possible
to calculate the steady state’s macroscopic parameters and
symmetries instead of postulating them.

To conclude, even a simple dumbbell body out of thermal
equilibrium possesses nonintuitive dynamics. Many hope that
the dynamics of complex mechanical systems may be similar
to the behavior of living matter. This work provides the
tools to calculate the dynamics of a system with arbitrary
degrees of freedom. The findings include phenomena such
as stability and symmetry breaks imposed by an out-of-
equilibrium environment. It is an advance on the path from
single-degree-of-freedom Brownian motors to a multiple-
degrees-of-freedom Brownian robotics.

APPENDIX

To derive the transition rate probability W (11) for an
arbitrary degree of freedom Xξ and the corresponding velocity
Ẋξ , one should estimate the probability of a transition Ẋ′ → Ẋ

due to interactions with the gas particles. The transition rate
probability Ẋ′ → Ẋ is proportional to the amount of particles
that hit the body at some point c and the amount of possible
transitions to a specific velocity. Using (8) as a constraint and
integrating over the entire surface c of the body, one gets

W (Ẋξ ,Ẋ
′
ξ ) =

∮
dc

∫ ∞

−∞
dv′

x

∫ ∞

−∞
dv′

yH [(Ẋ′
ξ − v′)e⊥]|(Ẋ′

ξ − v′)e⊥|ρφ(v′
x,v

′
y)δ

×
⎡
⎣−	Ẋξ −

2Ẋξ −∑
ξ ′ �=ξ

�ξ ′ (c)
�ξ (c) Ẋξ ′ − gx,ξ (c)v′

x − gy,ξ (c)v′
y

1 + M
m

(Gξ (c)
�ξ (c)

)2

⎤
⎦, (A1)

where ρ is the density of the gas particles, H is the Heaviside step function, and φ is the Maxwell distribution of the gas particles’
velocities:

φ(v′
x,v

′
y) = m

2πT
exp

(
−m

(
v′2

x + v′2
y

)
2T

)
. (A2)

From (5), (6), and (8), it follows that

(Ẋ′
ξ − v′)e⊥ = −1

2
	Ẋξ�ξ

[
1 + M

m

(
Gξ (c)

�ξ (c)

)2
]

+ 1

2

∑
ξ ′ �=ξ

Ẋξ ′�ξ ′(c). (A3)

Using the following formula:∫ ∞

−∞
dvx

∫ ∞

−∞
dvy

m

2πT
exp(−m

(
v2

x + v2
y

)
2T

δ(Avx + Bvy + C) =
√

m

2πT (A2 + B2)
exp

(
− mC2

2T (A2 + B2)

)
, (A4)

one gets

W (Ẋξ ,	Ẋξ ) = 1

4

∑
i

ρi

√
m

2πTi

∮
dci |	Ẋξ |H

⎧⎨
⎩	Ẋξ�ξ,i

[
1 + Mξ

m

(
Gξ,i(c)

�ξ,i(c)

)2
]

−
∑
ξ ′ �=ξ

Ẋξ ′�ξ ′,i(c)

⎫⎬
⎭�ξ,i(c)

1√
g2

x,ξ,i + g2
y,ξ,i

×
[

1 + Mξ

m

(
Gξ (c)

�ξ,i(c)

)2
]2

exp

⎡
⎢⎣−

m

g2
x,ξ,i+g2

y,ξ,i

{
Ẋξ − 1

2

∑
ξ ′ �=ξ

�ξ ′ ,i
�ξ,i

Ẋξ ′ + 1
2

[
	Ẋξ

(Mξ G
2
ξ,i (c)

m�2
ξ,i (c)

+ 1
)]}2

2Ti

⎤
⎥⎦, (A5)

where the index i goes over all thermal baths.

052106-7



A. FEIGEL PHYSICAL REVIEW E 95, 052106 (2017)

The final expression (11) follows from (A5) using (10), which follows rigorously from the requirement of detailed balance at
thermal equilibrium:

P eq(Ẋ′)W (Ẋ,Ẋ′) = P eq(−Ẋ)W (−Ẋ′, − Ẋ), (A6)

where P eq(Ẋ) is the distribution of velocities of a single degree of freedom at equilibrium:

P eq(Ẋ) ∝ exp

(
−MẊ2

2T

)
, (A7)

in the thermodynamic limit G → 1.
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