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We define and study one-dimensional model of irreversible aggregation of particles obeying a discrete-time
kinetics, which is a special limit of the generalized Totally Asymmetric Simple Exclusion Process (gTASEP)
on open chains. The model allows for clusters of particles to translate as a whole entity one site to the right
with the same probability as single particles do. A particle and a cluster, as well as two clusters, irreversibly
aggregate whenever they become nearest neighbors. Nonequilibrium stationary phases appear under the balance
of injection and ejection of particles. By extensive Monte Carlo simulations it is established that the phase diagram
in the plane of the injection-ejection probabilities consists of three stationary phases: a multiparticle (MP) one, a
completely filled (CF) phase, and a “mixed” (MP+CF) one. The transitions between these phases are: an unusual
transition between MP and CF with jump discontinuity in both the bulk density and the current, a conventional
first-order transition with a jump in the bulk density between MP and MP+CF, and a continuous clustering-type
transition from MP to CF, which takes place throughout the MP+CF phase between them. By the data collapse
method a finite-size scaling function for the current and bulk density is obtained near the unusual phase transition
line. A diverging correlation length, associated with that transition, is identified and interpreted as the size of the
largest cluster. The model allows for a future extension to account for possible cluster fragmentation.
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I. INTRODUCTION

Irreversible aggregation of clusters of arbitrary size arises in
many physical-chemical processes as aerosol physics, polymer
growth, and even astrophysics [1]. The ability to control ag-
gregation of proteins could be an important tool in the arsenal
of the drug development. However, in biochemistry of life this
process may play a destructive role as well. For example, many
neurodegenerative diseases, including Alzheimer’s disease,
Parkinson’s disease, and prion diseases, to mention some, are
characterized by intracellular aggregation and deposition of
pathogenic proteins [2]. Moreover, the abnormal irreversible
aggregation of ribosomes leads to irreparable damage of
protein synthesis and results in neuronal death after focal brain
ischemia [3].

Irreversible aggregation of two clusters, Aj and Ak ,
containing j and k particles, respectively, is usually described
by the reaction

Aj + Ak → Aj+k, (1)

with a rate kernel K(j,k) which, generally, depends on the
size of both clusters. The physical process is modeled by
the special choice of the kernel K(j,k). In reaction (1) the
fragmentation of clusters is neglected, i.e., the process is
considered as irreversible aggregation. The theoretical studies
of this widely spread in nature phenomenon rapidly grew
after the formulation of the corresponding set of ordinary (in
time) differential equations in the seminal paper by Smolu-
chowski [4]. In the case of continuous cluster-size variable the
kinetics of irreversible aggregation can be described by the
integro-differential Smoluchowski equation [5]. Most often,
the particles and clusters are assumed to undergo a Brownian
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motion in the real three-dimensional space or in models with
a reduced space dimensionality D = 2 or 1. Then the collision
rate between two clusters is given by K(j,k)cj ck , where cj is
the concentration of clusters Aj . Several cases, corresponding
to a special form of the kernel were exactly solved; see the
review [6] and references therein. For different classes of
kernels, Smoluchowski’s coagulation equations were used for
the description of the kinetics of gelation, e.g., in Refs. [7,8].
Criteria for the occurrence of gelation were derived, and
critical exponents in the pre- and postgelation phase were
obtained. In general, the Smoluchowski equation was studied
for a large class of symmetric and homogeneous with respect
to its arguments kernels K(j,k).

Most of the works in the recent decades on the aggregation
process were focused on the existence of scaling laws in the
long-time limit of the cluster-size probability distribution; see
Ref. [6]. It was established that at large times the typical cluster
size s(t) increases algebraically with time t as s(t) ∝ t z, and the
time-dependent probability distribution P (j,t) of the cluster
size j obtains the scaling form

P (j,t) = Ws(t)−2�[j/s(t)], (2)

where W is a constant factor, and the scaling function �

satisfies a certain integral equation.
Besides the rate equations approach, developed by Smolu-

chowsky, statistical studies appeared, based on combinatoric
calculations of the aggregate size distribution. As shown by
Flory, very large aggregates can appear suddenly at a certain
critical extent of the three-dimensional (3D) polymerization
reaction [9]. Stockmayer extended Flory’s results to branched-
chain polymers and argued that the transition from liquid to gel
is analogous to the condensation of a saturated vapor [10]. At
the gel point t = tc the cluster size distribution was shown
to have a power-law asymptotic behavior, cj (tc) � Cj−τ ,
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j → ∞, where cj (t) is the concentration of j -mers at time
t . The classical Flory-Stockmayer theory predicted τ = 5/2.
More recently, critical kinetics near gelation was studied in
Refs. [7,11]. It was shown, that even starting from initial
conditions with monomers only, an infinite cluster appears
at arbitrarily small times; the phenomenon was called an
“instantaneous gelation” [11]. This phenomenon is known to
arise in cases when the reaction rates increase rapidly with
the cluster size. It was shown that the asymptotic behavior
of the kernel K(j,k) at large values of j and k is of crucial
importance for the size, k, and time, t , asymptotic behavior of
the cluster-size probability distribution. The mechanism of the
appearance of a power-law tail in the cluster-size distribution
at large cluster sizes was investigated in Ref. [11].

On the ground of experiments on aqueous dispersions of
polystyrene models, the authors of Ref. [12] have concluded
that the known by 2004 aggregation-fragmentation models
were unable to reproduce the experimental observations. They
argued that real aggregates, depending on their shape, may
experience anisotropic diffusion, in contrast to monomers. In
addition, effects of weak bonds and cluster breakup should be
taken into account. Two extended models, one with multiple
particle contacts, and the other with an exponentially relaxing
sticking probability, were found to better agree with the
experimental data.

On the one hand, the one-dimensional (1D) cluster kinetics
is free from most of the above mentioned complications;
all the clusters have the same shape and their sticking
probability should be size-independent. On the other hand,
the rate equation approach neglects spatial fluctuations in
the particle (cluster) concentration, which are expected to
be essential in 1D aggregation processes. As shown by
Dongen, the Smoluchowski’s coagulation equations lead to
incorrect predictions at large times for space dimensions
d � dc, where the upper critical dimension dc turned out
to be model dependent [13]. For example, if one considers
only the number of clusters, i.e., in the case of the reaction
A + A → A, then dc = 2. Kang and Redner have shown that
the same upper critical dimensions holds for size-independent
rate kernel K(j,k) = 1 and diffusion constant D [14]. On the
basis of this result and computer simulations, some authors
have incorrectly concluded that dc = 2 holds generally in
irreversible aggregation; see, e.g., Ref. [15].

An exact solution for a diffusion limited polymerization
process in one dimension was obtained by Spouge [16]. The
initial state was assumed to contain monomers only, the initial
distances between consecutive monomers being independently
and identically distributed. Then monomers start to diffuse
identically and independently in one dimension and aggregate
when they meet in pairwise collision (this process is called
“Ppoly”). Diffusion on the integer lattice with a drift d �= 0
was also considered, and the same solution was found as in
the driftless case, but with a diffusion constant 2D + d instead
of 2D. The expected concentration of k-mers at large times
t , was shown to decay as ck(t) ∝ t−3/2. A diffusion-limited
single-species irreversible aggregation process A + A → A

in one dimension, with random particle input in the bulk,
was suggested and exactly solved for the steady state in
Ref. [17]. The results show that no autonomous first-order rate
equation can describe the macroscopic behavior of the system.

Another, exactly solved in one dimension aggregation model,
where particles are growing by heterogeneous condensation,
i.e., when aggregation takes place only on existing particles
involved in Brownian motion, without forming new nuclei,
and particles merge upon collision, was proposed in Ref. [18].
The kinetics involved in this model violates the conservation
of mass law. The analytical solution of the model was obtained
by using a generalized Smoluchowski equation, including the
velocity with which particles grow by condensation. As a
result of the additional growth by condensation, the sizes
of the colliding particles are increased by a fraction α of
their respective sizes, and the law for algebraic growth of
the mean cluster size in the long-time limit was found to read
s(t) ∝ t1+2α instead of the linear growth s(t) ∝ t in the absence
of condensation.

A statistical thermodynamics of clustered populations (M
particles distributed into N clusters) was presented by Mit-
soukas [19]. The emergence of a giant component (gel phase)
was treated as a formal phase transition and a thermodynamic
criterion for its appearance was formulated in a way analogous
to the case of systems in equilibrium.

Our aim here is to propose and study a new discrete-time
stochastic model of irreversible aggregation of hard-core
particles on open chains. In particular, the model should admit
detailed study of fluctuations and finite-size effects, both in
the time evolution of the initial state and in the nonequilibrium
stationary states induced by the boundary conditions. To this
end, we implement a discrete TASEP-like dynamics with
the following properties: (1) existing clusters of particles are
never fragmented into parts, (2) clusters are translated as a
whole entity one site to the right, provided the target site
is empty, with the same probability as single particles do,
and (3) any two particles or clusters, occupying consecutive
positions on the chain, may become nearest-neighbors and
aggregate irreversibly into a single cluster. We show that a
model with the above properties can be obtained as a special
limit of the generalized totally asymmetric simple exclusuion
process (gTASEP). The gTASEP has been recognized as an
exactly solvable model by Wölki [20]. However, it was defined
and studied under periodic boundary conditions only; see
Refs. [21–23]. To study boundary driven stationary states of
open finite systems, we set the left boundary condition as it
follows in the corresponding limit of the one for the gTASEP,
which we define in Sec. II. Since our model has not been solved
exactly, our main aim here is to investigate its stationary phases
and the nonequilibrium transitions between them, mainly by
means of extensive Monte Carlo simulations.

It is in place here to mention that the asymmetric simple
exclusion process (ASEP) is one of the simplest exactly solved
models of driven many-particle with particle-conserving bulk
stochastic dynamics; see the reviews [24,25]. In the extremely
asymmetric case, when particles are allowed to move in one
direction only, it reduces to the TASEP. For description of
the model in the context of interacting Markov processes we
refer to Ref. [26]. Presently, ASEP and TASEP are paradig-
matic models for understanding a variety of nonequilibrium
phenomena. Devised to model kinetics of protein synthesis
[27], TASEP and its numerous extensions have found many
applications to vehicular traffic flow [28–30], biological trans-
port [31–36], one-dimensional surface growth [37,38], forced
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motion of colloids in narrow channels [39,40], spintronics [41],
current through chains of quantum dots [42], etc. Notably,
traffic-like collective motion is found also at different levels
of all biological systems. In particular, it was noted that when
molecular motors, like kinesin and dynein, encounter a traffic
jam along their 1D track of transport in the cells, the result
is a disease of the living being [31,32]. It is the effect of the
particular property of the 1D TASEP-like dynamics, which
blocks any overtaking and exhibits spontaneous traffic jams in
high-density flow, that we want to study in the context of the
irreversible aggregation phenomena.

The first exact solution of the original continuous-time
TASEP was based on a recurrence relation, obtained at special
values of the model parameters in Ref. [43], and then was
generalized to the whole parameter space by Schütz and Do-
many [44]. An effective way to exploit the recursive properties
of the steady states of various one-dimensional processes
offered the matrix-product ansatz (MPA). A matrix-product
representation of the steady-state probability distribution for
TASEP was found by Derrida et al. [45]. Their formalism
involves two square matrices, generically infinite-dimensional,
which satisfy a quadratic algebra known as the DEHP algebra.
Krebs and Sandow [46] proved that the stationary state of
any 1D system with random-sequential dynamics involving
nearest-neighbor hopping and single-site boundary terms can
always be written in a matrix-product form. The MPA marked a
breakthrough in the solution of TASEP in discrete time under
periodic as well as open boundary conditions. The general
case of ASEP with stochastic sublattice-parallel dynamics was
solved in Ref. [47]. Next, the TASEP with ordered-sequential
update was solved by mapping the corresponding algebra onto
the DEHP algebra [48,49]. Finally, the case of parallel update
was solved by using two new versions of the matrix-product
ansatz; see Refs. [50] and [51]. In general, the MPA has become
a powerful method for studying stationary states of different
1D Markov processes out of equilibrium [52].

It should be noted that the properties of the TASEP depend
strongly on the choice of the boundary conditions, similarly
to the case of systems with long-range interactions. The open
system exhibits (in the thermodynamic limit) three stationary
phases in the plane of particle input-output rates, with contin-
uous or discontinuous in the bulk density transitions between
them. We emphasize that in our study the fragmentation
processes, which in real-life phenomena become increasingly
important as clusters grow large, are completely ignored. These
fragmentation processes, when taken into account, can lead
to the establishment of a stationary state in the system; see,
e.g., Ref. [15]. Instead, we consider finite open chains, where
stationary phases are attained in the long-time limit due to the
balance between injection and ejection of particles.

The paper is organized in seven sections. In Sec. II we
formulate the model, and Sec. III presents the phase diagram
in the plane of particle injection and ejection probabilities. The
different stationary nonequilibrium phases are distinguished
on the basis of numerically evaluated local density profile,
particle current, and the probability of complete chain filling.
In Sec. IV we study the transitions between the nonequilibrium
stationary phases: we observe an unusual transition with jump
discontinuity in both the bulk density and the current, a conven-
tional first-order one with jump in the bulk density only, and a

continuous clustering-type transition taking place throughout
a whole “mixed” phase. In Sec. V, from simple stationarity
conditions, we derive exact analytic expressions for the local
particle density at the chain ends in the multiparticle phase. On
the basis of our numerical data obtained in the neighborhood
of the unusual phase transition, in Sec. VI a finite-size
scaling function for the current and the bulk particle density
is suggested, and its parameters are evaluated. This scaling
function is used for the evaluation of the thermodynamic jumps
in the current and bulk density at the transition point, as well as
for the identification of a related divergent correlation length.
Finally, a summary of the results and some perspectives for
further investigations are given in Sec. VII.

II. THE MODEL

To define our model, we start with reminding the reader
the bulk kinetics of the generalized TASEP [21–23] and adapt
it to open chains. Consider an open chain of L sites, labeled
from the left to the right by i = 1,2, . . . ,L. The sites can be
empty or occupied by just one particle. During each moment of
discrete time tk , k = 0,1,2, . . . , the configuration of the whole
chain takes place in L + 1 consecutive steps in a backward
sequential order. First, if the last site L is occupied, the particle
is removed from it with probability β and stays in place with
probability 1 − β. Next, all the pairs of nearest-neighbor sites
are updated in the order (L − 1,L), . . . ,(i,i + 1), . . . ,(1,2). At
that, the probability of a hop along a bond (i,i + 1) depends
on whether a particle has jumped from site i + 1 to site i + 2,
when the bond (i + 1,i + 2) was updated at the same moment
of time, or not. If the particle at site i is the first (rightmost)
particle of a cluster, or it is isolated, then it hops to an empty site
i + 1 with probability p and stands immobile with probability
1 − p. If a particle at i + 1 belongs to a cluster and has hopped
forward to site i + 2, thus leaving site i + 1 empty, then the
particle at site i from the same cluster hops to site i + 1 with
a modified probability p̃ and stays immobile with probability
1 − p̃; see Fig. 1. In the model with the above generalized
backward-ordered dynamics, called gTASEP, a cluster of k

particles is translated in the bulk as a whole entity by one site
to the right with probability pp̃k−1 and is fragmented into two
parts with probability p(1 − p̃k−1). Finally, the first site of the
chain has to be updated. Suppose it is updated in the standard
TASEP way: if the first site is empty, a particle is injected
in the system with probability α, and the site remains empty
with probability 1 − α. Then the bulk kinetics of the usual
TASEP with parallel update is recovered when p̃ = 0, but the
left boundary condition remains different: under the parallel
update, if site i = 1 was occupied at the beginning of the
discrete-time update, then no particle can enter at it. A simple
way to restore the rules of the parallel TASEP is to modify
the injection probability, by setting it to α̃ = min{αp̃/p,1}
in the case when the first site was occupied at the beginning of
the integer-time moment, but became vacant after the update
of the bond (1,2); see Fig. 1(b). Obviously, in the case of
parallel update p̃ = 0 implies α̃ = 0. Moreover, the case of the
ordinary backward-ordered sequential update is completely
recovered when p̃ = p.

Now, it is easily seen that a model with the desired kinetics
of irreversible aggregation follows from the above defined
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FIG. 1. A sketch of the algorithm of our 1D model of irreversible
aggregation. (a) The bulk hopping rules are illustrated; a single
particle as well as a whole cluster of particles hop one site on the
right with probability p, provided the target site is vacant. Such a hop
is shown by black curved arrow with “p” above it. The aggregation
of a cluster with three particles with a single particle is shown to
take place at time moments t = k + 1,k + 2. (b) Illustration of the
left boundary condition (see text). (c) The particle hopping rules
in the generalized TASEP: black curved arrows with “p” above
show hopping with probability p, and curved red short-dashed-dotted
arrows with “p̃” above it, a hop with the modified probability p̃. Our
model corresponds to the limit case of p̃ = 1.

gTASEP on open chains in the limit p̃ = 1. Then the modified
injection probability becomes α̃ = min{α/p,1}.

Here we summarize the main features of the kinetics of our
model:

(1) When the last site L is occupied, the particle is removed
from it with probability β and stays in place with probability
1 − β.

(2) When the site i + 1, i = 1,2, . . . ,L − 1, has not
changed its occupation number, the probabilities are the
standard ones: if site i + 1 remains empty, then the jump of a
particle from site i to site i + 1 takes place with probability
p, and the particle stays immobile with probability 1 − p;
if site i + 1 remains occupied, no jump takes place and the
configuration of the bond (i,i + 1) is conserved.

(3) If in the previous step of the same configuration update
a particle has jumped from site i + 1 to site i + 2, thus leaving
i + 1 empty, then the jump of a particle from site i to site i + 1
in the next step takes place deterministically (with probability
1). Thus, no particle can chip off an existing cluster during its
translation.

(4) The first site is updated by applying a modified left
boundary condition: a particle is injected at the first site of
the chain with probability α > 0, if the site was vacant at that
moment of time, or with probability α̃ = min{α/p,1}, if the
site was initially occupied but became vacant after its update
at the same moment of time. We emphasize, that a different
choice of this boundary condition can change the appearance of
the phase diagram, but the property of irreversible aggregation,
which arises from the bulk dynamics, will persist.

Thus, (1) if the first (rightmost) particle of a cluster moves,
all the remaining particles follow it deterministically, and,

FIG. 2. Phase diagram in the plane of injection (α) and ejection
(β) probabilities. The many-particle phase MP occupies two regions,
MP I and MP II; it contains a macroscopic number of particles or
clusters of size O(1) as L → ∞; MP I and MP II differ only by the
shape of the local density profile (see text). The phase MP+CF is
mixed in the sense that its configurations contain with nonvanishing
probability a macroscopic number of particles [clusters of size O(1)]
or a single cluster completely filling the whole chain. The stationary
nonequilibrium phase CF consists of a completely filled chain with
current J = β. The unusual phase transition takes place across the
boundary α = p between the MP I and CF phases.

as a result, the position of the whole cluster is shifted one
site to the right; (2) when α � p, the stationary state of the
system represents a completely aggregated phase, consisting
of a single cluster with the size of the chain. In this case the
current of particles J equals the ejection probability β.

Our model is defined as driven lattice gas evolving in
discrete time and discrete space, which greatly facilitates its
theoretical and computational study. The equivalence of the
kinetics to a special limit case of the gTASEP gives hope that
a future solution for the stationary states of gTASEP on open
chains would provide a theoretical explanation of the unusual
features of the present model.

III. PHASE DIAGRAM

Our extensive Monte Carlo simulations of the model of
particles, obeying the above generalized TASEP dynamics,
point out to a phase diagram in the (α,β) plane containing
three phases: a many-particle (MP) one, consisting of two
subregions MP I and MP II, a completely filled (CF) with
particles phase, and a mixed MP+CF phase; see Fig. 2. First,
we discuss the features of the local density profiles which
happen to depend essentially on the relative magnitude of the
three characteristic probabilities: of injection α, ejection β,
and hopping p.

The phase CF (α ∈ [p,1]) represents a chain completely
filled with particles, ρi = 1, i = 1, . . . ,L. This follows from
the fact that in the region α � p the modified injection
probability α̃ ≡ 1 by definition. Hence, at the end of each
update, an empty first site is filled deterministically with a
particle. The injected particle may hop with probability p to
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FIG. 3. Local density profiles in phase MP for a chain of L = 400
sites, hopping probability p = 0.6, fixed injection probability α =
0.3, and several values of the ejection probability β > α: β = 0.4
(green up triangles), 0.5 (red diamonds), 0.6 (empty circles), 0.8
(magenta down triangles), and 1 (blue stars).

the second site of the chain, whenever that site is empty, thus
leaving the first site ready to be filled deterministically with a
new particle in the next discrete-time moment. Thus, a cluster
of at least two particles is formed and that cluster grows with
time until a stationary state is reached in which all the lattice
sites are occupied. Due to the right boundary condition the
stationary current of particles is J = β, which is confirmed by
our Monte Carlo simulations.

The regions MP I and MP II (α < p and β > α) represent a
phase containing many particles, or clusters, with bulk particle
density ρb = α/p. In contrast to the case of the standard
TASEP, where a similar place in the phase diagram is taken
by a low-density phase, here the bulk density can take any
value from zero to one. The local density profile is flat up to
the first site, ρ1 = α/p ≡ α̃, but the two regions differ by its
shape near the chain end where, within numerical accuracy,
we find ρL = α/β; see Fig. 3. Expectedly, on the borderline
β = p between the regions MP I and MP II the local density
profile is completely flat: ρi = α/p ≡ α̃, i = 1, . . . ,L, for all
α � p. Analogously, a completely flat density profile occurs in
the case of the usual TASEP on the mean-field line: α + β = 1
for continuous-time kinetics and (1 − α)(1 − β) = (1 − p) for
discrete-time one.

The phase MP+CF (β < α < p) is a mixture of many-
particle configurations and nonzero probability of complete
filling of the chain in the infinite-size limit. Here the chain is
completely filled at the bulk and up to the last site, ρb = ρL =
1. However, the left boundary layer is not completely filled,
since the local density ρ1 decreases linearly with β down to
α/p at β = α; see Fig. 6 below. The particle current is given
by J = β, as in the pure phase CF.

The typical changes in the local density profiles and the
current of particles on passing from phase MP+CF to regions
MP II and MP I are illustrated in Fig. 3. On the line α = β

the density profile is almost linear and can be interpreted as a
phase coexistence line between the MP+CF and MP phases,
with completely delocalized domain wall (see Refs. [53,54])

FIG. 4. Local density profiles for a chain of L = 400 sites,
hopping probability p = 0.6, fixed ejection probability β = 0.3, and
different values of the injection probability α from phase MP II:
α = 0.1 (green down triangles) and 0.2 (magenta diamonds), through
the coexistence line of phases MP II and MP+CF, α = β = 0.3
(empty circles), into phase MP+CF at α = 0.4 (empty up triangles)
and 0.5 (blue stars).

separating the corresponding particle densities ρMP
b = α/p

and ρMP+CF
b = 1. The shape of the local density profiles

changes with the increase of α from region MP II to phase
MP+CF at fixed β < p as shown in Fig. 4. In contrast,
on crossing the borderline between regions MP II and MP
I nothing changes, but the local density profile in the right
boundary layer.

A distinguishing feature of phase MP+CF, which explains
the name we have given to it, is the behavor of the probability
P(1) of finding a completely filled chain with the increase of α:
it smoothly increases from zero, at the phase boundary α = β

with the MP II domain, up to unity at the boundary α = p with
phase CF; see Fig. 5.

If we interpret P(1) as an order parameter, we can speak
about a continuous, clustering-type phase transition through-
out the domain of MP+CF, from a completely disaggregated
phase in MP II to the completely aggregated one CF.

IV. PHASE TRANSITIONS

From Fig. 6 it is seen that on passing from phase MP+CF
to phase MP with the increase of β at fixed α < p, a “jump”
in the bulk density from the value ρb = 1 down to ρb = α/p

occurs on the borderline β = α, together with a discontinuity
in the first derivative of the current J (β). This signals the
appearance of a nonequilibrium first-order phase transition in
the infinite-chain limit between the phases MP+CF and MP.

On the other hand, a quite unusual nonequilibrium phase
transition can be predicted from the α-dependence (at fixed
β > p) of the bulk density and the current on passing from
phase MP I to phase CF; see Fig. 7. The nonequilibrium
“zeroth-order” phase transition at β > p is clearly manifested
by the jumps both in the bulk density ρb(α) and the current J (α)
taking place at the boundary α = p between the MP I and CF
phases. Up to our knowledge, a jump in the particle current has
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FIG. 5. Dependence of the probability P(1) of complete lattice
filling in the MF+CF phase close to the boundary with the CF phase.
(a) P(1) is identically zero in the bulk of the MP I phase and grows
exponentially fast on approaching the immediate vicinity of the CF
phase. The size dependence of the distribution is evident from the
comparison of profiles for L = 200 and L = 800, given at ejection
probability β = 0.9. (b) The smooth growth of P(1) with α in the
MP+CF phase, at β = 0.3, from P(1) = 0 at the boundary with the
MP II phase to P(1) = 1 at the boundary with the CF phase.

never been observed before, at least not in the nonequilibrium
stationary states of one-dimensional driven-diffusive systems
with conserved bulk dynamics. Informally, we call this phase
transition of “zeroth-order” because in the standard TASEP the
second-order transition between the LD (HD) and MC phases
is accompanied by discontinuity in the second derivative of
the current with respect to α (β), at the first-order transition
between the LD and HD phases there is discontinuity in
the first derivative of the current, and here we observe a
jump discontinuity in the current itself. Note that across the
borderline β = p between regions MP II and MP I the density
and current change continuously, only the curvature of the
density profile changes sign.

In region MP I (0 < α < p < β), within the estimated error
bars and for α not too close to p, we have estimated ρ1 = ρb =
α/p ≡ α̃, ρL = α/β, J = α. Since β > p, the density profile
bends downwards near the chain end, ρL < ρb. In region MP

FIG. 6. Particle densities ρ1 (green up triangles), ρb (blue
diamonds), ρL (red down triangles), and the particle current (red
disks) as a function of the ejection probability β, for a chain
of L = 400 sites, hopping probability p = 0.6 and fixed injection
probability α = 0.3. The nonequilibrium first-order phase transition
at β = α = 0.3 is clearly manifested by the jump in the bulk density
and the discontinuity in the first derivative of the particle current J (β).
At the borderline β = p between regions MP II and MP I nothing
changes except the tail of the local density profile.

II (0 < α < β < p), again the relations ρ1 = ρb = α/p ≡ α̃,
ρL = α/β and J = α hold true within numerical accuracy.
However, since now β > p, the density profile bends upwards
near the chain end, ρL > ρb. The above numerical estimates

FIG. 7. Behavior of the current J , bulk density ρb and local
densities ρi at site i, for a chain of length L = 200, in the case
of hopping probability p = 0.6, as a function of the injection
probability α at two values of the ejection probability: β = 0.6 and
0.9. For β = p = 0.6 the density profile is flat, ρi = ρ1, i = 1, . . . ,L,
and equals the local density at the first lattice site ρ1 for β > p;
these values are shown by filled blue up triangles; the current at
β = p = 0.6 is shown by filled blue discs. For β = 0.9 the bulk
density ρb, identified with the local density at the center of the chain,
i = L/2, is shown by red empty diamonds, and the local density at the
last site, ρL by red empty down triangles; the corresponding current
is shown by red empty squares.
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turn out to be exact, as follows from their theoretical derivation
in the next section.

A more detailed description of the unusual “zeroth order”
phase transition is provided by the finite-size analysis of the
jumps in the current and bulk density carried out in Sec. VI.

V. DERIVATION OF THE PARTICLE DENSITY AT THE
CHAIN ENDS

Our numerical results for the local density in phase MP
show that the flat profile extends from the first site into the
bulk, ρMP

1 = ρMP
b , and only close to the chain end the profile

bends downward in the MP I domain (0 < α < p,β > p),
upward in the MP II domain (0 < α < β < p), and remains
completely flat on the line α = β = p between these two; see
Fig. 3. Moreover, the numerical results suggest that the particle
density in the uniform part of the profile equals

ρMP
1 = α/p. (3)

Here we derive this result from the local balance of the average
inflow and outflow of particles at the first site of the chain.
Indeed, at the end of a given update, the occupation number
of the first site τ1 changes its value from τ1 = 0 to τ1 = 1
when a particle enters at the empty first site of the system;
this event happens with probability α(1 − ρ1). In the opposite
case, τ1 changes from τ1 = 1 to τ1 = 0 when the occupied
first site becomes empty; this event happens with probability
(1 − α̃)ρ1p. The last expression is valid under the assumption
P(1) = 0, when the particle at the first site is either isolated,
or belongs to a cluster with rightmost occupied site j < L. In
this case, under our backward-ordered sequential algorithm the
particle will hop with probability p one site to the right alone,
if isolated, or with the whole cluster it belongs to, thus leaving
the first site vacant. The factor (1 − α̃) equals the probability
that the site remains empty at the end of the update. Thus,
the stationarity condition for the average occupation number
of the first site implies α(1 − ρ1) = (1 − α̃)ρ1p, which is
equivalent to Eq. (3), since α̃p = α. Note that, as shown
in Fig. 5, the assumption P(1) = 0 generally holds true in
the phase MP. Deviations may occur only in a shrinking
to zero with the increase of L thin layer at the boundary
α = p between the MP I and CF phases, where P(1) does not
vanish.

Now, we pass to the derivation of the average occupation
number ρL of the last site of the chain in the MP phase. To
this end we make use of the global stationarity condition
Jin = Jout, where Jin (Jout) is the average inflow (outflow)
of particles in the system. First, we prove that a particle
enters the system with the same probability α, independent of
the chain configuration, provided the latter is not completely
filled. Consider the two complementary possibilities: the
first site is either vacant or occupied by a particle when
the backward-ordered configuration update reaches that site.
When it is vacant, a particle enters the system with probability
α by definition. When it is occupied by a particle, it becomes
vacant with the hopping probability p of that particle or the
finite cluster containing it. Finally, according to our modified
left boundary condition, the first site, that has just become
vacant, will be filled by a particle with probability α̃ = α/p.
Therefore, the total probability with which a particle can enter

the system during the update (integer-time moment) is again
α. Hence, Jin = α. On the other side, the outgoing current is by
definition Jout = βρL. Hence, the global stationarity condition
implies

ρL = α/β. (4)

Unfortunately, the kinetics in the MP+CF phase is much more
complicated due to the presence of a completely filled lattice
configuration with probability P(1) depending on both α and
β. This is the reason why we do not present here analogous
results for the local particle density at the chain ends in that
phase.

VI. FINITE-SIZE SCALING FOR THE CURRENT AND
BULK DENSITY

We have attempted a description in terms of finite-size
scaling of the sharp changes in both the bulk density and the
particle current across the boundary α = p between MP I and
CF from the left. Testing the data collapse method (see, e.g.,
Refs. [55,56]), under the assumption of a finite-size scaling
variable

x = L(p − α), (5)

we have obtained fairly good agreement with the Monte Carlo
estimates for both the current (see Fig. 8) and the bulk density
(see Fig. 9). Note that we have evaluated the relative accuracy
of our simulation data at about 10−3 for local quantities
and 10−4 for global ones. These estimates were found by
comparing the results obtained under increasing the number
of independent runs above 106 per chain site and changing the
initial filling of the lattice. The stationarity of the process was
monitored by counting the numbers of injected and ejected
particles, which were found to coincide within 10−4 error.

FIG. 8. Collapse of Monte Carlo simulation data for the current
at β = 0.7 and β = 0.9 in chains of different length L as a function of
the finite-size scaling variable x = L(p − α): L = 200 green circles,
L = 300 red down triangles, L = 400 cyan squares, L = 600 blue
up triangles, L = 800 magenta diamonds. The two-exponential fits to
the data for L = 600 is shown by a dashed blue line, and for L = 800
by a solid red line, in the cases of β = 0.7 and β = 0.9.
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FIG. 9. Collapse of Monte Carlo simulation data for the bulk
particle density at β = 0.7 and β = 0.9 in chains of different length
L as a function of the finite-size scaling variable x = L(p − α):
L = 200 green circles, L = 300 magenta down triangles, L = 400
cyan squares, L = 600 blue up triangles, L = 800 red diamonds. A
two-exponential fit to the data for L = 600 is shown by a dashed blue
line, and for L = 800 by a solid red line, in the cases of β = 0.7 and
β = 0.9.

The data for both the current and the bulk particle density
were fitted by the same function

y(x) = A1 exp(−x/ξ1) + A2 exp(−x/ξ2) + y0, (6)

in the cases of L = 800 and L = 600, at two values of the
ejection probabilities β = 0.7 and β = 0.9; see Figs. 8 and 9.

Note that the quality of the fit for the current at β = 0.7 is ex-
cellent: the statistical criteria for JL(x) are χ2 � 6.5 × 10−11,
R2 = 1 for L = 800 and χ2 � 1.9 × 10−8, R2 = 0.99999 for
L = 600. At β = 0.9 the above criteria are somewhat worse,
but still satisfactory: χ2 � 3.63 × 10−6, R2 = 0.99968 for
L = 800 and χ2 � 1.53 × 10−6, R2 = 0.99986 for L = 600.
The values of the corresponding parameters are given in
Table I.

The fit for the bulk particle density is also very good: the
statistical criteria at β = 0.7 for ρb(x) are χ2 � 7.87 × 10−9,
R2 = 0.99999 for L = 800 and � 1.56 × 10−10, R2 = 1 for
L = 600. At β = 0.9 these criteria are again somewhat worse,
but still satisfactory: χ2 � 1.66 × 10−7, R2 = 0.99994 for
L = 800 and χ2 � 3.68 × 10−8, R2 = 0.99999 for L = 600.
The values of the corresponding parameters are given in
Table II. For a robust estimator of the bulk density we have
taken the local density at the center of the lattice, ρb = ρL/2.

The analysis of the values of the parameters, given in Table I
and Table II, allows us to derive important characteristics of

the phase transition; the thermodynamic limit of the jumps 	J

and 	ρb at the transition from MP I to CF. Indeed, y(0) = A1 +
A2 + y0 equals the value of the quantity y at the very transition
line α = p, evaluated for arbitrarily large L. On the other hand,
y(∞) = y0 yields the value of y in the thermodynamic limit,
arbitrarily close to the transition line on the side of phase MP I,
since p − α > 0 can be arbitrarily small. Therefore, we obtain

	y = y(0) − y(∞), (7)

where y stays for the current J or the bulk density ρb.
Now we pass to the evaluation of the thermodynamic

jump in the current. From the data in Table I, it can be
readily checked that at α = p, β = 0.7, one obtains J (0) =
A1 + A2 + y0 = 0.69997 at L = 600 and J (0) = 0.70001 at
L = 800. Obviously, within very high numerical accuracy, this
is the L-independent value of the current J = β = 0.7 in phase
CF. On the other hand, in the limit limL→∞ J (x) at fixed α < p,
β = 0.7, one obtains J (∞) = 0.58934 ± 0,000078 for L =
600 and (almost) the same value J (∞) = 0.58938 ± 0.00085
for L = 800. Hence, we estimate the thermodynamic jump in
the current at the point β = 0.7 of the transition line between
the MP and CF phases as 	J = 0.1106 ± 0.0001. Similar
calculations at the point β = 0.9 yield J (0) = 0.89987 at
L = 600 and J (0) = 0.89985 at L = 800. Here the numerical
accuracy is lower but still fairly well agrees with the L-
independent value of the current J = β = 0.9 in phase CF.
Taking into account the corresponding y0 values from Table I,
for the jump in the current at the point β = 0,9 we obtain the
estimate 	J = 0.3035 ± 0.0035. Our numerical investigation
of the variation of 	J along the phase transition line between
the phases MP I and CF (not shown here) has established that
	J changes continuously from zero at the triple point β = p

to unity at β = 1.
In complete analogy with the previous consideration, from

the data in Table II, one obtains that at the transition
point α = p, β = 0.7, the finite-size scaling function for
the bulk density equals ρb(0) = A1 + A2 + y0 = 0.99998
at L = 600 and ρb(0) = 1.00001 at L = 800. Thus, with
very high accuracy our data reproduce the value of the
particle density ρb = 1 in phase CF. On the other hand,
in the limit limL→∞ ρb(x) at fixed α < p, one obtains the
estimates ρb(∞) = 0.92494, from the data for L = 600, and
ρb(∞) = 0.92243 for L = 800. These values, though slightly
L-dependent, approximate the thermodynamic limit of the
bulk density ρb in phase MP I on the left-hand side of the
boundary α = p with the CF phase. Hence, the evaluated
from the data for L = 600 and L = 800 jump in the bulk
density varies from 	ρb = 0.07757 to 	ρb = 0.07506 with
the final estimate 	ρb = 0.0762 ± 0.0015. Expectedly, the
higher is β ∈ (p,1], the larger is the jump in ρb. Thus, for the

TABLE I. Parameters of the fit (6) of the collapse data for the particle current (see Fig. 8).

β L A1 ξ1 A2 ξ2 y0

0.7 600 0.03687 0.7286 0.07376 3.8393 0.58934 ± 8.5 × 10−4

800 0.03011 0.6465 0.08052 3.2019 0.58938±7.8 × 10−5

0.9 600 0.15613 0.31714 0.14616 1.86285 0.59758 ± 0.0023
800 0.17489 0.3581 0.1295 2.28821 0.59546 ± 0.0031
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TABLE II. Parameters of the fit (6) of the collapse data for the bulk density (see Fig. 9).

β L A1 ξ1 A2 ξ2 y0

0.7 600 0.02276 0.6571 0.05482 2.9250 0.92243 ± 1.02 × 10−4

800 0.02719 0.7337 0.04785 3.3246 0.92494 ± 4.04 × 10−4

0.9 600 0.06625 0.25955 0.08426 1.09819 0.84948 ± 2.1 × 10−4

800 0.06157 0.24874 0.08719 1.02839 0.85124 ± 3.53 × 10−4

thermodynamic value of the jump at the transition point α = p,
β = 0.9 we obtain the estimate 	ρb = 0.1496 ± 0.0012.

It could be instructive to interpret our data-collapse results
in terms of the main hypothesis of finite-size scaling at
equilibrium phase transitions see details in Ref. [57]. Close
to the transition point, the behavior of a singular in the
thermodynamic limit quantity in a system of finite size L

is described by the variable L/ξ , where ξ is a diverging
correlation length. For example, it is known [44] that the
discontinuous with respect to the bulk density nonequilibrium
transition across the coexistence line α = β < αc = βc in the
standard TASEP is characterized by a diverging correlation
length λ of the asymptotic form

1/λ := |1/λα − 1/λβ | = C|α − β| + O(|α − β|2). (8)

Here C is some model-dependent constant, and

1/λσ = ln

[
1 + (σc − σ )2

σ (p − σ )

]
,

(9)
σ = α,β, σc = 1 −

√
1 − p,

is the diverging correlation length of the continuous transition
from the low-density (σ = α) or high-density (σ = β) phase
to the maximum-current phase, where 1/λm.c. ≡ 0. Indeed, it
was shown that in this case the finite-size scaling variable is
x2 = C2(β − α)L [58,59].

From this viewpoint, the choice (5) of the finite-size scaling
variable for the unusual nonequilibrium phase transition from
MP I to CF at α = p can be interpreted in terms of a diverging
correlation length with the asymptotic behavior

1/λ = A(p − α) + O[(p − α)2], α � p, (10)

where A is some amplitude, possibly parameter dependent.
Our data on the cluster-size probability distribution suggests
the interpretation of the diverging correlation length in Eq. (10)
as the size of the largest cluster in the limit of infinite chain
L → ∞. Under this interpretation the CF phase represents an
infinite cluster of particles.

VII. DISCUSSION

We studied the stationary states of a new 1D model of
irreversible aggregation on finite open chains, based on a
special discrete-time TASEP-like kinetics. The left boundary
condition is set in conformity with the definition of the general-
ized TASEP on open chains. As a result, the inflow of particles
Jin = α is independent of the chain configuration, provided it
is not completely filled. In addition, the completely aggregated
phase occupies a finite domain α � p in the plane of particle
injection-ejection probabilities (α − β). Since the model has
not yet been solved exactly, our study was mainly based on

extensive Monte Carlo simulations. By evaluating the local
density profiles, the current and the probability of complete
lattice filling for different model parameters, we have obtained
a phase diagram with a novel topology; see Fig. 2. Besides the
completely aggregated phase CF, two other nonequilibrium
stationary phases were distinguished: a many-particle one,
MP, and a mixed MP+CF phase with nonvanishing probability
P(1) of finding a completely filled configuration. Evidence was
found for an unusual discontinuous phase transitions between
the MP and CF phases. By using the data collapse method,
finite-size scaling was established to hold for the bulk density
and the current close to the transition point. The corresponding
finite-size scaling variable for the current and bulk density
suggested the identification of diverging correlation length for
this transition and its interpretation as the size of the largest
cluster in the limit of infinite chain. In addition, a conventional
first-order phase transition between the phases MP+CF and
MP was observed on the line 0 < α = β < p. The typical
behavior of the local density profile and the current at these
transitions was evaluated and illustrated in Figs. 4 and 6.
Still another, continuous with respect to the probability P(1),
clustering-type transition was observed between the phases
MP and CF, throughout the phase MP+CP.

The values of the best fit parameters in the finite-size scaling
function Eq. (4) for the particle current and the bulk density,
given in Tables I and II, respectively, allowed us to estimate
the value of their jump in the thermodynamic limit on crossing
the boundary α = p between the MP I and CF phases. Besides
the explicitly considered cases of β = 0.7 and β = 0.9, at p =
0.6, we have explored the corresponding jumps in the whole
region p < β � 1 (not shown here) and found that they both
continuously increase as β changes from p to unity. Next, the
fact that the same function Eq. (4) yields a very good approxi-
mation to our finite-size scaling data for both the bulk density
and the current leads us to the hypothesis that the discontinu-
ities of these characteristics at the transition between the MP
and CF phases could appear as a result of the same microscopic
mechanism. Possibly this is the finite-size scaling behavior of
the probability P(1) of finding complete filling of the chain.

The properties of the stationary nonequilibrium CF and
MP+CF phases were shown to be completely different
from those of the known TASEP phases. Obviously, this
is a consequence of the absence of irreversible clustering
properties in the TASEP kinetics, except in the considered
limiting case p̃ = 1 of gTASEP. Next, we succeeded in
deriving from simple kinetic stationarity conditions the value
of the local particle density at the ends of the chain, as a
function of the model parameters in the MP phase. Although
the particle density profiles in the MP phase resemble those in
the low-density phase of the standard TASEP, we have found in
finite chains that a nonvanishing probability P(1) of complete

052105-9



N. ZH. BUNZAROVA AND N. C. PESHEVA PHYSICAL REVIEW E 95, 052105 (2017)

cluster aggregation exists only close to the borderline with the
CF phase. The microscopic mechanism of the appearance and
behavior of P(1) in the whole MP+CF phase needs a further
detailed investigation.

Predictions of different atomistic models of aggregation
could be particularly effective in detecting the contributions of
specific processes, playing part in real aggregation phenomena.
In this way, the study of simple models gives a new insight
into the rich world of stationary nonequilibrium phases and
the transitions between them. Hopefully, our results may

stimulate experimental studies of 1D aggregation of particles
in a stationary flow, controlled by the boundary conditions.
As a continuation of the present work we intend to take
into account cluster fragmentation processes by considering
gTASEP with values p̃ < 1.
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