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Lévy flights and Lévy walks serve as two paradigms of random walks resembling common features but also
bearing fundamental differences. One of the main dissimilarities is the discontinuity versus continuity of their
trajectories and infinite versus finite propagation velocity. As a consequence, a well-developed theory of Lévy
flights is associated with their pathological physical properties, which in turn are resolved by the concept of Lévy
walks. Here, we explore Lévy flight and Lévy walk models on bounded domains, examining their differences
and analogies. We investigate analytically and numerically whether and under which conditions both approaches
yield similar results in terms of selected statistical observables characterizing the motion: the survival probability,
mean first passage time, and stationary probability density functions. It is demonstrated that the similarity of the
models is affected by the type of boundary conditions and the value of the stability index defining the asymptotics
of the jump length distribution.
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I. INTRODUCTION

Lévy flights [1] and Lévy walks [2,3] are two well-
known stochastic models of anomalous diffusion. Generally
speaking, Lévy flights correspond to Markovian motions
whose individual, uncorrelated random steps are drawn from a
Lévy distribution, thus extending Brownian motion for which
the step lengths are Gaussian. A resulting asymptotic Lévy
diffusion is then characterized by infinite variance, indicating
that the width of the diffusive “packet” must be understood
in terms of some fractional moments or the interquartile
distance [4]. This mathematical property of Lévy flights
along with their instantaneous propagation are considered
to be unphysical in many situations. In contrast, in Lévy
walks [2,3,5], the meandering particle has a finite velocity,
so that long jumps take a proportionally longer time. Still, in
the absence of any boundary effect, the core of the Lévy walk
packet disperses faster than linearly in time but slower than
the ballistic front, and it is described by the Lévy distribution.
This means that under free boundary conditions, Lévy flights
can serve as a good approximation to the Lévy walk, although
with an improper prediction of the moments of the jump length
distribution [3].

In this paper, we analyze these two popular models of
stochastic motion in bounded domains. Such motions can,
e.g., represent foraging behaviors of animals and bacteria [3,6],
the spreading of diseases [7], or particle transport along soft
polymer chains [8]. The problem we aim to address is whether
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both of the aforementioned approaches yield similar results in
terms of investigated kinetics (survival, occupation, and first
passage times) and long-term behavior (existence of stationary
states and stationary probability densities). Depending on the
value of the stability index α and the used characteristics,
we find similarities but also large deviations between the
two models. We furthermore compare explicit analytical
results with numerical simulations of stochastic dynamics.
A direct comparison of two models—the motion of random
walkers flying instantaneously between distinct sites, and
walkers performing motion at a constant speed—deepens
our understanding of their behavior and relates characteristic
properties amenable to measurements in real situations.

The article is organized as follows: Sec. II discusses the
problem of boundary conditions, mean first passage time,
mean residence time, and stationary states for Lévy flights. In
Sec. III, problems of boundary conditions, mean first passage
time, and stationary states for Lévy walks are explored. The
paper concludes with a summary and a discussion.

II. LÉVY FLIGHTS IN ONE-DIMENSIONAL INTERVALS

Let us briefly reconsider the motion of a free overdamped
particle described by the Langevin equation:

dx

dt
= ζα(t), (1)

where ζα(t) is a symmetric white α-stable noise, i.e., the formal
time derivative of the symmetric α-stable motion [9]. Note
that in the Lévy flight (LF) scenario, we do not take into
consideration inertial effects, and similar to the Wiener process
we are dealing with an overdamped kind of motion. In contrast,
in the Lévy walk (LW) scheme, soon to be considered, we do
include inertial effects and finite propagation velocity. Hence

2470-0045/2017/95(5)/052102(13) 052102-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.052102


DYBIEC, GUDOWSKA-NOWAK, BARKAI, AND DUBKOV PHYSICAL REVIEW E 95, 052102 (2017)

one origin of the difference between both models stems from
neglecting the inertia.

Equation (1) is supplemented with the initial condition
x(0) = x0. Accordingly, the stochastic process {X(t),t � 0}
governed by Eq. (1) has increments

�x = x(t + �t) − x(t) = �t1/αζt (2)

distributed according to the symmetric α-stable density with
the scale parameter depending on the discretization time
step �t . The discretization procedure ensures that for a
free particle with an arbitrary �t , time-dependent densities
do not depend on the discretization time step but on t

(and remaining parameters) only. In Eq. (2), ζt represents
independent, identically distributed (i.i.d.) random variables
following the symmetric α-stable density [10,11] with the
characteristic function φ(k),

φ(k) = exp
[−σα

0 |k|α]
, (3)

where σ0 > 0 is the scale parameter. The stability index α

describes the asymptotic (large �x) behavior of the jump
length density:

pα(�x; σ0) ∼ σα
0 �t sin πα

2 �(α + 1)/π

|�x|α+1
. (4)

Note that the parameter σ0 scales the overall distribution width,
hence its role is similar to a standard deviation for distributions
with a finite second moment. From Eq. (1) and arithmetic
properties of α-stable densities [11,12], it follows that the
process {X(t),t � 0} is distributed according to the α-stable
density with the time-dependent parameter σ (t),

σ (t) = σ0t
1/α, (5)

where σ0 is a fixed scale parameter associated with the
underlying α-stable white noise in Eq. (1). Consequently, its
asymptotics is described by Eq. (4) after substitution of �t

with t and �x with x.
The Langevin equation (1) can be associated with the space-

fractional Smoluchowski-Fokker-Planck equation

∂P (x,t |x0,0)

∂t
= σα

0
∂αP (x,t |x0,0)

∂|x|α = Kα

∂αP (x,t |x0,0)

∂|x|α ,

(6)

which describes the evolution of the probability density
function (PDF) of finding a random walker in the vicinity of
x at time t with the initial condition P (x,0|x0,0) = δ(x − x0).
The fractional operator ∂α

∂|x|α stands for the fractional Riesz-
Weil derivative, defined by the Fourier transform [13,14]
Fk( ∂αf (x)

∂|x|α ) = −|k|αFk(f (x)). In what follows, we interpret
Kα = σα

0 in Eq. (6) as the generalized diffusion constant.
In the next subsections, the main focus will be on in-

vestigating the interrelationship between the formulation of
boundary conditions for Lévy flights and the properties of
escape kinetics and stationary states. More precisely, in order
to assess various formulations of boundary conditions, we
explore two scenarios of escape kinetics from finite intervals:
(a) restricted by two absorbing boundaries and (b) restricted
by reflecting and absorbing boundaries. We compare exact
results (when applicable) with numerically estimated mean
first passage times. Moreover, for a finite interval restricted by
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FIG. 1. Mean first passage time 〈τ (x0)〉 for the absorbing-
absorbing setup. Points represent computer simulations for a finite
interval (•); see Eq. (1). Simulation parameters: interval half-width
L = 1, scale parameter σ0 = 1, initial condition x0 = 0, integration
time step �t = 10−4, and number of repetitions N = 106. The solid
line presents the theoretical formula given by Eq. (8).

two reflecting boundaries, we verify if numerically constructed
stationary densities agree with analytical predictions. Finally,
we study the various finite interval setups not only for Lévy
flights but also for Lévy walks, which, contrary to Lévy flights,
have continuous trajectories and finite propagation velocity. A
comparison between the behavior of the two models (LF and
LW) with respect to a class of important observables defines
the main scope of the current research. Depending on the value
of the stability index α and observable type, we find similarities
but also large deviations between the two models.

A. First escape problem

In the presence of boundary conditions imposed for Eq. (6),
the translational invariance is broken and the resulting evolu-
tion equation for PDFs becomes a nontrivial integrodifferential
equation with nonlocal boundary conditions [15,16]. To avoid
the problem, an analysis of the first escape is performed here
with use of the Langevin methods, for which—contrary to
the methods based on the fractional Smoluchowski-Fokker-
Planck equation—the implementation of boundary conditions
is significantly simpler, although not fully resolved.

1. Absorbing boundaries at both ends

We consider a first escape problem from the [−L,L]
interval with both boundaries being absorbing; see Fig. 1. The
evolution of x(t) is determined by the Langevin equation (1),
and the first passage time τ (x0) (|x0| � L) is defined as

τ (x0) = min{t > 0 : x(0) = x0 and |x(t)| � L}. (7)

In this case, the formula for the mean first passage time [MFPT,
〈τ (x0)〉] reads [16,17]

〈τ (x0)〉 = 1

�(1 + α)

(L2 − |x0|2)α/2

σα
0

, (8)
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FIG. 2. Survival probabilities S(t |x0) corresponding to Fig. 1, i.e.,
x0 = 0. Solid lines represent the exp[−t/〈τ (x0)〉] approximation to
survival probabilities. Dotted lines depict the S(t |x0) ≈ exp [−λ

(α)
1 t]

approximation; see Eq. (13).

demonstrating that the MFPT scales asymptotically as
(L/σ0)α , which is especially visible for x0 = 0 when such
a scaling is recorded for the whole L range. Note that a similar
formula can also be found in Ref. [18]. Equation (8) can be
averaged over initial conditions. For example, assuming that
x0 is uniformly distributed over [−L,L], the mean exit time
reads

〈τ 〉 = π

21+α�[(1 + α)/2]�[(3 + α)/2]

Lα

σα
0

, (9)

which has exactly the same (L/σ0)α dependence as Eq. (8)
for x0 = 0. Therefore, in forthcoming considerations the fixed
initial x0 = 0 condition is used.

In numerical simulations of the corresponding Langevin
equation, the absorption condition is realized by assuming
that the whole exterior of the prescribed interval is absorbing,
i.e., each time a trajectory crosses the absorbing boundary, it
is removed and the first passage time is recorded. Results of
numerical simulations and formula (8) are presented in Fig. 1,
showing perfect agreement with the theoretical curve.

In Fig. 1, the scale parameter and the interval half-width
have been arbitrarily preset to σ0 = 1, L = 1 and the initial
condition to x0 = 0. Consequently, the 〈τ (x0)〉(α) curve attains
one of its possible forms. In more general cases of σ0 �= 1 and
L �= 1, or more precisely the ratio L/σ0 �= 1, this curve can be
of a very different type; see [19].

The cumulative distribution of first passage times for this
problem defines the survival probability

S(t |x0) = 1 − F(t |x0) = 1 −
∫ t

0
p(s|x0)ds, (10)

derived with the corresponding PDF p(t |x0) and depicted in
Fig. 2. Clearly, the survival probability denotes the probability
that a process starting at x(0) = x0 = 0 has not reached or
crossed up to time t the levels ±L. Note that, by construction,
the process described by Eq. (1) is Markovian, which remains
in line with the observation of exponential asymptotics in
Fig. 2. The behavior is well documented in simulations of
Lévy flights [15,20] and can be inferred by an estimation of
the lower and upper bounds [21–23] for tails of S(t |x0) or

from the master equation [18,24,25]. It can also be deduced
by a separation of variables [16,20],

S(t |x0) =
∞∑
i=1

ci(x0) exp
[−λ

(α)
i t

]
, (11)

with λ
(α)
i denoting eigenvalues of the fractional Laplacian on

bounded domains [26]. Accordingly, the decay of the survival
probability S(t |x0) is determined by the smallest eigenvalue of
the fractional Laplacian [16,20,21,26], prompting a long-time
approximation

S(t |x0) ≈ exp
[−λ

(α)
1 t

]
. (12)

For L = 1, the smallest eigenvalue λ
(α)
1 can be estimated [26]

as

λ(α)
n ≈

[
nπ

2
− (2 − α)π

8

]α

. (13)

Equation (12) along with the properties of the survival prob-
ability, i.e., 〈τ (x0)〉 = ∫ ∞

0 S(t |x0)dt , suggest another possible
approximation to the survival probability,

S(t |x0) ≈ exp[−t/〈τ (x0)〉], (14)

where 〈τ (x0)〉 is the mean first passage time given by Eq. (8).
Figure 2 compares both approximations; see Eqs. (12)

and (14). Solid lines represent Eq. (14): Lévy motion on a
confined interval between two absorbing boundaries decays
with the steepness parameter depending on the stability index
α. At the same time, with increasing α the deviations from a
single exponential approximation given by Eq. (14) become
more pronounced, as more and more terms from Eq. (11) have
to be retained [21] in order to reconstruct an initial part of the
survival probability. Therefore, approximation (14) does not
reproduce the correct decay rate of the survival probability.
Additional dotted lines in Fig. 2 depict the single exponential,
smallest eigenvalue approximation (12), which does not work
perfectly, but it predicts the right exponent characterizing the
asymptotic slope of the survival probability.

In particular, due to pedagogical reasons, approxima-
tions (12) and (14) can be compared for α = 2. In such a
case, the MFPT can be calculated from Eq. (8),

〈τ (0)〉 = L2

2σ 2
0

. (15)

The smallest eigenvalue of the Laplacian is [27,28]

λ
(2)
1 = π2σ 2

0

4L2
, (16)

leading to 〈τ (x0)〉 = 1/λ
(2)
1 = 4L2/π2σ 2

0 ≈ 0.405L2/σ0,
which differs by 24% from the exact value; see Eq. (15). The
quality of approximation (14) depends on the exact value of
the stability index α that can be inferred from Fig. 3, which
presents the ratio of the exact value of the MFPT [see Eq. (8)]
to its approximation 〈τ (x0)〉 ≈ 1/λ

(α)
1 . The dependence of

〈τ (x0)〉λ(α)
1 is a nonmonotonic function of the stability index

α with the maximum located around α ≈ 1. For small α,
Eqs. (12) and (14) provide reasonable approximations to the
survival probability. Finally, it is worthwhile to point out that
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the quality of the approximation (14) becomes worse with an
increasing number of spatial dimensions [29].

2. Reflecting-absorbing boundary conditions

Next, we consider a first escape problem from the [−L,L]
interval with reflecting (left) and absorbing (right) boundaries;
see Fig. 4. The first passage time τ (x0) (|x0| � L) is then
defined as

τ (x0) = min{t > 0 : x(0) = x0 and x(t) � L}. (17)

Analogously, as in Sec. II A 1, we use x0 = 0.
Imposing a reflecting boundary at x = −L requires some

additional care in numerical simulations. Here we consider
three different realizations of the reflecting condition:

(i) Motion reversal: A trajectory that ends at x < −L is
wrapped around the left boundary, i.e., x → −L + |x + L|.

(ii) Motion stopping: A trajectory that crosses −L is paused
at −L + ε, where ε is a small and positive parameter. The point
−L + ε is used as a starting point for a next jump.

(iii) Motion confined within a potential: The reflecting
boundary can be implemented by considering the motion in a
bounding potential,

lim
n→∞ Vn(x) = lim

n→∞
1

n

|x|n
Ln

, (18)

which is described by the following Langevin equation:

dx

dt
= −V ′

n(x) + ζα(t). (19)

For n � 2, the potential (18) and its first derivative (force) are
continuous. In the limit of n → ∞, the potential Vn(x) reduces
to the infinite steep rectangular potential well with (reflecting)
boundaries at ±L.

In all the above scenarios, we use Langevin equations (1)
or (19) to simulate the Lévy motion. The absorbing boundary
is executed in a standard way, i.e., whenever x � L, a particle
becomes absorbed, both for a free particle motion and motion
in the potential well (18).

As can be inferred from the middle panel of Fig. 4, the
stopping and potential scenarios yield the same values of
estimated MFPT, with the condition that n and ε are sufficiently
large and small, respectively. In contrast, the implementation
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FIG. 4. Mean first passage time 〈τ (x0)〉 for reflecting-absorbing
setup (middle panel). Points represent computer simulations for
an infinite rectangular potential well [−L,L] with reversing (◦), a
rectangular potential well [−L,L] with stopping (�), and a potential
V800(x) (�). The short-dashed line presents the formula for the MFPT
(from the [−2L,2L] restricted by two absorbing boundaries) given
by Eq. (8). The bottom panel presents the fraction of escape events
due to wrapping of trajectories along the reflecting boundary located
at −L. Simulation parameters: L = 1, σ0 = 1, x0 = 0, �t = 10−4,
and N = 106.

of the wrapping method underestimates MFPT in comparison
to the other two cases. All scenarios are equivalent for
α = 2, indicating that the source of discrepancy lies in the
discontinuity of trajectories for Lévy motion with α < 2. In
fact, this conclusion can be drawn by a more accurate analysis
of wrapping trajectories: the bottom panel of Fig. 4 presents
the fraction of escape events (wrapping scenario) in which a
particle staring at x0 = 0 escaped from the [−1,1] interval by
a single long jump to the left and has been reversed around the
reflecting boundary. This fraction decreases with an increase
of the stability index α and tends to be arbitrarily small in
the Gaussian limit (α → 2), when the trajectory x(t) becomes
continuous. In the opposite limit of α → 0, almost half of
the escape events are due to trajectory wrapping, as might
be expected for extremely wide and heavy tailed PDFs of
increments �x.

In addition to the analysis of escape events from the [−L,L]
interval (reflecting-absorbing), the escape from the [−2L,2L]
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FIG. 5. Survival probabilities S(t |x0) corresponding to Fig. 4,
i.e., x0 = 0. Top panel: filled points represent results for the V800(x)
potential while empty symbols correspond to the infinite steep
rectangular potential well with stopping. Bottom panel: results for
the infinite steep rectangular potential well with wrapping. Solid lines
present S(t |x0) ≈ exp[−t/〈τ (x0)〉], where 〈τ (x0)〉 is the MFPT from
Fig. 4 corresponding to the appropriate scenario.

interval (absorbing-absorbing) has been investigated. Such a
scenario gives the same results as wrapping, since the escape
from the reflecting-absorbing interval is equivalent to the
escape from a two times wider absorbing-absorbing interval;
see the central panel of Fig. 4, which depicts 〈τ (0)〉 given
by Eq. (8) for a system [−2L,2L]. The theoretical formula
perfectly matches the simulations on the half-sized system
with the reversing (wrapping) condition. For α = 2 and various
types of boundary conditions, this correspondence can be
trivially read off from the analytic formula for the MFPT [30].
In more general settings with α < 2, the equivalence relies on
infinite propagation of the trajectory x(t): from any point x, the
distance to the absorbing boundary is either L − x or x + 3L

(when wrapped along a reflecting boundary). The sum of these
two distances is the only relevant model parameter and equals
exactly the sum of distances to absorbing boundaries located
at ±2L.

Figure 5 presents survival probabilities S(t |x0) correspond-
ing to motions analyzed in Fig. 4. The top panel presents
results for motion in the potential V800(x) and in a rectangular
potential well with stopping. These two scenarios result in
the same first passage time PDFs and, accordingly, in the
same mean first passage times. The bottom panel of Fig. 5
exemplifies results for the survival probability in the wrapping

scenario, which leads to faster escape kinetics. Analogously
to the absorbing-absorbing setup, the first passage time den-
sities display exponential asymptotics reflecting Markovian
characteristics of the process x(t); cf. Eqs. (1) and (19).

Solid lines in Fig. 5 represent the S(t |x0) ≈
exp[−t/〈τ (x0)〉] approximation to the survival probability.
Analogously, as in Fig. 2, this kind of approximation works
better for small values of the stability index α. Therefore, the
largest discrepancies are observed for α = 2. For the wrapping
scenario, discrepancies are smaller than for the remaining
scenarios, because wrapping of trajectories accelerates decay
of the survival probability.

B. Stationary states

In the case of Lévy flights in an infinitely deep rectangular
well, a particle executing the motion becomes confined in
a domain restricted by two impenetrable boundaries (cf. the
top panel of Fig. 6). With these conditions, stationary states
can be observed. In what follows, we compare simulations of
Eq. (19) in the limit of large n with the results of simulated free
diffusion bounded by the stopping or wrapping conditions at
reflecting boundaries at x = ±L. The stopping (empty points)
and potential (filled points) scenarios produce stationary PDFs
displayed in Fig. 6, in full agreement with analytical result
derived by Denisov et al. [31]:

Pst(x) = �(α)(2L)1−α(L2 − x2)α/2−1

�2(α/2)
. (20)

The bottom panel of Fig. 6 depicts cumulative densities
Fx(x) = ∫ x

−L
Pst(x ′)dx ′ corresponding to histograms pre-

sented in Fig. 6 and calculated (solid lines) from Eq. (20).
For clarity of presentation, the cumulative densities have been
plotted for 0 � x � L with L = 1 only.

C. Mean residence time

It is instructive to compare the results of the above MFPT
analysis with the mean residence time (MRT). MRT represents
the average time that a freely diffusing particle, moving on
−∞ < x(t) < ∞, resides in a given region (say, in the interval
[−L,L]) in a measurement process of duration t . Conse-
quently, the MRT is always shorter than the measurement time
t . Moreover, due to possible multiple returns to the [−L,L]
interval, MRT can be larger than MFPT. We will consider two
limits, i.e., when the measurement time is infinite and also
the time dependence of the MRT. We start by evaluating the
probability to find a particle in the interval [−L,L] at time t ,
provided it has started from some internal point x0 ∈ (−L,L),

Pr(t,x0) =
∫ L

−L

P (x,t |x0,0)dx. (21)

The probability density of transitions P (x,t |x0,0) in Eq. (21)
is the solution of Eq. (6) with the initial condition

P (x,0) = δ(x − x0). (22)

If we make the Fourier transform of Eq. (6) and introduce
the characteristic function, which is defined as

ϑ(k,t) =
∫ ∞

−∞
P (x,t)eikx dx, (23)
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FIG. 6. The middle panel presents stationary states for an in-
finitely deep rectangular potential well with the stopping scenario
(empty points) and the potential V800(x) [see Eq. (18)] (filled points).
The solid lines present the theoretical formula given by Eq. (20). The
bottom panel presents cumulative densities Fx(x) corresponding to
histograms from the middle panel. The solid lines depict cumulative
densities Fx(x) calculated from Eq. (20). To improve the figure’s
clarity, Fx(x) are plotted for 0 � x � 1 only. Small discrepancies in
the middle panel at x ≈ ±1 are due to data binning.

we arrive at

∂ϑ

∂t
= −σα

0 |k|αϑ. (24)

From Eqs. (22) and (23) we find the initial condition for
Eq. (24),

ϑ(k,0) = eikx0 . (25)

The exact solution of Eq. (24) with the initial condition (25)
reads

ϑ(k,t) = exp
[
ikx0 − σα

0 |k|αt
]
, (26)

which is the α-stable density with the same stability index α as
the underlying noise and the time-dependent scale parameter
σ0t

1/α; compare Eqs. (26) and (3). A nonzero initial condition

introduces an additional shift to the time-dependent density,
which is centered at x0.

Using the inverse Fourier transform, we obtain from
Eq. (26)

P (x,t |x0,0) = 1

2π

∫ ∞

−∞
e−ik(x−x0)−σα

0 |k|αt dk. (27)

Substituting Eq. (27) in Eq. (21) and integrating over x, we
arrive at

Pr(t,x0) = 2

π

∫ ∞

0

sin kL cos kx0

k
e−σα

0 kαt dk. (28)

According to the definition, MRT 〈T (x0)〉 in the interval
[−L,L] can be calculated as

〈T (x0)〉 =
∫ ∞

0
Pr(t,x0)dt. (29)

This MRT is the mean residence time in the limit where the
total measurement time is large. Below, we will obtain the time
dependence of the MRT. Substituting Eq. (28) in Eq. (29) and
integrating over t , we get

〈T (x0)〉 = 1

πσα
0

∫ ∞

0

sin k(L + x0) + sin k(L − x0)

k1+α
dk. (30)

As seen from Eq. (30), the integral diverges for 1 � α < 2, i.e.,
MRT goes to infinity as for standard Brownian diffusion (α =
2). Divergence of the mean residence time is a consequence of
multiple returns to the [−L,L] interval. In the case 0 < α < 1,
Eq. (30) yields

〈T (x0)〉 = �(1 − α)

πσα
0 α

[(L + x0)α + (L − x0)α] sin
πα

2
, (31)

where �(x) is the Euler Gamma function. In particular, for
x0 = 0 from Eq. (31) we have

〈T (0)〉 = 2 �(1 − α)

πα

(
L

σ0

)α

sin
πα

2
. (32)

MRT given by Eqs. (31) and (32) is finite, but larger than
the MFPT. In the limit of α → 0, the mean residence time
in Eq. (32) tends to 1, which is the mean first passage time
from the [−L,L] interval given by Eq. (8). Equality of MRT
and MFPT signals that the particle after escaping the domain
[−L,L] does not return to the interval anymore. This is in
accordance with properties of Lévy flights, which for α < 1
are transient [32], i.e., for LF with α < 1 starting outside a
finite interval, there is nonzero probability of not visiting this
interval at all. In the limit of α → 0, this probability tends to 1.
In the intermediate range of 0 < α < 1, returns to the [−L,L]
interval are possible, but their probability is smaller than 1.
Therefore, MFPT is smaller than (finite) MRT.

The long-time asymptotics of the probability Pr(t,x0) can
be estimated from Eq. (28). In the limit t → ∞, the function
exp[−σα

0 |k|αt] under the integral becomes very narrow near
the point k = 0, and we can approximately estimate this
integral. As a result, we arrive at

Pr(t,x0) ∼ 2 �(1/α)L

πσ0α t1/α
, t → ∞. (33)

As seen from Eq. (33), the integral (29) diverges for α � 1.
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It is interesting to compare the result (33) with a free
Brownian diffusion described by the following Smoluchowski-
Fokker-Planck equation,

∂P

∂t
= K2

∂2P

∂x2
. (34)

The solution of Eq. (34) with the initial condition (22) is well-
known and has the form

P (x,t |x0,0) = 1

2
√

πK2t
exp

[
− (x − x0)2

4K2t

]
. (35)

Substituting Eq. (35) in Eq. (21) in the limit t → ∞, we have
approximately

Pr(t,x0) ∼ L√
πK2t

, t → ∞. (36)

The asymptotics (33) transforms into asymptotics (36) when
α = 2 because of �(1/2) = √

π and σ0 = √
K2.

Equations (30) and (32) provide formulas for the mean res-
idence time when α < 1 and for infinitely long measurement
times. Depending on the observation time t , the amount of
time spent in the [−L,L] interval changes. Therefore, a related
question is to estimate how the mean residence (occupation)
time grows with the measurement time t . The scaling of the
average occupation time as a function of the measurement time
can be calculated by general properties of Lévy flights. By the
definition, the occupation time T is

T (x0) =
∫ t

0
�(x(t ′))dt ′, (37)

where x(t) is a random walker location, t is the measurement
time, and �(·) is the characteristic function

�(x(t)) =
{

1, −L � x(t) � L,

0 otherwise. (38)

The average residence time 〈T (x0)〉 is (for simplicity, x0 = 0)

〈T (0)〉 =
∫ t

0
〈�(x(t ′))〉dt ′ =

∫ t

0
dt ′

∫ L

−L

P (x,t ′|0,0)dx,

(39)

where P (x,t |0,0) is

P (x,t |0,0) = 1

2π

∫ ∞

−∞
e−ikx−σα

0 |k|αt dk; (40)

see Eq. (27).
For infinite measurement time (t → ∞) and 0 < α < 1,

the integral in Eq. (39) is convergent,

lim
t→∞〈T (0)〉 = 2

πσα
0

∫ ∞

0

sin kL

kα+1
dk

= 2

π

(
L

σ0

)α ∫ ∞

0

sin y

yα+1
dy, (41)

and it is equal to Eq. (32), representing the fact that for α < 1 a
random walker spends a constant amount of time in the [−L,L]
interval, what is a consequence of the already discussed
transient character of α-stable motions with α < 1 [33].

For finite measurement time t and any 0 < α � 2,

〈T (0)〉 = 1

π

∫ ∞

−∞

sin kL

k

1 − e−|k|ασα
0 t

|k|ασ α
0

dk

= 2

πσα
0

∫ ∞

0

sin kL

k1+α
[1 − e−|k|ασα

0 t ]dk. (42)

Equation (43) can be approximated for short and large
measurement times. For short measurement time, one has

〈T (0)〉 ≈ 2

πσα
0

∫ ∞

0

sin kL

k
σα

0 t dk

= 2t

π

∫ ∞

0

sin y

y
dy = t. (43)

To find large measurement time asymptotics, the general
formula given by Eq. (43) needs to be rewritten as

〈T (0)〉 = 2

π
t

∫ ∞

0

sin κξ

κ1+α
[1 − e−κα

]dκ, (44)

where ξ = L/(σ0t
1/α) and κα = kασα

0 t . From Eq. (44) one
gets the large t (small ξ ) asymptotics,

〈T (0)〉 ≈ 2

π
ξ

∫ ∞

0

1 − e−κα

κα
dκ

= 2

π

L

σ0

�(1/α)

α − 1
t1−1/α. (45)

In summary, for 1 < α � 2 the residence time depends on the
measurement time t as

〈T (0)〉 ∼
{

t for small t,
2�(1/α)L
π(α−1)σ0

t1−1/α for large t,
(46)

while for α < 1

〈T (0)〉 ∼
{

t for small t,
2�(1−α)

πα

(
L
σ0

)α
sin πα

2 for large t.
(47)

For α = 1, after further calculations, one gets

〈T (0)〉 = t

[
1 − 2

π
arctan

σ0t

L

]
+ L

πσ0
ln

[
1 +

(
σ0t

L

)2]
,

(48)

which for t → ∞ gives the logarithmic dependence

〈T (0)〉 ≈ 2L

πσ0
ln t. (49)

Figure 7 presents the mean residence time 〈T (x0 = 0)〉 for
α ∈ {0.7,1.5,2.0} (from top to bottom) as a function of the
measurement time t . Various curves correspond to various
interval half-widths L. The time a particle spends in the interval
[−L,L] is always less than the measurement time t . Dashed
(short time) and solid (long time) lines in Fig. 7 present
scaling of the MRT with the measurement time given by
Eq. (46) (middle and bottom panels) and Eq. (47) (top panel).
In both cases, simulation results agree well with theoretical
predictions. Altogether, we observe that for Lévy motions
with 1 < α < 2, the exponent of the asymptotic scaling of
MRT is smaller than 1/2, the value characteristic for a free
Brownian diffusion [cf. [34] and Eq. (46)]. This dependence
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FIG. 7. Mean residence time 〈T (0)〉 for α = 0.7 (top panel),
α = 1.5 (middle panel), and α = 2 (bottom panel). Various curves
correspond to various interval half-widths L. Solid lines present
scaling given by Eqs. (46) and (47).

on the stability index α originates from the discontinuity of
Lévy flight trajectories and the asymptotics of the first arrival
(hitting) time distribution, which is of t1/α−2 type; cf. [32,35].
For α < 1 the Lévy flight process after leaving the [−L,L]
interval does not need to return to its interior, see [32], but it
can be jumping back and forth above the [−L,L] interval. Due
to the infinite propagation velocity of Lévy flights, such jumps
above the interval do not contribute to the residence time.
Consequently, for α < 1, the mean residence time saturates at
the finite value, as in the α → 0 limit discussed above.

III. LÉVY WALKS

The results presented so far have been constructed for Lévy
flights, when after each time step �t a random walker performs

a jump whose length is distributed according to the α-stable
density. In this type of random motion model, the integration
time step �t scales the jump length distribution in such a
way that for sufficiently small �t , the resulting mean first
passage time and stationary states are invariant with respect
to the actual value of �t . On the other hand, propagation of
a random walker performing Lévy flights is characterized by
unphysical, infinite velocity. This apparent drawback of the
Lévy flights scenario can be resolved by Lévy walk models,
which, in contrast, assume finite velocity of a jump [5,36].

Here we use a one-dimensional version of the Lévy walk
model [36–38] for which position is a continuous variable:
the jump durations Ti are set to Ti = |ςi |, with ςi being i.i.d.
random variables drawn from the symmetric α-stable density
[see Eq. (3)], and the jump velocity is characterized by a two-
state PDF:

h(v) = 1
2 [δ(v − v0) + δ(v + v0)]. (50)

Accordingly, during each jump a particle’s position changes
continuously. The jump is finished when the particle travels the
total distance v0Ti . After completion of a jump, immediately
a new jump duration and a jump velocity are generated.
To calculate the position at time t , the whole procedure is
repeated n times, where n satisfies

∑n−1
i=1 Ti < t <

∑n
i=1 Ti .

Finally, the position at time t is calculated by adding to the
position at time

∑n−1
i=1 Ti the velocity v0 multiplied by the

time interval t − ∑n−1
i=1 Ti . Equivalently, the employed Lévy

walk model can be defined by drawing the jump lengths �xi

from the symmetric α-stable density; see Eq. (3). Negative
increments �xi correspond to jumps taken to the left, while
positive �xi represent jumps to the right. A particle is assumed
to move with a constant velocity v0 resulting in the jump
duration Ti = |�xi |/v0, and after finishing the jump, a new
jump is immediately generated. Without loss of generality,
we further set v0 = 1. Note that in the considered Lévy walk
model, the distribution of T is one-sided, according to the
definition p(T ) = p(ς )|dς/dT |, and following Eq. (4) it
assumes asymptotically the form p(T ) ≈ 2σα

0 sin( πα
2 )�(α +

1)π−1T −(1+α).
Unlike for Lévy flights, the implementation of boundary

conditions for Lévy walks is natural thanks to the continuity
of their trajectories. Here, every time a random particle crosses
the absorbing boundary, it is removed from the system. At the
reflecting boundary, every time a particle hits the point, its
trajectory is wrapped, i.e., its motion becomes reversed at the
boundary, and the random walker continues its movement in
the opposite direction.

A. First escape problem

First we study the problem of the escape from the domain
restricted by two absorbing boundaries located at ±L. To
verify how the mean first passage time scales with the system
size, the MFPT has been numerically estimated for a series of
increasing interval half-widths L. Figure 8 shows the MFPT
as a function of the interval half-width L for α < 1 (top panel)
and α > 1 (bottom panel). From these plots, one can conclude
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FIG. 8. Scaling of the mean first passage time on the system
half-width L for Lévy walks restricted by two absorbing boundaries
located at ±L for α < 1 (top panel) and α > 1 (bottom panel) with
x0 = 0. In the top panel, for clarity of presentation, MFPTs for
increasing values of α have been multiplied by a constant factor,
otherwise all curves are superimposed. Solid lines in the bottom panel
present 〈τ (x0)〉LW calculated according to Eq. (56), which perfectly
match simulations (points).

that for large L,

〈τ (0)〉 ∼
⎧⎨
⎩

L for 0 < α < 1,

Lα for 1 < α < 2,

L2 for α � 2.

(51)

Therefore, for Lévy walks with α > 1, the mean first passage
time scales on the interval half-width L in the same manner as
for Lévy flights; see Eq. (8). Different scaling is recorded
for α < 1, i.e., in the situation when the average jump
duration/length is infinite; see Eq. (51) and the top panel of
Fig. 8.

To improve the clarity of the presented figure, in the top
panel of Fig. 8 curves corresponding to increasing values of α

have been shifted upward by multiplying MFPTs by a constant
factor, otherwise they are superimposed. Furthermore, from
obtained 〈τ (x0)〉 the ratio of mean first passage times 〈τ (x0)〉
has been calculated,

R = 〈τ (x0)〉10L

〈τ (x0)〉L . (52)

Figure 9 presents R for α < 1 and R−α for α > 1 (with x0 =
0), which in more detail demonstrate how scaling from Eq. (51)
is reached. From Eq. (51) it implies that R ≈ 10 (for α < 1)

R
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FIG. 9. Ratio R [see Eq. (52)] of the mean first passage times
for Lévy walks restricted by two absorbing boundaries located at
±L. Asymptotically, for α < 1 one has R = 10, while for α > 1 one
gets R = 10α . In the bottom panel, the inset enlarges the 1 < α < 2
region.

and R−α ≈ 10 (for α > 1). Indeed, such a behavior is visible
in Fig. 9, especially for large L.

Equation (51) and Fig. 8 suggest that the mean first passage
time for Lévy walks with 1 < α � 2 scales similarly to that
for Lévy flights, i.e., 〈τ (0)〉 ∼ Lα; see Eq. (8). As mentioned
above, a main difference between these two categories of
free motion is in the finite propagation velocity v0 and the
continuity of trajectories for LW, versus the infinite propaga-
tion velocity and the discontinuity of trajectories for LF. In
both cases, however, jumps are distributed with an α-stable
density. Therefore, one can expect that for a large interval
half-width L, Lévy walks can be effectively approximated
by Lévy flights with some unknown scale parameter σ LW

0 or
anomalous diffusion constant KLW

α = [σ LW
0 ]

α
; see Eq. (6). At

the same time, the finite propagation introduces a cutoff for
time-dependent densities for the LW model. Their support is
restricted to [−v0t,v0t].

The anomalous diffusion constant KLW
α can be estimated

by Eqs. (4) and (42) in Ref. [38] and Eqs. (4) and (50) in this
paper, resulting in

KLW
α = 2σα

0 �(1 + α)|�(−α)| sin πα
2

∣∣ cos πα
2

∣∣|v0|α
〈T 〉π , (53)

where 〈T 〉 is the mean waiting time for a next jump (flight
duration) and σ0 is the scale parameter in Eq. (3) and v0 = 1.
〈T 〉 is finite for 1 < α � 2. Application of Eq. (53) requires
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TABLE I. Values of KLW
α calculated according to Eq. (55).

α 1.1 1.3 1.5 1.7 1.9

KLW
α 0.1495 0.3981 0.5863 0.7294 0.8401

knowledge of 〈T 〉, which can be estimated numerically or with
the help of [Ref. [38], Eq. (77)]

〈T 〉 = 2σ0
�(1 − 1/α)

π
. (54)

Formula (54) perfectly approximates 〈T 〉. For α � 1.2, errors
are smaller than 0.3% of the exact value. For α → 1, the
approximation breaks down, reflecting the fact that 〈T 〉
diverges. Finally, one gets the formula for KLW

α ,

KLW
α = σα−1

0 �(1 + α)|�(−α)| sin πα
2

∣∣ cos πα
2

∣∣|v0|α
�(1 − 1/α)

. (55)

If the Lévy flight approximation to Lévy walks works, the
mean first passage time for LW could be estimated from the
formula analogous to Eq. (8),

〈τ (0)〉LW = Lα

KLW
α �(1 + α)

. (56)

Estimated values of KLW
α [see Eq. (55)] are given in Table I.

These values have been used to calculate the MFPT according
to Eq. (56); see the solid lines in the bottom panel of Fig. 8.
Therefore, the solid lines in the bottom panel of Fig. 8 not only
display the Lα scaling, but also the MFPT values estimated by
the LF approximation to LW; see Eq. (56). The latter works
nicely for large L and α > 1.

To measure the quality of the LF approximation to LW,
the ratio of the numerically estimated MFPT for LW [〈τ (0)〉]
and the value of the MFPT evaluated according to Eq. (56)
[〈τ (0)〉LW] has been introduced:

R̃ = 〈τ (0)〉/〈τ (0)〉LW, (57)

and it was analyzed for various ranges of L and α; see Fig. 10.
With the increasing interval half-width L, the quality of the

100 101 102 103 104 105 106 107
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/
〈τ

(x
0
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L
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FIG. 10. Ratio R̃ = 〈τ (x0)〉/〈τ (x0)〉LW of the numerically esti-
mated mean first passage time for LW for x0 = 0 and the mean first
passage time calculated according to Eq. (56).

LF approximation improves, resulting in R̃ ≈ 1. Moreover, the
approximation of Lévy walks by Lévy flights works better for
larger values of the stability index α.

Finite propagation velocity results in finite support for LW,
which is restricted to the interval [−v0t,v0t]. At the same time,
Lévy flights are unconstrained and located at any point on the
real line as they propagate with the infinite velocity. Despite
this fundamental difference in the propagation velocity, Lévy
flights seem to well approximate Lévy walks in the central part
of the respective propagator (time-dependent PDF). For free
Lévy flights, the scale parameter, which defines the central
part of the distribution, grows like σ LF

0 t1/α , where σ LF
0 is the

scale parameter of the jump length density; see Eq. (5). The
same dependence of the scale parameter is observed for free
Lévy walks, i.e., σ LW

0 t1/α .
Figure 11 presents MFPT for Lévy walks with L = 10

and 100 as a function of the stability index α. The middle
and bottom panels present survival probabilities S(t |x0) with
x0 = 0 for L = 10 and 100, respectively. From the top panel,
it is clearly visible that approximation (56) works better for a
large interval half-width L. This is in line with previous con-
siderations. Analogous to Lévy flights, for a fixed interval half-
width L, the mean first passage time for a reflecting-absorbing
scheme is larger than that for an absorbing-absorbing scenario
because in the former scenario the distance to an absorbing
boundary is larger than that in the latter scheme. Due to finite
particle velocity, for a fixed L, the mean first passage time for
the reflecting-absorbing scenario is not equal to the MFPT for
the absorbing-absorbing scenario with two times wider interval
half-width (results not shown) as was observed for Lévy flights
in the wrapping scenario. As for Lévy flights (see Fig. 2),
survival probabilities have exponential tails. Empty symbols
in the middle and bottom panels of Fig. 11 correspond to the
absorbing-absorbing scenario, while full symbols correspond
to the reflecting-absorbing scenario. At the same time, lines
present the S(t |x0) ≈ exp[−t/〈τ (x0)〉] approximation to the
survival probability for absorbing-absorbing (solid lines) and
reflecting-absorbing (dotted lines) boundary conditions. The
quality of the approximation depends in a nontrivial way on
the stability index α and the type of boundary conditions. In
particular, such an approximation works better for a reflecting-
absorbing setup than an absorbing-absorbing setup. The
discrepancy between the actual decay and exp[−t/〈τ (x0)〉]
means that the exponential decay is only asymptotic, since
if we had an exponential decay for all times, the law (14)
should hold. Finally, the distribution of the number of jumps
performed until leaving the [−L,L] interval has exponential
asymptotics (results not shown).

B. Stationary states

Figure 12 presents histograms for Lévy walks confined
by two reflecting boundaries located at ±10 (top panel) and
corresponding cumulative densities Fx(x) (bottom panel) at
t = 103. For α > 1, the system already reached its stationary
state, which is a uniform probability density Pst(x) = 1

2L
, while

for α < 1 a persistent cusp at the x0 = 0 (origin) is still visible.
With increasing time t , the height of this peak is decreasing and
the time-dependent density becomes more and more uniform.
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FIG. 11. Mean first passage time 〈τ (x0)〉 for Lévy walks from the
interval restricted by two absorbing-absorbing or reflecting-absorbing
boundaries located at ±L (top panel). Solid lines present the
approximation given by Eq. (56). Middle and bottom panels present
survival probabilities for absorbing-absorbing (empty symbols) and
reflecting-absorbing (full symbols) boundary conditions with L = 10
(middle panel) and L = 100 (bottom panel). Lines present the
S(t |x0) ≈ exp[−t/〈τ (x0)〉] approximation for absorbing-absorbing
(solid lines) and reflecting-absorbing (dotted lines) boundary con-
ditions. Results are averaged over N = 107 realizations with x0 = 0.

In the probability density, the visible peak for α = 0.5 is
responsible for the jump of the cumulative density at x ≈ 0.

Figure 13 presents sample time-dependent densities
P (x,t |x0,0) as heat-maps (top panel), the location of the
maxima of P (x,t |x0,0) (middle panel), and maximal values
of P (x,t |x0,0) (bottom panel). The maxima of probability
densities originate due to the initial condition, i.e., x(0) = x0.
Their height is a decaying function of time with the decay

P
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FIG. 12. Probability densities P (x,t = 103|x0,0) (top panel)
and corresponding cumulative densities Fx(x,t = 103|x0,0) (bottom
panel) for Lévy walks restricted by two reflecting boundaries located
at ±10. Results are averaged over N = 107 realizations with x0 = 0.

rate dependent on the stability index α. The slowest decay is
observed for α < 1, when the average jump length is infinite,
because the initial peak has the smallest number of chances to
bifurcate. Putting it differently, the height of the maximum of
the probability density decreases every time a jump direction
and jump length are generated. Therefore, the number of jumps
(determined by α) defines the decay rate of the initial condition.
Figure 13 presents results for α = 0.5 with x0 = 0 and 6
because such a choice of parameters is a nice illustration of the
general properties of time-dependent densities P (x,t |x0,0).
Analogously, the positions of the maxima are not fixed, but
they constantly, ballistically move and bifurcate due to finite
propagation velocity v0 = 1 and equal probability of jumps
to the left and right. The initial cusp splits into two parts
moving to the right and left. For α < 1 the average jump
duration is infinite, therefore these parts return to the initial
position after �t = 2L/v0 (for x0 = 0) or �t = 4L/v0 (for
x0 �= 0). This effect is nicely visible in the middle panel
of Fig. 13. Multiple points for the same t in the bottom
panel correspond to bimodal time-dependent densities. The
nonmonotonic, pointlike amplification of peaks takes place
when two peaks moving in opposite directions meet in one
point. At this point, the height of the peak is twice that of
the background. In the limit of large times t , time-dependent
densities converge to the uniform stationary density, i.e.,
Pst(x) = 1/2L.
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FIG. 13. Sample heat-maps presenting time-dependent densities
P (x,t |x0,0) for α = 0.5 with 60 � t � 100 for x0 = 0 (top left)
and x0 = 6 (top right). The middle panel presents the position
of P (x,t |x0,0) maxima for α = 0.5 with x0 = 0 (filled dots) and
x0 = 6 (empty dots). The bottom panel shows maximal values of
P (x,t |x0,0). Multiple points for the same t correspond to multimodal
time-dependent densities.

IV. SUMMARY AND CONCLUSIONS

Both Lévy walks and Lévy flights assume that a random
walker performs long jumps distributed according to a heavy-
tailed, power-law density. The main difference between both
scenarios is in continuous trajectories and finite propagation
velocity of Lévy walks versus discontinuous trajectories and
infinite propagation velocity of Lévy flights. Nevertheless, due
to the same type of the jump length density both scenarios are
deeply related and need to be compared in great detail. Such a
comparison between behavior of LF and LW, with respect to
a class of important observables like mean first passage time,
survival probabilities and stationary states provided the main
motive of current research. We have verified when both models
are similar and when they differ. In addition to comparison of
two classical random walk schemes we studied the problem of
posing boundary conditions for Lévy flights and Lévy walks.

The mean first passage time for Lévy flights scales
asymptotically as Lα with the interval-half-width, which is

especially visible for x0 = 0. The same scaling is observed
for Lévy walks with α > 1 and the large interval half-width
L. For α < 1 the mean first passage time is proportional to
L. Equation (51), which is the main outcome of this part
of the paper, indicates that for α > 1, Lévy flights with
a properly adjusted scale parameter can approximate Lévy
walks with respect to the analysis of the mean first passage
time.

In addition to the escape of Lévy flights from finite intervals,
we have analyzed the problem of residence time, i.e., the
fraction of time that the unbounded process spends in the
prescribed part of the line, e.g., a finite interval. The mean res-
idence time of LF as a function of the measurement time t has
a universal short time scaling 〈T (0)〉 ∼ t and a nonuniversal
long time scaling t1−1/α (for 1 < α � 2). For α < 1, due to the
discontinuity of trajectories of Lévy flights and their transient
character, the mean residence time saturates at a constant value
as measurement time goes to infinity. Results regarding the
mean residence time, Eq. (32), and the dependence of the mean
residence time on the measurement time t , Eqs. (46)–(48),
constitute key results of this part of the paper.

The problem of a formulation of the boundary conditions on
a single trajectory level for Lévy flights is not fully resolved.
While it is known how to treat the absorbing boundaries, it
is not uniquely defined how to implement reflecting boundary
conditions. We have compared two scenarios: wrapping (re-
versing) and stopping (pausing) showing that the former results
in uniform stationary states for a motion restricted by two
reflecting boundaries, while the latter scenario gives the same
stationary states as impenetrable boundary conditions [31] and
steep potential wells [39]. In the case of Lévy walks, the prob-
lem of posing reflecting boundary conditions is more apparent.
Finite propagation velocity and continuous paths suggest that
trajectory should be wrapped along reflecting boundaries. As
a consequence stationary states for a motion restricted by
two reflecting boundaries are uniform. Nevertheless, Lévy
walks display slowly decaying memory about initial conditions
especially in situations when mean jump length (flight time)
is divergent.

Our work clarifies the cases in which Lévy flights can be
used as an approximation to Lévy walks. Finite propagation
velocity of LW makes them inertial, i.e., a test particle
moves with finite kinetic energy, and collisions leading to
instantaneous alternations of velocities are fully elastic. In
consequence LW trivially fulfills Newton equations. This is
not however the case of LFs: Inertial Lévy flights [40,41]
break the equipartition theorem and lead to interdependence
between the position and velocity, which is manifested by the
nontrivial joint distribution of both variables. Moreover, in
view of thermodynamic interpretation, the Langevin equation
with non-Gaussian Lévy noise, Eq. (19) describes change of
the position of a particle under the action of nonequilibrated
external forcing which does not fulfill the standard fluctuation-
dissipation theorem [42,43].

Within the effort of explaining real life phenomena exhibit-
ing anomalous diffusion, Langevin or generalized Langevin
description is frequently a natural choice [3,44–47]. How-
ever, a full correspondence of that picture with Lévy walks
and Lévy flights dynamics still calls for further systematic
studies.
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