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Quantum-to-classical transition in the work distribution for chaotic systems
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The work distribution is a fundamental quantity in nonequilibrium thermodynamics mainly due to its connection
with fluctuation theorems. Here, we develop a semiclassical approximation to the work distribution for a quench
process in chaotic systems that provides a link between the quantum and classical work distributions. The
approach is based on the dephasing representation of the quantum Loschmidt echo and on the quantum ergodic
conjecture, which states that the Wigner function of a typical eigenstate of a classically chaotic Hamiltonian is
equidistributed on the energy shell. Using numerical simulations, we show that our semiclassical approximation
accurately describes the quantum distribution as the temperature is increased.
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During the last years there was an increasing interest in
the field of thermodynamics and statistical physics [1,2]. This
rebirth of the area has been fueled by the technological ad-
vances that lead to control with extreme precision the dynamics
of small quantum systems. In the context of nonequilibrium
statistical physics, standard concepts such as work and heat
are random variables characterized by a distribution, and
have been redefined so as to include quantum effects [3–5].
Notably, fluctuation theorems, such as Jarzynski [6] and
Crooks [7] equalities, have been extended to the quantum
regime. Despite the similarities between standard and quantum
fluctuation theorems, the transition between quantum and
classical descriptions seems to be elusive, and this difference
resides in the quantum definition of work.

The accepted definition of quantum work, performed
or extracted after a single realization of a process in an
isolated system, can be formulated in terms of two projective
measurements of the system’s energy or two-point measure-
ment [3–5]. Thus defined, the fluctuations in the value of
work have thermal and quantum origins. However, it could
also be argued that this definition is arbitrarily proposed so
that the fluctuation relations are fulfilled. It has been thus
suggested [8,9] that a justification of this definition would
be to test the correspondence principle in the classical limit.
Several studies have considered the quantum and classical
distributions of work in harmonic systems [10–15], where
analytical solutions are available. Interestingly, in Ref. [8],
by employing a semiclassical method, it has been shown
that in one-dimensional integrable systems (quartic oscillator)
there is a correspondence between classical and quantum
transition probabilities. For chaotic systems, there is some
numerical evidence showing that the correspondence principle
also applies [9], supporting the quantum definition of work.

Here, we go a step further: We present a semiclassical
expression for the distribution of work done on a system
after a quench for fully chaotic system. We show analytically
that the correspondence between the classical and quantum
distributions is recovered from the semiclassical expression in
the limit of vanishing Planck constant. Furthermore, we verify
the good agreement between the semiclassical and quantum
work distributions, and the quantum-classical correspondence,
using numerical simulations of a quantum particle inside a

stadium billiard that suddenly changes its inner potential. The
main ingredients we used to derive the semiclassical expres-
sion are the connection of the characteristic function with the
fidelity amplitude or Loschmidt echo [16], the semiclassical
dephasing representation [17–19] of the fidelity amplitude, and
the conjecture by Berry and Voros that the Wigner functions for
eigenstates of chaotic systems are peaked on the corresponding
energy shell [20,21]. Both approximations have proven to be
very useful separately to understand the key features of generic
quantum chaotic systems.

We consider the following process applied to a quantum
system described by a Hamiltonian Hξ that depends on a
control parameter ξ . We assume that the system is in thermal
equilibrium with a bath at inverse temperature proportional
to β−1 (in the following, we will consider kB = 1). The
initial state of the system is then ρβ = exp(−βHξ0 )/ZQ

ξ0
and

Z
Q
ξ0

= Tr[exp(−βHξ0 )]. Next, the system is decoupled from
the bath, and the control parameter is suddenly changed from
ξ0 to ξf , taking the system away from equilibrium. As a
result, the work performed on the system after the quench is a
random quantity given by the difference of the outcomes of two
energy measurements W = En

ξf
− Em

ξ0
, one at the beginning

and the other at the end of the process. In this way, work is
characterized by the following distribution [3–5],

P Q(W ) =
∑
n,m

P Q(m)P Q(n|m)δ
[
W − (

En
ξf

− Em
ξ0

)]
, (1)

where P Q(m) = e
−βEm

ξ0 /Z
Q
ξ0

, P Q(n|m) is the quantum condi-
tional probability to obtain the eigenstate of En

ξf
at the final

measurement, given that the initial result was Em
ξ0

(for a quench
this is equal to the squared overlap between the corresponding
eigenstates), and δ is the Dirac δ function. Different strategies
that enable the reconstruction of the quantum work distribution
have been put forward [22–25] and also recently measured,
verifying fluctuation theorems in the quantum regime [26,27].

In our approach we consider the characteristic func-
tion [5,10] that is defined as the Fourier transform of the work
distribution

G(u) =
∫

dWeiuWP (W ). (2)
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Notably, the characteristic function can be directly measured
using interferometric techniques, as proposed in Refs. [23,24]
and implemented experimentally in Ref. [26]. As it was noticed
in Ref. [16], the characteristic function for a quantum system
that is subjected to a quench can be expressed as

GQ(u) = 〈eiuHξf e−iuHξ0 〉 = Tr[eiuHξf e−iuHξ0 ρβ], (3)

where ρβ is a thermal state of Hξ0 at temperature β−1. In this
expression, u is a timelike variable, so, if it is replaced by t/h̄,
Eq. (3) can be regarded as the average amplitude probability
over two different time evolutions, or simply an averaged
Loschmidt echo (LE) amplitude [28–30]. Remarkably, in
Refs. [17–19] a very efficient semiclassical method to compute
the LE amplitude—called dephasing representation (DR)—
was proposed. It is based on the initial value representation [31]
and its success is partly due to the validity of the shadowing
theorem [18]. Moreover, it circumvents some of the problems
of the previous semiclassical techniques, such as the need
for using two pairs of classical trajectories, the search for
periodic orbits, or other special classical trajectories. The DR
has been successfully used in various areas such as the study
of irreversibility and the Loschmidt echo [17–19,32,33], the
local density of states in chaotic systems [34], and molecular
dynamics [35]. Below, we derive a semiclassical expression
for the characteristic function that is based on the use of the
DR.

Let us start the derivation by considering a quench, where
a parameter of the Hamiltonian Hξ = H0 + ξV is suddenly
changed from ξ0 → ξf . Then, the characteristic function for
this process can be expressed in the DR as [19]

GDR(u) =
∫

d2Dx0Wβ(x0) exp[i�S(x0,uh̄)/h̄], (4)

where D is the number of degrees of freedom, x ≡ (q,p) ∈
R2D is a collective notation, �S(x0,t) ≡ ∫ t

0 dτ�H [x(τ )] is an
action difference, �H ≡ Hξf

− Hξ0 , x(τ ) denotes the phase
space coordinates at time τ of a trajectory generated by the
Hamiltonian Hξ0 with the initial condition x0, and Wβ(x0) is
the Wigner function of the thermal state ρβ .

Since the thermal state of the Hamiltonian Hξ0 is ρβ =∑
m e

−βEm
ξ0 |Em

ξ0
〉〈Em

ξ0
|/ZQ

ξ0
, where |Em

ξ0
〉 are the eigenstates of

Hξ0 , its Wigner function can be written as a linear combination
of the Wigner functions Wm of each eigenstate, Wβ(x) =∑

m e
−βEm

ξ0 /Z
Q
ξ0
Wm(x). Now comes the key approximation

that we use. We consider a quantum system with a fully chaotic
classical counterpart, a system where the quantum ergodic
conjecture (QEC) applies [20,21]. The QEC states that the
Wigner function that represents a typical E-energy eigenstate
of a classically chaotic Hamiltonian can be approximated by
the classical Liouville probability density for the E-energy
shell of the Hamiltonian,

Wm(x) = δ
[
Em

ξ0
− Hξ0 (x)

]
∫

d2Dx δ
[
Em

ξ0
− Hξ0 (x)

] . (5)

In addition, in order to simplify even more the fi-
nal expression, we will consider that [8,9] e

−βEm
ξ0 /Z

Q
ξ0

≈∫ Em+1
ξ0

Em
ξ0

e−βE/ZC
ξ0

g(E)dE, where ZC
ξ0

= ∫
dx exp[−βHξ0 (x)]

is the classical partition function. Applying these

FIG. 1. Schematic depiction of the quench scheme: H0 → H0 +
V (ξ ), where H0 = (p2

x + p2
y). The Gaussians in the quench potential

are centered at (x1,y1) = (0.2,0.4), (x2,y2) = (0.67,0.5), (x3,y3) =
(0.5,0.15), and (x4,y4) = (0.3,0.75).

approximations to Eq. (4), we arrive at the main result of
this Rapid Communication, a semiclassical expression of the
characteristic function (see Supplemental Material [36]),

GSC(u) =
∫

d2Dx0
e−βHξ0 (x0)

ZC
ξ0

exp[i�S(x0,uh̄)/h̄]. (6)

It is worth pointing out that the classical work distribution
P C(W ) [8,37] can be recovered from GSC(u). This can be done
by taking the limit h̄ → 0 and applying the inverse Fourier
transform to GSC(u) (see Supplemental Material [36]),

P SC
h̄→0(W ) = 1

2π

∫
du e−iuW GSC

h̄→0(u) = P C(W ). (7)

So far, we have derived a semiclassical expression for
the characteristic function using several approximations. In
principle, this approach could be applied to fully chaotic
systems; below, we test Eqs. (6) and (7) numerically for a
specific model.

The system that we consider is a paradigmatic model
of quantum chaos: a quantum particle inside a desym-
metrized stadium billiard (with mass m = 1

2 , radius r = 1,
and straight line of length l = 1). Notice that in this case
the hard walls of the billiard do not move in the process.
In Refs. [9,38] it was numerically observed that for systems
with moving hard walls, the quantum-classical correspon-
dence depends strongly on the adiabaticity of the process.
Furthermore, when the boundary is quenched infinitely fast,
it is shown that there is no connection between quantum
and classical distributions. Here, we consider a quench that
consists of a sudden change of the Hamiltonian parameter,
from ξ0 = 0 to ξf = 85, with a smooth potential given
by four Gaussians: V (ξ ) = ξ

∑4
i=1(−1)i−1 exp(−[(x − xi)2 −

(y − yi)2]/(2σ 2)], σ = 0.1 their widths (see Fig. 1). The Gaus-
sians are centered at (x1,y1) = (0.2,0.4), (x2,y2) = (0.67,0.5),
(x3,y3) = (0.5,0.15), and (x4,y4) = (0.3,0.75).

In order to obtain the quantum characteristic function
GQ(u) and P Q(W ), we first compute the eigenstates of the
unperturbed stadium using the scaling method [39], and then
we perform a diagonalization using the eigenbasis of the initial
Hamiltonian Hξ0 to obtain the quenched system eigenstates.
We have considered the first 2500 states, but the basis is
truncated at 5600 (to ensure the accuracy of the first 2500).
The semiclassical approximations of GSC(u) and P SC(W ) are
computed using Eq. (6) (and its Fourier transform) by sampling
over a set of classical trajectories.

In Fig. 2, we show P Q(W ) and P SC(W ), where different
values of temperature β−1 are considered, and h̄ = 1. In the
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FIG. 2. Quantum (light blue/gray) and semiclassical (black) work
distribution for different temperatures, from (a)–(d): β = 2−6, 2−8,
2−10, 2−12. In the inset we show the characteristic function for each
temperature (the y axis is in log10 scale).

inset we show the corresponding characteristic functions. The
solid light-blue (gray) lines correspond to the quantum result
and the black curves to the semiclassical one. We remark that
the accuracy of the semiclassical calculations does not depend
very much on the number of trajectories that we use [40].
In particular, the results shown in Fig. 2 were obtained using
only ≈9 × 104 randomly chosen initial conditions. We can
see that the main features of the work distribution are well
reproduced for all these temperatures. In the case of β = 2−6

we can see that the semiclassical distribution deviates from
the quantum one. This is due to the fact that the proportion of
low-lying energy eigenstates contributing to the distribution is
significant, making our approximation less accurate. If �E =
(4π/h̄2)/(2mA) is the mean level spacing of a quantum billiard
of area A and mass m, then for β = 2−6 the relevant number
of states is ∼10, so only a few, low-lying energies contribute.
On the other hand, for smaller values of β, the agreement very
good.

Some of the importance of P (W ) comes from the quantum
fluctuation relations and the possibility, for example, to extract
thermodynamical information such as the change in free
energy, from the quantum Jarzynsky relation

�F ≡ − 1

β
ln

Z
Q
ξf

Z
Q
ξ0

= − 1

β
ln〈e−βW 〉, (8)

in systems out of equilibrium. Here, we use the Jarzynksy
equality to test the accuracy of the semiclassical approxima-
tion. In Fig. 3, we show the evaluation of Jarzynski equaltity
for a larger set of temperatures in the range β−1 ∈ [27,213] for
both the quantum and semiclassical calculations. As expected,
Fig. 2 shows that the agreement achieved by the semiclassical
approximation is better as temperature increases.

In Figs. 2 and 3, we have demonstrated that our semiclas-
sical method provides a good approximation of P Q(W ) for a
chaotic system as the temperature increases. Now we proceed

FIG. 3. Jarzinsky relation for the quenched described in the
text. The squares correspond to the results obtained using the
quantum work distribution, and the circles have been computed using
the semiclassical approximation of the characteristic function for
different temperatures. The scale of the xy axis is log10 − log10.

to show that the quantum-classical correspondence is achieved
by taking the usual semiclassical limit h̄ → 0 and comparing
the resulting work distribution with its classical counterpart
(see Supplemental Material [36]). For numerics, the classical
work distribution is obtained by randomly sampling initial
conditions in phase space, with the corresponding energies
Eξ0 = p2

x + p2
y . Then, from Hξf

we evaluate the final energies
Eξf

, and obtain the classical transition probabilities [8].
Finally, P C(W ) is evaluated by considering a Boltzmann
distribution of initial conditions. In the main panel of Fig. 4, we
show P SC(W ) for h̄ = 0.01, 0.1, 0.5, 1 and P C(W ) (obtained
using 4 × 106 initial conditions). In this case it is easy to
see that the classical distribution of work is independent
of the temperature, and as we increase the temperature and
reduce the value of h̄, the semiclassical distribution approaches
the classical one. In the inset of Fig. 4, the corresponding
characteristic function is shown for different h̄ and, as

expected, it can also be seen that GSC h̄→0−→ GC .

FIG. 4. Classical and semiclassical work distributions for β =
2−12, and h̄ = 0.01, 0.1, 0.5, 1. Semiclassical results were obtained
by the numerical evaluation of Eq. (6). The scale of the y axis is log10.
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In summary, we have shown the quantum-to-classical
correspondence of the work distribution for a sudden quench
applied on a chaotic system. This was done using a semiclas-
sical approach that provides a bridge between the quantum
and classical domains. This approach is based on the study
of the characteristic function that, in the quantum case,
can be expressed as a quantum evolution. In this way, we
developed a semiclassical expression for the characteristic
function that relies on the dephasing representation and on
the quantum ergodic conjecture, which states that the Wigner
function of chaotic eigenfunctions are equidistributed over the
corresponding energy shell. We have shown that the work
distribution obtained from the semiclassical characteristic
function is in good agreement with the quantum one over
a wide range of temperatures, and its accuracy increases

with temperature. Finally, we showed that this semiclassical
expression allows us to test the correspondence principle for
high temperatures by making h̄ → 0. To conclude, one can
notice that in general the characteristic function GQ(u) =
Tr [eiuHξf Uτ e

−iuHξ0 ρβU †
τ ], where Uτ is the unitary operation

resulting from a given process, can be also interpreted as

a quench GQ(u) = Tr [eiu(U †
τ Hξf

Uτ )
e−iuHξ0 ρβ], therefore we

expect that the ideas presented in this work could also be
extended to processes different from quenches [41].
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