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We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The
kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a
generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe
approximation for estimating the partition function. However, the connection between fixed points of GBP and
the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence
of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way
of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region
from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this
approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages
as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We
provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge
transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting
GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical
expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM.
The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation
equations. The method allows for a straightforward generalization to disordered systems.
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I. INTRODUCTION

The Ising ferromagnet is one of the most studied and
celebrated models in statistical physics. Although it lacks a
proper analytical solution in three dimensions, it is globally
well understood [1]. However, the addition of disorder to this
model generates a more complex scenario. Roughly speaking,
the low temperature phase of the disordered model is not
composed any more by two equivalent ordered phases as in the
pure ferromagnetic model, but by many disordered phases with
a complex structure. Techniques such as the replica trick [2]
and the cavity method [3,4] opened the door to the analytical
treatment of the disordered variants of this and similar models
in fully connected or in locally treelike random graphs [5].

However, finite dimensional systems remain a challenging
problem regarding the analytical solutions. Only recently [6–
11] has it been realized that a proper generalization of the Bethe
approximation, known with the name of cluster variational
method (CVM), could be a good starting point for a systematic
treatment of these kinds of disordered problems. The main
task is to translate the (approximate) free energy saddle point
conditions in a set of message passing equations, that can be
solved efficiently even on large systems.

The interest in these kinds of approximations is not only
theoretical, but it comes also from many applications outside
physics. For example, in image processing [12–15], it is im-
portant to improve the quality of the reconstruction algorithms,
and message passing derived from CVM approximations has
proved to be a good candidate in this direction. Error correction
and low density parity check (LDPC) codes is another example

of applications where GBP has been studied [16], including
the idea of fixing the gauge [17].

Most of previous works on cluster variational method and
replica method, relied on the so-called parent-to-child message
passing [6], which consists of an extension of the belief
propagation for the Bethe approximation to more involved
region graph approximations of the free energy. It has been
shown that the parent-to-child message passing is redundant
[17–19] since it introduces more “cavity” fields (messages)
than actually needed, producing a sort of gauge invariance in
the solution.

From a pure mathematical perspective, the gauge invariance
is a consequence of solving a constrained optimization prob-
lem by introducing more Lagrange multipliers than actually
needed. As a consequence, the dual problem (the one of
extreme in terms of the multipliers) has many solutions (a
continuous manifold), and some of the saddle point equations
are redundant.

According to our experience, this invariance is not a big
problem in the implementation of message passing algorithms
on a given finite dimensional instance, but it certainly is
a waste of computational resources since more parameters
need to be implemented. In [20], however, authors report the
gauge invariance as causing convergence problems, and in
[19] authors remove the invariance in order to create a more
robust message passing. In any case, this gauge invariance may
obscure the connection between the average case prediction of
the CVM equations derived for a disordered model and the
solution of message passing equations in single instances of
the model [8]. To alleviate this problem, we propose a general
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procedure to generate gauge-free generalized belief propaga-
tion (GFGBP) algorithm starting from a cluster variational
method approximation.

The procedure developed consists of the following steps:
(1) definition of maximal messages, in place of parent-to-

child messages;
(2) definition of moment matching fields in place of

Lagrange multipliers to ensure beliefs consistency.
The first is just another possible choice of messages that

is quite general. The latter is a change of perspective in the
interpretation of messages as Lagrange multipliers forcing
marginalizations, to fields forcing consistency of moments in
the beliefs distributions. This allows a systematic construction
of gauge-free message passing for any model with binary
variables.

In [17,18], authors developed a way to remove the re-
dundancy in the GBP equations by removing the redundant
messages. Our approach differs from theirs in that they keep
with the parent-to-child approach of [6] and propose to fix
the gauge by removing some messages completely from the
belief expression of given regions in order to avoid loops in the
region graph representation. We, instead, propose a larger set
of messages, but with properly reduced degrees of freedom.
While the idea of focusing on matching moments is not new,
and is in the spirit of other message passing approximations,
like the expectation consistent of [21] and even for the direct
and inverse Potts model [22], here we use it as the fundamental
argument to decide which degrees of freedom of messages
can be discarded while still keeping a fully general CVM
approximation.

We will apply the gauge-free approach to the computation
of critical temperatures in the plaquette-CVM approximation
in Ising model in general dimensions, obtaining analytical
expressions that improve over Bethe. The high dimension
expansion of the critical temperature is correct until the third
order term, as is the loop calculus of Ref. [23]. We also test
the procedure in single instance implementation of message
passing in Ising model. The more complicated (and interesting)
disordered models are left for future work.

The paper is organized as follows. Section II introduces
CVM and message passing algorithm in general terms, while
Sec. III explains the maximal messages (MM) and the moment
matching (MM) approaches; finally, in Sec. IV we apply
the MM-MM CVM (or 4M-CVM in short) algorithm to the
calculation of the critical temperature in Ising models of
general dimensions at the plaquette level. For the sake of
readability, we defer to the appendixes the technical proofs.

II. CLUSTER VARIATIONAL METHOD

The kinds of problems we are dealing with are those
statistical mechanics problems that require the computation of
the properties of a large set of binary variables xi ∈ {1, − 1},
whose joint probability distribution

P (x) = 1

Z
exp[−βH(x)] (1)

depends on a Hamiltonian H(x) that can be written as the sum
of local terms

H(x) =
∑

a

Ea(xa),

where every interaction “a” with energy Ea(xa) involves a
small subset of variables xa . This also includes the case
of Bayesian networks, and therefore of many interesting
inference problems.

Computations of the statistical properties of each variable xi

or groups of them face the numerical difficulty of tracing over
an exponential number of configurations when marginalizing
over the remaining variables, and in general approximations
are required. In the case of mean field, Bethe, and region
graph approximations (see [24]), the underlying idea is to
factorize the full probability distribution P (x) into many
smaller distributions containing a nonextensive number of
variables that we will refer to as regions.

The CVM [6,25] starts from a set of maximal regions R0

(basic clusters), where no region is subset of another, and
constructs a hierarchy of regions over which the approximation
is defined. We will require that each degree of freedom xi

and also all interactions Ea(xa) are present in at least one of
these regions. Then, we extend R0 with the closure under the
intersection operation as explained next.

From R0, we define recursively the set of intersections
Rk as

Rk = {r = rk−1 ∩ r ′
k−1|rk−1,r

′
k−1 ∈ Rk−1}.

The whole group of regions is R = R0 ∪ R1 ∪ R2 . . . . Ac-
tually, in the CVM construction, the same regions might
appear more than once, and in different levels of intersections.
Regardless this degeneracy, the relevant set is R, the set of
all regions obtained, without paying attention to when or how
many times they appear in the intersection process. Of utmost
importance for later proofs is that R is a closed set under
intersections and a partially ordered set (poset), in which the
subset relation defines the partial order, and R0 is the set of
maximal regions.

Since the system Hamiltonian is given by sums of local
interactions between subsets of variables, we will consider that
every time that the set of variables xa are part of a given region
xa ⊂ r , then the interaction “a” itself is part of it, allowing us
to define the energy of the region as

Er (xr ) =
∑
a∈r

Ea(xa).

Since all interactions are at least part of one maximal region
r0 ∈ R0, we can write the Hamiltonian of the system as a sum
over regions:

H =
∑
r∈R

crEr (xr ), (2)

where the counting numbers cr guarantee that every interaction
is counted exactly once [6]:

cα = 1 −
∑
r∈Aα

cr . (3)
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FIG. 1. Example of regions surrounding the central spin s1 in the
cube approximation for the 3D square lattice model. Left: the 8 cubic
regions Q1, . . . ,Q8. Center: the 12 faces (plaquettes) P1, . . . ,P12

shared by the maximal cubic regions. Right: the 6 vertices shared by
the plaquettes and the central spin. The cube Q1 is highlighted for
later use.

The set Aα stand for the set of all ancestors of region α, this is
all super-regions of region α:

Aα = {r ∈ R|α ⊂ r}.
Before going further in detail, let us visualize an example

of the regions generated by the CVM construction. Consider a
three-dimensional (3D) spin model, with spins living in the
nodes of a 3D square lattice. In the cubic approximation,
maximal regions are taken as the basic cubic cell of the lattice,
with all its eight degrees of freedom at the cube’s vertex. As
a representative part of the full system, diagrams in Fig. 1
show all the regions containing the central spin s1 (depicted
as the central point in the rightmost diagram). Notice that
the intersections of the cubic regions in the leftmost diagram
produce the square plaquette regions in the center diagram,
with a spin at every angle of the squares. And the intersection
of those plaquettes results in the rod (edges with two spins)
regions in the rightmost diagram, which intersect only in the
central spin.

A. Variational approach and message passing

Next, we reproduce the approach by Zhou et al. [18] on
the derivation of message passing equations, instead of that of
Yedidia [6]. We prefer the former because it is somehow more
direct in the choice of the belief equations, saving the time of
passing through Lagrange multipliers.

It starts by noting that, in accordance with Eq. (2), the exact
partition function of a system can be written as

Z(β) ≡
∑

x

exp[−βH(x)]

=
∑

x

∏
r∈R

{exp[−βEr (xr )]}cr .

A set of nonzero test functions {mz(xz)} can be multiplied
and divided in the right hand side, such that they cancel out. We
will call these test functions messages. Let us define ∂z ⊂ R

the set of regions in which the message mz(xz) appears, and

let Dr be the set of messages entering region r , then

Z(β) =
∑

x

∏
r∈R

{
exp[−βEr (xr )]

∏
z∈Dr

mz(xz)

}cr

will still be the same partition function (independently of the
values of the messages) if

∀ z
∑
r∈∂z

cr = 0. (4)

We can write an approximation to the free energy of the
model in terms of the local beliefs

b(xr ) = 1

zr

exp[−βEr (xr )]
∏
z∈Dr

mz(xz) (5)

with local partition functions

zr =
∑
xr

exp[−βEr (xr )]
∏
z∈Dr

mz(xz).

The free energy of the model F = −kT ln Z(β) can be
rewritten as

F = −kT
∑
r∈R

cr ln zr − kT ln

⎡
⎣∑

x

∏
r∈R

br (xr )cr

⎤
⎦

= FR + �F.

This expression is still exact (independently of the value of the
message functions). We will regard the first term FR[{m}] as a
variational approximate to the real free energy. The rationale
for this goes as follows. It can be shown (and will be) that
the minimization of the first term is equivalent to imposing
local consistency between marginals of the belief functions
(those appearing in the second term). Once the beliefs are
locally consistent, it can be shown that the correct joint
probability distribution of the model P (x) can be written in
a factorized form as

∏
r∈R br (xr )cr as far as the underlaying

graph is a tree, therefore, �F = −KT ln 1 = 0. This proves,
en passant, that the approximation is exact for the case of tree
topologies. A rigorous justification of the approximation is
absent, but in [10] authors relate �F to the sum of correction
contributions in the loop expansion of the free energy. In
the general case, i.e., loopy graphs, working with locally
consistent beliefs that follow from the extremization of the
first term does not guarantee that the factorized measure∏

r∈R br (xr )cr is properly normalized, therefore at the fixed
point �F 	= 0 generally. Nevertheless, in all the situations
where it is meaningful to use message passing algorithms, we
expect the corrections due to loops to be small, and for this
very reason, also �F 
 FR .

As a consequence of the variational treatment, we now need
to solve the set of equations

∂FR[{m}]
∂mz

= 0 ∀ z. (6)

The precise form of the resulting equations, and what exactly
they are enforcing depends on the choice made for the
messages and how they appear in the belief equations. Next,
we explain one possible choice that we retain as the natural
one and we will call maximal message passing.
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III. GAUGE-FREE 4M-CVM: MAXIMAL MESSAGES AND
MOMENT MATCHING

Previously [6,17–20], the set of messages have been defined
using the so-called parent-to-child (P-t-C) approach. This
means that messages mα→γ (xγ ) are indexed by two regions
labels, the father one α and the child one γ . We will say that a
region α is father of γ , if α ⊃ γ and no region in R is a subset
of α and a superset of γ . In P-t-C no messages are considered
from grandparents or higher ancestors.

While this approach is very systematic, it has the problem of
introducing too many degrees of freedom in the test functions.
As already mentioned, this may not have major consequences
(aside from efficiency) in physical observables measured on a
given instance, but introduces a gauge invariance that might
be problematic in the comparison with the typical behavior
of message passing equations in the average case scenario
[8,19]. The reason is that in population dynamics one assumes
messages arriving on a given region from different ancestors
to be mostly uncorrelated: there are situations where this
approximation is physically valid (e.g., when correlations
are not too strong and regions are large enough), however,
the gauge invariance implies messages can freely change
under the gauge transformation and this introduces undesirable
correlations among the messages. For this reason, a scheme
free from the gauge invariance is very welcome.

We propose a top-down approach, that we call maximal
message passing, in which messages to region r flow from all
its ancestors p ⊃ r . We prefer the maximal messages among
other possibilities because they will allow us later to construct
a gauge-free system of message passing equations.

Definition 1. Maximal messages are defined by the set of
message functions used, and by how these functions participate
in each region’s belief, as follows:

(i) Every region r ∈ R receives messages from all its
ancestors p ∈ Ar . Messages are functions of the degrees of
freedom in r: mp→r (xr ).

(ii) Message mp→γ (xγ ) will appear in the region partition
function zr [i.e., Eq. (5)] of region r , iff r ∩ p = γ .

The first point asserts that there are as many message func-
tions as pairs of comparable regions in the CVM construction,
and therefore the messages are labeled by these two regions as
mp→r (xr ) where r ⊂ p. The term maximal messages comes
since there are messages to every region from all its ancestors,
not only the first direct parents as in parent to child. The
second point defines Dr , the set of messages mp→γ (xγ ) that
appear multiplicatively in the belief expression (or the partition
function) of a certain region r , as

Dr = {p,γ ∈ R|p � r,p ∩ r = γ 	= ∅}.
Put together, we have an expression for the beliefs at any region
given by

b(xr ) = 1

zr

e−βEr (xr )
∏

p,γ∈Dr

mp→γ (xγ ). (7)

As a consequence also of the second point in the definition,
any given message mp→r is present in the belief equations of
all regions whose intersection with p is exactly r:

∂mp→r = {r ′ ∈ R|r ′ ∩ p = r}.

FIG. 2. Regions on whose beliefs the message mQ1→s1 (s1) from
the cubic region Q1 to the central spin s1 appear. On the leftmost
diagram, Q1 is still represented to help guiding the eye, but it does
not belong to ∂mQ1→s1 . The cube opposing Q1, the three plaquettes
and the three edges and s1 itself, all intersect with Q1 only at s1, and
therefore are in ∂mQ1→s1 .

In order for this prescription to be valid, we have to show that
it satisfies (4).

To keep with our previous 3D example, let us consider
the case of the message mQ1→s1 (s1), going from the cube Q1

(dark) to the central spin s1, as shown in Fig. 2. Then, the set
of regions ∂mQ1→s1 on whose beliefs the message mQ1→s1 (s1)
appear are those whose intersection with Q1 is exactly s1, as
represented in the diagram (Fig. 2).

A. Properties of maximal messages

Theorem 1. Equation (7) defines a valid GBP approximation
on any set of regions R defined by the cluster variational
method.

This theorem is proved in Appendix A, based on the fact that
the cluster variational method defines a partially ordered set
and some properties relating the ancestors of a region and the
set of equations in which messages to that region participate.

Extremal values of FCVM are obtained by enforcing Eq. (6).
Since all messages appear linearly, differentiating is equivalent
to remove the messages from the equations in which they are
present. In order to obtain a nicer presentation, we can solve
instead

mr0→γ (xγ )
∂FR[{m}]
∂mr0→γ

= 0

which generates the following set of equations:∑
r∈∂mr0→γ

cr

∑
xr\xγ

br (xr ) = 0.

Notice that, as a consequence of Eq. (4), a particular solution
to this equation is found when each belief involved has the
same marginal over the degrees of freedom xγ . Since beliefs
are usually interpreted as approximations of the marginals of
the joint probability distribution (1), we would require them
to be consistent with one another. It is assuring to see that the
consistency indeed is a solution of the extremal equations. In
Appendix B, we prove the following.

Theorem 2. The extremal points of the approximated
variational free energy FR[{m}] are found at consistent beliefs:

∀ r ∈ R ∀ p ∈ Ar br (xr ) =
∑
xp\xr

bp(xp). (8)
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From these equations we can write message passing update
rules in different ways. Unfortunately, maximal message
passing does not solve automatically the gauge invariance in
the messages. Just as in P-t-C case, the introduced messages
do not define the beliefs in a unique way, and many possible
message values may represent the same beliefs. Aside from
its nonoptimality as a representation, and probably derived
efficiency and convergence problems, this invariance might
be problematic for average case predictions, for instance, the
prediction of critical temperatures in disordered systems.

Another relevant property of maximal message passing is
that it is hierarchical.

Theorem 3. Let there be two CVM approximations for a
given model. If one of the approximations is contained in the
other, meaning that all regions in one are present in the other

RCVM1 ⊂ RCVM2 ,

then the beliefs in the smaller approximation (the less precise
one) are obtained from the larger approximation by just setting
to 1 all messages not common to both.

The proof is immediate since the definition of Dr implies
that D1

r ⊂ D2
r .

As a consequence, if one wants to recover the Bethe
approximation from, e.g., the plaquette approximation, we
only need to disregard (setting to 1) the plaquette-to-link
and plaquette-to-spin messages in the belief and message
passing equations. This property is also valid in the case of
gauge-free maximal messages that we explain next. We recall,
however, that two different approximations have different
counting numbers, and therefore the free energy of the smallest
approximation is not obtained by setting to zero the terms of
the larger.

B. Moment matching is gauge free

The general way to create a message passing that is also
gauge free starts from recognizing that the relevant quantities
to match are not necessarily the belief as in Eq. (8) but their
moments. Next, we present the case of Ising variables si =
±1. A more general presentation, regarding for instance Potts
variables as in [22], is left for future work.

Let us go back to the messages. It has been shown in the
context of P-t-C message passing [18,19] that when the region
graph contains loops, i.e., when from a bigger region there are
two paths to get to a smaller region in the region graph, then
the messages are not uniquely determined. In other words,
since marginalization is transitive, forcing bp → br1 → br0

and bp → br2 → br0 is redundant. The marginalization br2 →
br0 , for instance, automatically follows from the first chain of
marginalizations and bp → br2 . In other words, interpreting
the messages as Lagrange multipliers [6], the introduction of
a multiplier to force br2 → br0 is unnecessary, and therefore,
the set of multipliers is not uniquely determined.

A workaround to this problem has been given previously
[17–19] where authors have identified a link between gauge
invariance and loops in the region graph representation. At
the end, it all amounts to discovering which are the redundant
messages, and remove them from the representation, or set
them to an arbitrary value, fixing the gauge [17,18,20]. In
many cases, although the final objective is clear (destroying

the loops), there are many different ways to achieve it, and
each one has selected his own way. Next, we explain how to
construct gauge-free message passing algorithms from scratch,
not by destroying loops, but by restricting degrees of freedom
in the messages. We specify a precise and unique way to do
so.

So far, maximal messages were introduced in full general-
ity. Now, we will reduce their degrees of freedom as long as
they keep ensuring the consistent marginalization of neighbor
regions. Proceeding in this way, we do not affect the overall
minimization of the CVM free energy.

We will now change perspective and interpret messages not
as arbitrary functions enforcing beliefs consistency, but rather
as a set of fields enforcing the agreement between the moments
in the beliefs. For instance a message to a two-spin region can
be rewritten as

mp→1,2(s1,s2) = es1s2Up→1,2+s1up→1+s2up→2 . (9)

The four values of function m(s1,s2) are encoded into the
three parameters U, u1, u2 since messages are insensitive to
any normalization factor, a consequence of property in Eq. (4).
Let us assume that the fields up→1, up→2 fix the correct first
moments between the beliefs at region p and at the two-spin
region (1,2), while U determines the correlation. In such case,
since all parents of region (1,2) are sending messages to it, all
those parents will have a first and second moment on variables
s1 and s2 that are consistent to that of the belief at (1,2) and
therefore are consistent among them. This also means that
given two ancestors of (1,2), let us say g,p ∈ A(1,2) such that
g ∈ Ap, the messages from g to p do not require fields of the
type u1, u2, and U1,2 any longer.

An example is handy. Take for instance the 2D square
lattice, a small fraction of which is represented here

and the square plaquette-CVM approximation. Regions are the
plaquettes, the links, and the spins (variables si = ±1) in the
system. Any single spin receives messages of the form

mr→i = eur→i si

from the four links and the four plaquettes it belongs to. In the
diagram, only the fields coming from one plaquette and two
links are shown:

This ensures that the first moment of the beliefs in the
plaquettes and the links are consistent with the first moment
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of the belief at spin i, 〈si〉 = ∑
si

sibi(si). Therefore, when
plaquettes are sending messages to links (double arrows in
diagram), they no longer need a multiplier (field) up→i , and
the message will only force the correlation

mp→(ij )(si,sj ) = eUp→ij si sj .

In such a way, even though the region graph has loops, the
moments are not fixed redundantly, and the message passing
is gauge free.

In general, a message mp→r (sr ) has 2|r| − 1 degrees of
freedom, where |r| is the number of binary variables (spins)
in region r . There are also 2|r| − 1 non-null subsets of r ,
and therefore the same number of moments to describe a
distribution over |r| variables. The reduction of the degrees
of freedom in the messages follows the following rule:

Definition 2. Moment matching. Message mp→r (sr ) con-
tains a field Uq enforcing the correlation among variables in
q ⊆ r as

mp→r (sr ) = e···+U
p→r
q

∏
i∈q si+···

if and only if r is the smallest region among all those containing
the variables in q.

The smallest region containing q is uniquely determined
in the CVM construction thanks to the following properties:
(i) the partial order defined by inclusion relations and (ii) the
closure of the set of CVM regions under intersections of sets
(the proof is easy and left to the reader).

Extreme values of the approximated free energy FCVM can
now be obtained by differentiating directly with respect to the
fields Uq that define the messages:

∂FCVM[{U}]
∂U

p→γ
q

= 0

which generates the following set of equations:

∑
r∈∂mp→γ

cr

〈∏
i∈q

si

〉
br

= 0

and

〈. . . 〉br
=

∑
sr

. . . br (sr ).

Obviously, a particular solution is found when all distributions
share the same moments over common degrees of freedom
since Eq. (4) holds. In such case, all beliefs are also consistent
with inner regions. It remains to show that this is in fact the
only solution, which is the argument of the following:

Theorem 4. Maximal messages with moment matching
fields ensures the consistency of beliefs.

The previous theorem states that the moment matching
fields are enough to guarantee consistency. The next one
completes our task by stating that indeed we need all of these
fields to do so.

Theorem 5. Maximal messages with moment matching
fields is gauge free.

Both theorems are proved in Appendix C.

IV. PLAQUETTE-CVM FOR ISING 2D

Let us start by a simple case. The Ising ferromagnet, in the
absence of external fields, is defined by the Hamiltonian

H(s) = −J
∑
〈i,j〉

sisj ,

where 〈i,j 〉 defines nearby spins, and is given by the topology
in which the system is embedded, and the degrees of freedom
are si = ±1. The interaction constant J is normally set to
J = 1.

Although the 2D case of this model has been exactly solved
[26], we still can try our approximation on it, before moving
to the unsolved higher dimensions. The first approximation
beyond mean field and Bethe is the one containing all square
plaquettes (the basic cell) as maximal regions. The cluster
variation method then prescribes a free energy in terms of
plaquette, link, and spin regions [19], with counting numbers
cP = 1, cL = −1, ci = 1, respectively.

The gauge-free 4M-CVM is then written in terms of
messages going from plaquettes to the links and spins interior
to it. Beliefs are defined as follows:

bP (sP ) = 1

zP

e−βE4(sP )
∏
L∈P

∏
P ′ ⊃ L

P ′ 	= P

mP ′→L(s,s ′)

×
∏
s∈P

∏
P ′∩P=s

mP ′→s(s)

×
∏

L /∈ P

L ∩ P 	= ∅

mL→s=L∩P (s), (10)

bL(s,s ′) = 1

zL

e−βE2(s,s ′)
∏

P ⊃ L

mP→L(s,s ′)

×
∏
s∈L

∏
P ′ ∩ L = s

mP ′→s(s)

×
∏

L′ 	= L

L′ ∩ L 	= ∅

mL′→s=L′∩L(s), (11)

bs(s) = 1

zs

e−βE1(s)
∏
P⊃s

mP→s(s)
∏
L⊃s

mL→s(s). (12)

Graphically, the beliefs of each region are given by

where double arrows represent messages to links mP→L(s,s ′),
oblique arrows (red in online version) messages from pla-
quettes to spins mP→s(s) and remaining arrows (blue online)
messages from links to spins mL→s(s).

043308-6



GAUGE-FREE CLUSTER VARIATIONAL METHOD BY . . . PHYSICAL REVIEW E 95, 043308 (2017)

A. Message passing

Message passing equations can be obtained in two different
but equivalent ways:

(i) Old way: by imposing the consistency among beliefs,
in this case some of the following:

bL(s1,s2) =
∑
s3,s4

bP (s1,s2,s3,s4),

bs(s1) =
∑

s2,s3,s4

bP (s1,s2,s3,s4),

bs(s1) =
∑
s2

bL(s1,s2).

(ii) New way: by imposing consistency among the mo-
ments of the distributions:∑

s1,s2

s1s2 bL(s1,s2) =
∑

s1,s2,s3,s4

s1s2 bP (s1,s2,s3,s4),

∑
s1

s1 bs(s1) =
∑

s1,s2,s3,s4

s1 bP (s1,s2,s3,s4),

∑
s1

s1 b(s1) =
∑
s2

s1 bL(s1,s2).

Furthermore, as can be easily checked, not all three
equations in the old way are independent: the third equation is
consequence of the first two. This is the very reason why we
reduced the amount of fields. In the new way there are only
three values being fixed, and they are all independent. Both
ways, however, produce the same update equations (message
passing) independently of whether the messages have been
reduced to be gauge fixed or are in full generality.

For instance, forcing any link belief bL(s1,s2) to marginalize
onto one of its spins results in the following equation:∑

s2

eβJs1s2mP1→L(s1,s2)mP2→L(s1,s2)

×mP3→s2 (s2)mP4→s2 (s2)
∏

L′ ⊃ s2
L′ 	= L

mL′→s2 (s2)

∝ mL→s1 (s1)
∏
P⊃L

mP→s1 (s1), (13)

where we put a sign of proportionality ∝ instead of equality
since messages are undefined by a multiplicative constant.
These equations can be derived graphically using the rep-
resentations of the beliefs and messages introduced above.
The rules are quite simple. Interactions are represented by the
rods, degrees of freedom by the circles, and messages by the
arrows. If an interaction or a message appears in both sides of
the equations, it can be canceled out. The degrees of freedom
over which the marginalization is carried appear as full black
circles. For instance, Eq. (13) is represented as in Fig. 3. The
plaquette to link marginalization produces consistency relation
between messages as shown in Fig. 4.

As can be seen, in either case (link to spin and plaquette
to spin) the messages in the right hand side do not appear
isolated. Consistency equations force the product of messages.

FIG. 3. Consistency equation between link beliefs and spin
beliefs. Mathematically, it corresponds to the first two equations in
(15) for d = 2.

We could have used plaquette to spin marginalization as well,
and the situation still would be similar. In such cases, it is left
to the programmer to decide which iterative updating rule she
wishes to implement to solve the consistency equations in a
message passing way. She could, for instance, use the link to
spin equation to update both plaquette to spin messages in a
symmetric way, and then use the plaquette to spin equation to
update the plaquette to link message. Let us emphasize that this
freedom on the implementation of message passing equations
remains even when the gauge is fixed, just as any fixed point
equation can be written in infinite many ways. The gauge fixed
property refers to the unicity of field values at a given fixed
point, not to the strategies to find them.

If messages are considered in full generality, then we have
a redundant description

mP→L(s1,s2) = eUP→Ls1s2+uP→1s1+uP→2s2 ,

mL→1(s1) = euL→1s1 ,

mL→2(s2) = euL→2s2

leading to a gauge invariance transformation involving u

messages [19]. On the contrary, using the gauge-free moment
matching prescription previously defined in Definition 2,
messages are

mP→L(s1,s2) = eUP→Ls1s2 ,

mP→1(s1) = euP→1s1 ,

mL→1(s1) = euL→1s1 .

Details of the update equations and an example on 2D single
instance are given next.

FIG. 4. Consistency equation between plaquette beliefs and link
beliefs. Mathematically, it corresponds to the first two equations in
(15) for d = 2.
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FIG. 5. Estimated intensive thermodynamic quantities for the
Ising 2D model using gauge-free message passing on the plaquette-
CVM approximation. The vertical line marks the plaquette-CVM
approximate critical temperature for this model.

B. 2D single instance implementation

The self-consistent message passing equations can be writ-
ten as uL = ûL(β,J,uL,U,uP ) and U = Û (β,J,uL,U,uP ),
uP = ûP (β,J,uL,U,uP ), where

ûL = 1

2
ln[K(1)/K(−1)] − uPa

− uPb
,

ûP = 1

4
ln

[
K(1,1)K(1, − 1)

K(−1,1)K(−1, − 1)

]
− uL,

Û = 1

4
ln

[
K(1,1)K(−1, − 1)

K(1, − 1)K(−1,1)

]
. (14)

The K(. . .) terms are partial traces over the spins in the
plaquette and link, given by

K(s1) =
∑
s2

e(βJ12+U1+U2)s1s2+(uP1 +uP2 +uL1+uL2+uL3)s2 ,

K(s1,s2) =
∑
s3,s4

exp
[
s2s3(βJ23 + U23) + s1s4(βJ14 + U14)

+ s3s4(βJ34 + U34)

+ (
uP4 + uL1→4 + uL2→4

)
s4

+ (
uP3 + uL1→3 + uL2→3

)
s3
]

in correspondence with the fields in the left hand sides of
Figs. 3 and 4.

The implementation of the message passing is carried by
randomly selecting a plaquette (or link) and updating their
fields as prescribed by Eq. (14). In 2D Ising model we obtain
the expected results (see Fig. 5). Above the approximation crit-
ical temperature (not exact) Tc = 1/βc � 2.43 all fields acting
on single spins are zero uL→i = uP→i = 0, and the system is
in a paramagnetic phase with zero global magnetization. In this
range, the only nonzero field is the correlation field UP→L (a
detailed studied of this phase is in [27]). Below Tc, the system
is in a ferromagnetic phase, with nonzero fields over spins and
local as well as global magnetization.

Next, we show how to generalize this method to compute
the critical temperature of the Ising model in general dimen-
sion, under the plaquette-CVM approximation.

C. Critical temperature for Ising d dimensional

Let us focus on the case of the plaquette-CVM approx-
imation in the general d-dimensional Ising model on the
hypercubic lattice. This case includes the model of the previous
section.

We will show how to obtain analytic expression for
the critical temperature of the ferromagnetic model in this
approximation at all dimensions and, furthermore, we will
show that the asymptotic behavior is correctly until the third
order in 1/d, therefore being equivalent to the loop corrections
of [23].

The plaquette approximation is the one that uses pla-
quettes as the biggest regions. In such case, the counting
numbers of the plaquettes are always cP = 1. Every link
belongs to 2(d − 1) plaquettes and, therefore, its counting
number is cL = 1 − 2(d − 1). Every spin belongs to 2d links
and 2d(d − 1) plaquettes and have counting number cs =
1 − 2d(d − 1) − 2d[1 − 2(d − 1)] = 1 − 2d(2 − d). Beliefs,
therefore, have the following schematic representation, where,
as usual, double arrows are messages from plaquette to link,
oblique arrows from plaquette to spin, and remaining (vertical
and horizontal) arrows are from links to spins.

2(d − 1) − 1

2d − 2 2d(d − 1) − 4d + 5

2(d − 1)
2d − 1

2(d − 1)2 2d(d − 1)

2d

For clarity, only one type of message of each type is
represented in each region together with the number of such
messages that enter in the belief equation of that region.
However, the reader should keep in mind that, for instance,
there are 2d(d − 1) − 4d + 5 plaquette-to-spin fields entering
at very corner of the represented plaquette.

In general, consistency equations for messages keep the
same structure represented graphically in the previous section,
but only the amount of messages entering every region
changes. Exploiting the isotropy of the model, we can look for
fixed points in which all messages are the same. In other words,
we will assume that all link to spin messages are characterized
by a unique field uL, while plaquette to link messages by the
field U and plaquette to spin messages by uP .

Graphically, the updating equations for the messages have
the following representation:

2(d − 1)

2(d − 1)2 2d − 1

12(d − 1)
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2(d − 1) − 1
2d − 2

2(d − 1) − 1

2d(d − 1) − 4d + 5

1
1

2d − 3

Exploiting the symmetry of the problem, we gain some clarity
by showing only the multiplicity of one representative of each
type of field. In the second diagram, fields not having a number
by its side have the same multiplicity that is represented for its
equivalent by a reflection along the horizontal axis.

Let us define

K(s1) =
∑
s2

e{βJ+[2(d−1)U ]}s1s2+[2(d−1)2uP +(2d−1)uL]s2 ,

K(s1,s2) =
∑
s3,s4

exp(s2s3[βJ + (2d − 3)U ]

+ s1s4[βJ + (2d − 3)U ] + s3s4[βJ+(2d − 3)U ]

+{[2d(d − 1) − 4d + 5]uP + (2d − 2)uL}s4

+{[2d(d − 1) − 4d + 5]uP + (2d − 2)uL}s3).

In terms of this, the self-consistent equations can be written as

U = Û (β,J,uL,U,uP )

= 1

4
ln

[
K(1,1)K(−1, − 1)

K(1, − 1)K(−1,1)

]
,

uP = ûP (β,J,uL,U,uP )

= 1

2d − 3

{
1

4
ln

[
K(1,1)K(1, − 1)

K(−1,1)K(−1, − 1)

]
− uL

}
,

uL = ûL(β,J,uL,U,uP )

= 1

2
ln[K(1)/K(−1)] − 2(d − 1)uP . (15)

The solution to this set of equations is to be found numerically
in general. A simpler case is that of the high temperatures,
in which we suppose a paramagnetic phase characterized by
uL = uP = 0 and U 	= 0. In such case, the equation U = Û

becomes the simpler

U = arctanh({tanh[(2d − 3)U + βJ ]}3). (16)

This corresponds to the case treated in [27].
Moreover, the paramagnetic solution is the starting point to

obtain the critical temperature of the system as the instability
of the paramagnetic solution. Taking

K(β) =
(

1 − ∂ûL

∂uL

∂ûL

∂uP

∂ûP

∂uL
1 − ∂ûP

∂uP

)
uL=0,U=Û ,uP =0

a continuous instability appears at the point in which K(β) is
singular and therefore the critical temperature is defined as

detK(βc) = 0.

Note that this is not fully analytical at this point since the
numerical solution of (16) is still needed. However, after

TABLE I. Inverse critical temperatures of the Ising model on a
regular hypercubic lattice in d dimensions. In the second column,
we report the best estimate for the true βc, while the other columns
contain the inverse critical temperatures in three different mean field
approximations: the plaquette CVM discussed in this work, the loop
corrected Bethe of Ref. [23], that can be computed only for d > 2,
and the standard Bethe approximation.

Plaquette Loop corrected
d True βc CVM Bethe Bethe

2 0.440687 (exact) 0.412258 0.346574
3 0.221654(6) [28] 0.216932 0.238520 0.202733
4 0.14966(3) [29] 0.148033 0.151650 0.143841
5 0.11388(3) [30] 0.113362 0.114356 0.111572
6 0.092088 0.092446 0.091161

some transformations we obtain an analytic expression for
the critical temperature at all dimensions d > 2:

βCVM = 1

2
ln

[(
d − 2

d

)d−2(2d − 1

2d − 3

)2d−3
]
.

In the d = 2 case, the solution is also analytical but given by

βCVM(d = 2) = 1

2
ln

(
5 + √

17

4

)
.

This prediction can be compared with known results. In
Table I we show the best estimate of the true βc on a regular
hypercubic lattice with 2 � d � 6, together with the estimate
from plaquette CVM, that from the Bethe approximation,
where βBethe = arctanh[(2d − 1)−1], and the one from Bethe
with loop corrections due to Rizzo and Montanari [23]. In the
latter approximation, the critical temperature can be computed
only if d > 2.

In the large d limit, the plaquette-CVM critical temperature
is correct up to the second order in the 1/d expansion, exactly
as the loop corrected Bethe approximation [23]

1

2dβCVM
=

Bethe︷ ︸︸ ︷
1 − 1

2d
− 1

3d2︸ ︷︷ ︸
Loop corr. Bethe

− 5

12d3
+ · · ·

while the standard Bethe approximation is correct only up to
the O(1/d) term.

We find this result very interesting because it improves
over the Bethe approximation by one order of magnitude in
the 1/d expansion, while still providing a very accurate critical
temperature at d = 2. On the contrary, the loop corrected Bethe
approximation is divergent in d = 2, and this makes the present
4M-CVM much more useful for the study of low dimensional
systems.

V. CONCLUSIONS

We have shown how to create gauge-free message passing
implementations of the cluster variational approximations for
general models of spinlike variables. To do so, we presented
a way of introducing the messages in the CVM that differs
from standard parent-to-child messages in that messages are
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sent to a region from all its ancestors, and not only by its direct
parents. While previous attempts to fix the gauge invariance in
GBP equations [17,18,20] relied on the idea of removing some
selected messages from the equations, our approach increases
the number of such messages, but with a restriction on their
degrees of freedom.

This systematic restriction of message degrees of freedom
automatically produces gauge-free variational approxima-
tions, such that there is a one-to-one correspondence between
free energy minima and the values of the fields that define the
messages. Furthermore, we put emphasis in an interpretation
of the fields involved in the message passing as imposing con-
sistency between moments of the local distributions (beliefs)
rather than the usual interpretation of messages forcing con-
sistent belief marginalization. We called the resulting method
maximal messages with moment matching (4M-CVM).

The approach includes the Bethe approximation as the
starting point, and improves it when larger regions are taken
into consideration. We showed that the method produces
sensible analytical results for the plaquette approximation of
the critical temperature of the Ising ferromagnet in general
dimensions, that correctly accounts for the next leading
order in the high dimensional expansions, just as the more
complicated loop calculus does [23].
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APPENDIX A: MAXIMAL GBP IS ALWAYS VALID

We will prove that independently of the regions chosen
as maximal, the introduction of multiplicative messages from
maximal regions to their children, as explained in the main text,
generates a valid GBP. Valid means that Eq. (4) is satisfied.
First of all, let us prove that (7) satisfies Eq. (4). Without loss
of generality, let us focus on a given region r0 ∈ R and one of
its children regions α ⊂ r0. The message mr0→α(xγ ) appears
in the belief equations of all regions r such that r0 ∩ r = α,
which defines

Br0,α ≡ ∂mr0→α = {r ′ ∈ R|r ′ ∩ r = α}.
An example of Br0,α are the regions (except Q1) appearing in
the diagrams of Fig. 2.

The property we need to prove is [restating Eq. (4)] as
follows:

Proposition 1.

∀r0∈R0 ∀ α ∈ R

α ⊂ r0

∑
r ′∈Br0 ,α

cr ′ = 0. (A1)

This property is similar to the one defining the counting
numbers (3), but not the same. We will show the validity of
(A1) from that of Eq. (3). Let us start by restating Eq. (3) as∑

r∈Ao
α

cr = 1, (A2)

where we have defined Ao
α the extended set of ancestors of any

region α to include α itself:

Ao
α ≡ Aα ∪ {α}.

The set Br0,α ⊂ Ao
α . Furthermore, we can write

Ao
α = Br0,α + B̄o

r0,α
,

where the sets in the right hand side are disjoint, and as follows:
Definition 3. B̄o

r0,α
:

B̄o
r0,α

= {r ∈ R|r ∩ r0 > α}
is the set of all ancestors of α such that their intersection with
r0 is larger than α.

The part B̄o
r0,α

contains the ancestors of α in whose beliefs
the message mr0→α does not appear, and it will never be an
empty set since it includes at least r0 and its ancestry. In Fig. 2,
B̄o

r0,α
is exactly the absent part with respect to Fig. 1, including

also Q1.
From now on we will use relational operators > , < , �,

� freely since the hierarchy established by the inclusion of
sets in the regions defines a partially ordered set. In this sense,
α < β means that α ⊂ β and α 	= β.

Since the sets Br0,α,B̄o
r0,α

are disjoint, the sum (A2) can be
split among them, becoming∑

r∈Br0 ,α

cr +
∑

r∈B̄o
r0 ,α

cr = 1. (A3)

If B̄o
r0,α

= Ao
r0

, then Proposition 1 is proved since the second
sum will equal 1. Otherwise, the validity of the maximal
messages [Eq. (A1)] falls from proving that in the most general
case ∑

r∈B̄o
r0 ,α

cr = 1, (A4)

as we will see through the rest of the appendix.
Let us see some properties of the set B̄o

r0,α
. From now on,

all greek letters α,β,γ . . . refer to regions in B̄o
r0,α

.
Lemma 1. B̄o

r0,α
is a finite partially ordered set.

Proof. Since B̄o
r0,α

⊂ R, it is finite. Furthermore, the set of
all regions R itself is a partially ordered set, defined by the
inclusion relation r1 < r2 ⇐⇒ r1 ⊂ r2 ∧ r1 	= r2. �

From now on we will use the terminology of partially
ordered sets. For instance, we will say that region r2 covers r1

if r2 > r1 and there is no z such that r2 > z > r1.
Lemma 2. B̄o

r0,α
is closed under intersection with r0.

Proof. The set of regions generated by the cluster variational
method is closed under intersections in general. Let γ ∈ B̄o

r0,α
,

then γ > α and γ ∩ r0 = η > α. Then, trivially, η ∩ r0 = η >

α which guarantees that η ∈ B̄o
r0,α

�
Since η < r0, note the following corollaries.
Corollary 1. All βi ∈ B̄o

r0,α
such that βi covers α inside

B̄o
r0,α

, are subsets of r0 (βi < r0).
Corollary 2.

B = {
βi ∈ B̄o

r0,α

∣∣βi covers α in B̄o
r0,α

}
is the set of minimal elements in B̄o

r0,α
.
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Lemma 3. If γ ∈ B̄o
r0,α

then Ao
γ ⊂ B̄o

r0,α
.

Proof.

∀η∈Ao
γ
η ∩ r0 � γ > α ⇒ η ∈ B̄o

r0,α
.

�
As a consequence, the entire B̄o

r0,α
is generated by the

ancestry of members of B, this is as follows:
Lemma 4.

B̄o
r0,α

=
⋃
βi∈B

Ao
βi

.

We have written B̄o
r0,α

in terms of the set of ancestors
of some minimal elements β1,β2 . . . . We emphasize that all
such ancestries share, at least, the common element r0 and its
ancestry. Therefore, they are not disjoint sets.

In order to prove (A4) we start from the fact that

∀β∈R

∑
r∈Ao

β

cr = 1.

Furthermore, every time that the intersection of ancestries is
not empty, which is the case of all minimal elements β1,β2 . . .

since they all share r0, there exists an element in γ ∈ B̄o
r0,α

,
such that Ao

γ = Ao
βi

∩ Ao
βj

. Let us formalize and generalize
this idea.

Let us use the definition of least upper bound φ = lub(γ,η)
as the smallest element in B̄o

r0,α
that is both φ � γ and φ � η.

By minimum we mean that every other z that shares both
properties happens to be z > η. In finite posets, the least upper
bound might not exist, but if it does, it is uniquely defined.

We will show that the intersections of the ancestries of
elements in B̄o

r0,α
can be written themselves as the ancestry of

another element in B̄o
r0,α

.
Lemma 5 (The intersection of ancestries). Let γ1,γ2 ∈ B̄o

r0,α

with a non-null intersection of their ancestors Ao
γ1

∩ Ao
γ2

	= ∅,
then,

∃η = lub(γ1,γ2) ∈ B̄o
r0,α

such that Ao
η = Ao

γ1
∩ Ao

γ2
.

Proof. If the intersection of ancestries is not null, then
it has at least one element, let us say θ . Since γ1,γ2 � θ ,
then all ancestors of θ are also comparable and above γ1 and
γ2. In other words, θ ∈ Ao

γ1
∩ Ao

γ2
⇒ Ao

θ ⊂ Ao
γ1

∩ Ao
γ2

. Let us
suppose that Ao

γ1
∩ Ao

γ2
is the union of more than one ancestries

of many incomparable θi’s. This cannot be the case, since the
intersection of any two θ1 and θ2 produces a lower θ , that
is again in Ao

γ1
∩ Ao

γ2
and whose ancestry includes that of

both θ1 and θ2. Repeating this procedure, we end up with
a unique value η, such that Ao

η = Ao
γ1

∩ Ao
γ2

. The fact that
η = lub(γ1,γ2) is trivial. �

Since the set B̄o
r0,α

is written as the union of ancestries of the
minimal sets β1,β2, . . . (see Lemma 4), then from the previous
lemma and the fact that all ancestries of the minimal elements
share at least r0 and its ancestry, note the following:

Corollary 3. Let 
 be any subset of the indices of the
minimal sets β1,β2, . . . covering α inside B̄o

r0,α
, then

∃r∈B̄o
r0 ,α

⋂
i∈


Ao
βi

= Ao
r .

Now, using the inclusion exclusion principle, we can write∑
r∈B̄o

r0 ,α

cr =
∑
β∈B

∑
γ∈Ao

β

cγ −
∑

β1,β2∈B

∑
γ∈Ao

β1
∩Ao

β2

cγ

+
∑

β1,β2,β3∈B

∑
γ∈Ao

β1
∩Ao

β2
∩Ao

β3

cγ − . . . ,

where every second sumatory is itself of the form∑
r∈Ao

γ

cr = 1

by the previous corollary. So, if the set B̄o
r0,α

is generated by
the ancestries of K minimal elements βi , then

∑
r∈B̄o

r0 ,α

cr =
(

K

1

)
−

(
K

2

)
+

(
K

3

)
− . . . + (−1)K+1

(
K

K

)

= 1 + (1 − 1)K = 1,

which concludes the proof of (A4) and from it that of (A1).�
To help visualize a little bit the rather complicated algebra

of sets, we depict in Fig. 6 the Hasse diagram and the sets B̄o
r0,α

and Br0,α for the cube-CVM approximation for the 3D square
lattice spin model. In particular, the case of the message going
from the cubic region Q1 to the central spin region s1 is shown.

APPENDIX B: MARGINALIZATION OF BELIEFS

Extremization of the variational free energy with respect to
the message functions results in the following equation:∑

r∈∂mr0→γ

cr

∑
xr\xγ

br (xr ) = 0 (B1)

for each message mr0→γ .
In this appendix, we show that the only solution for such

set of equations is beliefs satisfying

∀p∈Ar
br (xr ) =

∑
xp\xr

bp(xp). (B2)

We will prove this in an inductive manner, assuming that
starting from the maximal regions onto a certain level, all
regions marginalize and from this assumption, we will show
that the next level also correctly marginalizes.

Induction: Base case. Let r0 be a region whose ancestry
Ar0 consists only on maximal regions. Then, the intersection
of members of any two members of Ar0 cannot be smaller than
r0 since by definition r ∈ Ar0 ⇒ r0 ⊂ r , but the intersection
cannot be larger than r0 since in such case γ = r1 ∩ r2 > r0

would be an ancestor of r0 that is not a maximal region. So,
any two elements of Ar0 intersect exactly at r0.

Given the definition of the set of regions in whose belief a
given message is present

∂mp→r = {r ′|r ′ ∩ p = r},
the previous result implies that any message mr1→r0 (xr 0) from
a parent r1 of r0 appears in the belief of all the other parents
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Q1 Q2 Q3 Q4Q5 Q6 Q7 Q8

P1 P2 P3 P4 P5P6 P7 P8P9 P10 P11 P12

L1 L2 L3 L4 L5 L6

s1

FIG. 6. Hasse diagram of the regions in the 3D cube approximation, for the 3D Ising model. Variables live in the nodes of a tridimensional
cubic lattice. Maximal regions are the cubes (basic cell), and from them all intersections generate new regions, as prescribed by cluster
variational method (see also Fig. 1). In this representation, all regions containing one central spin s1 are depicted. Central spin s1 = α is
surrounded by eight maximal cubic regions Q1, . . . ,Q8. We represent the partially ordered set defined by the inclusion relations among the
ancestors of s1. Arrows point in the parent-to-child direction. Bottom figures are the eight cubes, next level are all the square plaquettes that
intersect among these cubes, the third layer is made of the six links containing spin s1. We consider Q1 = r0 to be the region sending message
to spin s1. Shapes correspond to the position in the ancestry of s1 with respect to the message mQ1→s1 . All circular regions represent elements
of Br0,α , and therefore their intersection with Q1 is exactly s1 (represented also in Fig. 2, except for Q1). Angular regions are those in B̄o

r0,α (the
absent part of Fig. 2, including Q1).

except r1 itself and including r0. Mathematically,

∀r∈Ar0
∂mr→r0 = {r0} ∪ Ar0 \ {r} = Ao

r0
\ {r}.

Let there be |Ar0 | = K parents to r0. We have K equations of
the type (B1):

∀i∈[1,2,...,K]

∑
r∈Ao

r0
\{ri }

cr

∑
xr\x0

br (xr ) = 0.

Except for cr0 = 1 − K , all other counting numbers are cr = 1.
Furthermore, we can add the missing summand in each case,
to obtain, for each i ∈ [1,2, . . . ,K],

(1 − K)b0(x0) +
∑
r∈Ar0

∑
xr\x0

br (xr ) =
∑
xi\x0

bri
(xi).

Now, the left hand side is independent of i, and therefore all
right hand sides have to be equal for every i. This proves that
the parents are consistent among each other on their belief at
region r0. To show that they agree with b0(x0), we now use the
fact that they agree to write

(1 − K)b0(x0) + K
∑

xri
\x0

bri
(xi) =

∑
xi\x0

bri
(xi),

which concludes the induction base case with

∀i∈[1,...,K] b0(x0) =
∑
xi\x0

bri
(xi)

as desired.
Induction: Inductive step. Focus on a given region r0, and

consider its ancestry Ar0 . In a partial order, the ancestry of a
given element is always generated by the union of ancestries
of all elements covering it (see the previous appendix for
the definition of the cover). Let there be K such elements
ri covering r0, then

Ar0 =
⋃

1�i�K

Ao
ri
.

The induction step assumes that all ancestors p ∈ Ari
of ri are

consistent with ri , in the sense of (B2), and will then prove that
ri has also to be consistent with r0. Since consistency between
any p ∈ Ari

and ri and between ri and r0 is given, transitivity
implies consistency between p and r0, and generalizing, with
all the ancestry Ar0 of r0, concluding the induction step.

The tricky part is to show that consistency of the cover
elements ri with their ancestry Ari

implies consistency of ri

with r0. In order to do so, let us start by the following:
Lemma 6 (Intersection of ancestries). If the set

{r1, . . . ,rK} covers the element r0, then for any two
distinct k1 and k2 in [1, . . . ,K], if there exists p ∈ Ark1

such
that γ = p ∩ rk2 > r0, then γ = rk2 .

In other words, any element p ∈ Ar0 such that the intersec-
tion p ∩ ri with one of the covers ri is larger than r0 is itself
an ancestor of that cover p ∈ Ao

ri
.

Proof. It is enough to note that γ = p ∩ rk2 > r0 is
necessarily bounded r0 < γ � rk2 , but since rk2 is a cover of
r0, no such intermediate element can exist, and therefore the
only accepted situation is γ = rk2 . But, this also implies that
rk2 = p ∩ rk2 which means that p is ancestor of k2. �

Corollary 4. The set ∂mri→r0 = {p ∈ Ao
r0
|p ∩ ri = r0} is

given by

∂mri→r0 = Ao
r0

\ Ao
ri
.

Graphically this means that the only possible situation for
the sets ∂mri→r0 is the one in the left panel of Fig. 7 and the
situation in the right is forbidden.

Now, for every cover region ri,i ∈ [1, . . . ,K] we will have
an Eq. (B1), that using the previous corollary can be written
as ∑

r∈Ao
r0

cr

∑
xr\x0

br (xr ) =
∑
r∈Ao

ri

cr

∑
xr\x0

br (xr ). (B3)

Now, it is quite similar to the base case of the induction. The
left hand side does not depend on i ∈ [1, . . . ,K], while the
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FIG. 7. Allowed (left) and not allowed (right) situations for the
relation of ∂mri→r0 with respect to the full ancestry of region r0 (see
Corollary 4). The message mri→r0 appears in the belief equations of
all the ancestors of region r0 (light gray area), and r0 itself, except for
those who are ancestors of ri (dark gray area).

right hand side does. Therefore, any two i1,i2 ∈ [1, . . . ,K]
will be consistent:∑

r∈Ao
ri1

cr

∑
xr\x0

br (xr ) =
∑

r∈Ao
ri2

cr

∑
xr\x0

br (xr ).

Furthermore, using that cri
= 1 − ∑

r∈Ari
cr and the consis-

tency of ri with its ancestry, the previous equality can be
transformed in∑

xri1
\x0

bri1

(
xri1

) =
∑

xri2
\x0

bri2

(
xri2

)
.

Proceeding in a similar fashion as done in the base case for the
induction, we can use the consistency between all different ri

back in Eq. (B3) to show that they also have to agree with r0:

br0

(
xr0

) =
∑

xri
\x0

bri
(xri

),

concluding the inductive step. �

APPENDIX C: MOMENT MATCHING FIELDS ARE
GAUGE FREE

Let us prove Theorems 4 and 5. They both say that using
maximal messages with moment matching fields guarantees
the consistency of beliefs, and is gauge free. We have already
shown in the previous Appendix A that extremization of the
CVM free energy with respect to message functions ensures
consistency of the beliefs. However, when using moment
matching fields, we reduce the degrees of freedom of the
message functions, and therefore it is not clear that consistency
still holds.

The reduction on the active fields was done seeking a
gauge-free parametrization of the variational free energy.
So, we would also like to prove that the solution to the
extremization problem gives a unique solution to the fields
defining the messages. In other words, when doing moment
matching, we have removed all fields except those necessary
to guarantee the consistency between the beliefs.

The proof of the consistency of the beliefs (Theorem 4) will
be carried in the following way:

(1) Show that extremization with respect to moment
matching fields on a set of variables

∏
i∈q si ensure consistency

of the corresponding moments 〈∏i∈q si〉 among those beliefs
containing that group of variables.

FIG. 8. Moment matching Definition 2. Right: all the ancestry of
r0 sends messages to this region. Left: if a particular type of field,
let us say Uri→r0

q , is present in the message of one the covers ri of
r0, then that field is present in all the messages from the ancestry of
ri , marked in gray in the figure, and is not present in the rest of the
messages coming from other ancestors. This can be rationalized as if
the region ri and its ancestors are using a set of Lagrange multipliers
Up→r0

q to coordinate their correlation among the variables q.

(2) Show that all moments are fixed by some field.
(3) Conclude by saying that if all moments are equal,

distributions have to be consistent.
The proof of the gauge-free character (Theorem 5) will

be carried out simply by showing that, after removing of
the undesired fields, there are as many variables (fields) as
equations to be solved.

1. Moment consistency (Theorem 4)

The prescription given by the moment matching Definition
2 says that message mp→r (sr ) counts with a field Uq forcing
the correlation among variables in q ⊆ r as

mp→r (sr ) = e···+U
p→r
q

∏
i∈q si+···

if and only if r is the smallest region containing the subset q.
Therefore, for any given set q = {sq1 , . . . ,sqk

} there is a single
region r0 such that the fields U

p→r0
q appear in the message

from its ancestors p ∈ Ar0 . The situation is depicted in Fig. 8.
When extremizing with respect to the fields U that

parametrize the messages, we get equations similar to (B1),
but instead of the belief functions, we get the moments
corresponding to the field

∀p∈Ao
r0

∑
r∈∂U

p→r
q

cr ξq,r = 0

with ξq,r =
〈∏

i∈q

xi

〉
br

(C1)

and the expected value is taken with respect of the belief br (xr )
(local distribution) at region r and ∂U

p→r
q = ∂mp→r is the set

of regions in whose beliefs the message mp→r participates
and, therefore, so does U

p→r
q .

We will have as many equations (C1) as ancestors r0 have
K = |Ar0 |, corresponding to derivation with respect to each
field (each arrow in Fig. 8). We will further assume that
no counting number is zero, and therefore the set of linear
equations (C1) relates all moments ξq,r which are K + 1,
including the one obtained at r0 itself.
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Since we have proved in Appendix A that∑
r∈∂U

p→r
q

cr = 0, (C2)

a particular solution of the system of equations will always be

∀r∈Ar0
ξq,r = ξq,r0 ,

which is part of what we are trying to prove. We can also write
Eq. (C1) as

∀p∈Ar0

∑
r∈∂U

p→r
q \r0

cr ξq,r = −cr0ξq,r0 ,

where the right hand side is the same irrespective of who is
p. Considering only the correlations involved in the left hand
side, this system of equations will have only one solution (at
fixed ξq,r0 ) if the matrix GK×K made of elements

gr,p =
{
cr if r ∈ ∂U

p→r0
q ,

0 otherwise

has nonzero determinant.
In order not to make the paper far too long, we ask the reader

to prove in each cluster variational method implemented that
the set of regions used fulfill this property. Yet, we warn that
this property will not be fulfilled any time that some of the
following conditions are present:

(i) There are zero counting numbers since a column of the
matrix will be full of zeros.

(ii) A given message does not appear in any belief equation
since a row will be full of zeros.

(iii) Two or more rows of the matrix are equal, causing a
zero determinant.

Without a proof (that seems rather complicated to us),
we give the hint that these seem to be the only situations
possible, after many random playing with arbitrary cluster
approximations. It is not obvious why two or more lines could
not be linearly combined into another line, to cause a zero
determinant, but some properties of the counting numbers
seem to forbid this.

So, we have that under the condition of nonsingular matrix
GK×K the set of equations involving the correlation of a given

set of spins q force all such correlations to be equal. Now,
since every set of spins contained in two or more regions is
contained in their intersection (which also has to be a region by
CVM prescription), then all two regions agree on the moments
of every common subset of variables.

We finish the proof by noting that if all regions agree on
all correlations of the intersecting variables, they have to be
consistent in the sense that the marginal probabilities over
these variables should agree.

2. Gauge free (Theorem 5)

We note from the previous proof that we have K fields
U

p→r0
q if there are K ancestors of region r0. Since the

consistency of the corresponding correlations ξq,p is fixed
by K equations, we have as many parameters as equations
to be satisfied. Furthermore, the consistency among the local
distributions br (xr ) that contain a given set of variables q

can not be forced with less than K equalities since equalities
are transitive and, therefore, all we need is to connect the
set of K + 1 regions containing q in a graph with minimal
number of edges (each edge meaning an equality) among
moments. Among K + 1 nodes, the single component graph
with minimal edges is the tree, which happens to have K edges.
So, as we said, the K fields U

p→r0
q are exactly the minimum

required amount to enforce all local distributions to agree on
the respective moment ξq,p.

This was not the case in parent-to-child CVM, for instance,
as seen in [19], where the consistency of a single spin
magnetization that belonged to four links and four plaquettes
in the square plaquette Ising model, appear after the derivation
with respect to 12 parameters (field) instead of 8. Therefore,
there are 12 equations (and 12 parameters) to assign the
equality among 8 local distributions, forcing 4 of the equations
(and parameters) to be redundant.

So, in this appendix we have proved that maximal messages
and moment matching fields generate a set of equations with
the following properties:

(1) Every correlation among a set of variables that belongs
to two or more regions is present in some equation.

(2) There are as many free parameters as relations required
to guarantee consistency.

(3) Consistent correlations are one solution of the system.
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