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Description of order-disorder transitions based on the phase-field-crystal model
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Order-disorder transition is an attractive topic in the research field of phase transformation. However, how to
describe order-disorder transitions on atomic length scales and diffusional time scales is still challenging. Inspired
from high-resolution transmission electron microscopy, we proposed an approach to describe ordered structures
by introducing an order parameter into the original phase-field-crystal model to reflect the atomic potential
distribution. This new order parameter contains information about kinds of atoms, showing that different kinds
of sublattices in ordered structures can be distinguished by the amplitude of the order parameter. Two case
studies, growth of ordered precipitations and evolution of antiphase domains, are also presented to demonstrate
the capabilities of this approach.
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I. INTRODUCTION

Ordered structures, crystalline solids with regular periodic
lattices, widely exist in microstructures of materials, for
example, L12 phase in the nickel-based superalloys and B2
phase in the Cu-Zn alloys [1]. These alloys are in a disordered
state at high temperatures but form ordered superlattices at low
temperatures. Order-disorder transitions are always an attrac-
tive topic in the research field of phase transformation. Plenty
of research has focused on the kinetics of ordering processes
[2,3], strengthening mechanisms, deformation behaviors of
ordered phases [4,5], etc.

In past decades, many theoretical models have been
proposed to describe order-disorder phase transitions, such
as the Bragg-Williams-Gorsky approximation [6,7], and the
cluster variation method [8]. However, these phenomenologi-
cal theories of ordering take into account only interactions of
the nearest- and/or the next-nearest-neighbor atoms rather than
long-range interactions which is essential in order-disorder
transitions. On the other hand, order-disorder phase transitions
involve structure changes that couple atomic-scale knowledge
of structures with chemical composition diffusional processes,
which makes it very difficult to describe phase transformations
by these phenomenological theoretical models [9].

With the development of computational materials science,
many computer simulation methods are also employed to deal
with order-disorder phase transitions, such as the continuum
phase-field model [10,11] and the molecular-dynamics method
[8]. However, although phase-field studies can formulate the
free-energy function of ordered structures, this method washed
out most of the relevant atomic-scale physics [10,11]. So the
phase-field model cannot deal with the kinetics of ordering
processes on atomic scales, as well as strengthening mecha-
nisms and deformation behaviors of ordered phases. As to the
molecular-dynamics simulation, because of the very limited
time step, presently it is impossible to simulate order-disorder
phase transitions which occur on diffusional time scales.
Therefore, there still remain some difficulties in describing
order-disorder phase transitions on atomic length scales and
diffusional time scales by using the existing simulation tools.

*Corresponding author: jchwang@nwpu.edu.cn

The phase-field-crystal (PFC) methodology, a variant of
classical density functional theories, has recently emerged as
an efficient and mathematically accessible option in the study
of phase transitions on atomic length scales and diffusional
time scales, incorporating with thermodynamics of phase
transformation and most salient solid-state properties [12–19].
The PFC models have been applied to simulate complex
structural transformations in binary and multicomponent
alloys [14,20–22]. However, to date, the PFC models are
not suitable for describing order-disorder transitions. For the
original PFC model [13,23], it uses a single atom density
field to describe arrangements of different atoms, which
makes it incapable of distinguishing different kinds of atoms.
The PFC model of vacancy for binary alloys [16,24–26],
using two atom density fields to describe atom arrangements,
can deal with arrangements of different kinds of atoms and
ordered structures; however, this model only takes into account
interactions of the nearest-neighbor atoms instead of the
long-range interactions. Most recently, Alster and Elder [27]
proposed a phase-field-crystal model for ordered phases by
adding a periodic concentration field to the original binary PFC
model. The work describes order-disorder transformations by
adding the long-range information of ordered structures into
the original order parameter in the PFC model. Besides, there is
always another approach to describe the order-disorder system
in the PFC model as we proposed in this work.

From the aspect of experiments, people can use high-
resolution transmission electron microscopy (HRTEM) to
determine whether a structure is ordered or not [28–31]. In
HRTEM, different atomic potentials for different kinds of
atoms result in different electron diffraction patterns and thus
different intensities in HRTEM images [32]. So in practice,
image intensities and diffraction patterns are used to distin-
guish ordered and disordered structures. A disordered phase
has a random arrangement of atoms, so its diffraction pattern
can only reflect the basis crystal lattice, resulting in a uniform
HRTEM image intensity for different atoms. For an ordered
structure, however, it has a periodic arrangement of atoms, so
its diffraction pattern can show superlattice structures due to
the difference in image intensity for different kinds of atoms.

In this work, inspired from HRTEM and taking the long-
range interaction into account, we developed an approach to
describe order-disorder phase transitions based on the PFC
model. Through using an order parameter to reflect the atomic
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potential distribution, different kinds of sublattices in ordered
structures can be distinguished by the amplitude of the order
parameter. Two case studies, growth of ordered precipitations
and evolution of antiphase domains, are also conducted to
demonstrate the capabilities of this approach.

II. THE PFC MODEL FOR ORDER-DISORDER SYSTEM

A. The original PFC model

The free-energy functional for the PFC model can be
obtained from the classical density functional theory. In the
classical density functional theory, the free energy of a binary
system can be written as

�F

kBT
= �Fid

kBT
+ �Fex

kBT
, (1)

where �Fid is an ideal energy responsible for driving the
density to a uniform field, �Fex is an excess free-energy
density which drives the density field to form periodic
structures, kB is the Boltzmann constant, and T stands for
temperature. �Fid is the sum of the ideal free energy of
individual fields ρA and ρB :

�Fid

kBT
= ρAln

ρA

ρ0
A

− δρA + ρB ln
ρB

ρ0
B

− δρB. (2)

Here ρA and ρB are the individual local atomic density fields
of components A and B, respectively. The total atomic density
is defined as ρ = ρA + ρB and the sum of the two reference

densities of the system is defined as ρ0 = ρ0
A + ρ0

B , where
ρ0

A and ρ0
B are two independent reference states of A and B,

respectively. We also defined a solute concentration as c =
ρB/(ρA + ρB) and a reference composition as c0 = ρ0

B/(ρ0
A +

ρ0
B). The total mass density ρ can be further simplified as

a dimensionless density field n = ρ/ρ0 − 1. Then the ideal
free-energy density of Eq. (2) can be recast as

�Fid

kBT ρ0
= (n + 1)ln(n + 1) − n + (n + 1)

×
[
c ln

c

c0
+ (1 − c)ln

1 − c

1 − c0

]
. (3)

The excess free-energy density �Fex can be expanded by
using a two-point correlation function to describe A-A, B-B,
and A-B interactions,

�Fex =
∑

i=A,B; j=A,B

�Fij = −1

2

∑
i=A,B; j=A,B

δρi(r)

×
∫

dr ′Cij

2 (|r − r ′|)δρi(r
′), (4)

where C
ij

2 describes the correlation of components i and j .
As discussed in the work by Greenwood et al. [23], the solute
concentration c is a variable which has a much larger length
scale compared with the periodicity of density field n. So we
can make an approximation of c(r ′) = c(r). Then Eq. (1) can
be rewritten as

�F [n(�r)]

kT ρ0
=

∫
dr

n(�r)2

2
−λ

n(�r)3

6
+ χ

n(�r)4

12
+ (n + 1)ω

{
c ln

c

c0
+ (1−c)ln

1−c

1−c0

}

−1

2
n

[∫
dr ′Cn

eff(|r−r ′|)n′ +
∫

dr ′Cc
eff(|r−r ′|)c′

]
− 1

2
(c−c0)

[∫
dr ′Cc0n

eff (|r−r ′|)n′ +
∫

dr ′Cc0c
eff (|r−r ′|)c′

]
. (5)

Here, λ and χ are coefficients to fit the ideal energy to a
polynomial expansion. The correlation functions in �Fex are
modulated by the composition as

Cn
eff = c2CBB

2 + (1 − c)2CAA
2 + c(1 − c)

(
CBA

2 + CAB
2

)
,

Cc
eff = c

(
CBB

2 − CBA
2

) − (1 − c)
(
CAA

2 − CAB
2

)
,

C
c0n
eff = c

(
CBB

2 − CAB
2

) − (1 − c)
(
CAA

2 − CBA
2

)
,

C
c0c
eff = CBB

2 + CAA
2 − (

CBA
2 + CAB

2

)
. (6)

From the derivation of the binary PFC model, we find that,
the order parameter n only can reflect the sum of occupation
probability but without any information of atomic kinds;
meanwhile, the concentration field c, as a long-range variable,
does not contain information about the arrangement of atoms,
either. So the original PFC model cannot describe ordered
structures directly. To describe the order-disorder system, the
kinds of atoms must be taken into account.

B. The order parameter reflecting atomic potentials

On the one hand, the light spots in HRTEM images
can be used to determine atomic positions and fundamental

lattices. On the other hand, the image intensities in HRTEM
images can be used to distinguish ordered and disordered
structures because the image intensities are different between
superlattices of ordered structures but uniform for disordered
structures. These characteristics of HRTEM images inspire us
that we can add a new order parameter into the PFC model
to describe ordered structures, using the peak of the order
parameter to reflect the fundamental lattice and the different
peak heights to describe different superlattices. From the
principle of HRTEM, we know that HRTEM images result
from the atomic potential distributions [32]. This inspires
us that atomic potential distribution is an applicable order
parameter to describe the order-disorder system. The atomic
potential distribution contains the information of the funda-
mental lattice and the difference between the superlattices as
well as HRTEM images. So here we introduced a new order
parameter η into the PFC model to reflect the atomic potential
distribution.

For the basis properties of crystal, there is an intrinsic
relationship between the atomic potential distribution and
atomic density, η = G(n), where G is a function related to
kinds of atoms. Here, we do not aim to find out such a kernel
G from first principles, but rather apply the simplest possible
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form of η phenomenologically from the actual physical system.
Ordered structures are periodic systems with two kinds of
periodic lattices: one for the fundamental lattice (bcc, fcc, hcp,
etc.) and the other for the regular arrangements of atoms. The
atomic potential distribution η of ordered structures contains
the information of regular arrangements of atoms, which is the
principle for HRTEM to discern the ordered structure. So η

of ordered structures can reflect the regular arrangements of
atoms. For disordered structures, we treat disordered structures
as a homogeneous state as the original PFC model did. This
means that the atomic potential distribution η of disordered
structures only contains the period for the fundamental lattice.
So η includes the periods of the fundamental lattice in
both ordered and disordered structures and the informa-
tion about the regular arrangements of atoms in ordered
structures. Thus η can be used to describe order-disorder
systems.

In the following, taking an AB ordered alloy with a two-
dimensional (2D) square lattice as examples, in which the
structure can be divided into two sublattices α and β, as shown
in Fig. 1(a), we show how the form of η is constructed. In such
a bipartite framework, all A atoms reside on α sites, while all
B atoms reside on β sites in the ordered ground state. The total
η of the ordered structure can be written as

η(r) = G[n(r)] = GA[nA(r)] + GB[nB(r)], (7)

where n(r) = nA(r) + nB(r). nA = (ρA − ρ0
A)/ρ0 and nB =

(ρB − ρ0
B)/ρ0 are the densities of the A and B atoms,

respectively, and

G =
{
GA if atom = A

GB if atom = B
(GA �= GB).

For a regular arrangement, nA and nB have the same form
but a half cycle of phase shift between them in the 2D square
lattice, as shown in Fig. 1(b). Values of η on α sites and
on β sites are different due to the difference between GA

and GB . The difference of η values on different sublattices
is periodic, which reflects the regular arrangements of atoms.
Therefore, the ordered structure can be described and different
sublattices can be distinguished through the difference of η in
an ordered structure. As for a disordered structure, A and B

atoms randomly reside on the lattices, which means that all
lattice sites are randomly occupied by A or B atoms. So, in
this case, η only contain the period for the fundamental lattice
as shown in Fig. 1(c).

C. The free-energy functional

To construct the free-energy functional F (η) of the system,
in this work, we use the simplified free-energy functional
derived by Greenwood et al. [23]:

�F [η(�r)]

kT ρ0
=

∫ {
η(�r)2

2
− λ

η(�r)3

6
+ χ

η(�r)4

12
+ (η + 1)�Fmix

− 1

2
η

∫
dr ′Cn

eff(|r − r ′|)η′ + ς

2
| �∇c|2

}
dr, (8)

�Fmix = ω

{
c ln

(
c

c0

)
+ (1 − c)ln

(
1 − c

1 − c0

)}
, (9)

FIG. 1. (a) The ordered ground state of an AB alloy on a square
lattice, where blue and red circles represent the two kinds of atoms.
Density fields nA(r), nB (r), n(r) and the atomic potential distribution
fields η(r) in an ordered structure (b) and a disordered structure(c).

where �Fmix stands for the free energy of mixing. The
coefficient ω is introduced to fit the entropic energy of mixing
from the reference composition c0, while the parameter ς is a
coefficient that sets the energy of compositional interfaces.
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Before introducing the correlation function Cn
eff(|r − r ′|),

first we will show how η behaves in the order-disorder
transition. The function form of η can be written in terms
of the reciprocal lattice vector mode,

η =
∑

j

Aje
i
−→
kj ·−→r +

∑
m

Bmei
−→
km·−→r + c.c., (10)

where c.c. is the complex conjugate,
−→
kj and

−→
km are the

fundamental reciprocal lattice vectors of the basis crystal and
of the superlattice, respectively, and Aj and Bm represent the
amplitudes of a given reciprocal lattice vector mode. In three
dimensions,

−→
kj and

−→
km can be written as

−→
k = n1

−→
q1 + n2

−→
q2 +

n3
−→
q3 , where (−→q1 , −→

q2 , −→
q3 ) are the principle reciprocal lattice

vectors and n1, n2, n3 are integers. For example, for a B2
ordered structure, the integers for the fundamental reciprocal
lattice vector

−→
kj are (1,1,0), and that for the ordered vector−→

km is (1,1,1). (In this study, we only considered the most
dominant peak.) However, for a disordered bcc structure, it
only contains the fundamental reciprocal lattice vector

−→
kj .

That is to say, Bm = 0 in disordered structures. During the
precipitation of the ordered structure, Bm changes from zero to
nonzero.

As discussed above, the difference in the amplitude of
η between ordered and disordered structures is caused by
the two-particle direct correlation function Cn

eff(|r − r ′|).
Therefore, considering the difference of η between ordered
and disordered structures, we introduced a correlation function
as

Cn
eff(|r − r ′|) = Xbasis(c)Cbasis

2 + Xorder(c)Corder
2 , (11)

where Cbasis
2 is the correlation function representing the

contribution of the fundamental lattice to the excess free
energy, and Corder

2 is the contribution of the ordered part.

Cbasis
2 acts on the fundamental lattice

∑
j Aje

i
−→
kj ·−→r part and

Corder
2 works on the part of

∑
m Bmei

−→
km·−→r . Because the ordered

structure only exists when the concentration is close to corder

(the equilibrium concentration of ordered phase), a range
limitation of Corder

2 should be added into Eq. (11) as Xorder(c).
Here, we introduce the interpolation function Xorder(c) =
ξe−(c−corder)2/β , where ξ and β are the height and width of the
interpolation function, respectively. The interpolation function
Xbasis(c) is introduced to describe the free-energy change of
the fundamental lattice due to the change of concentration.
In this study, Xbasis(c) = 1 − 0.3c2 + 0.2c3 is introduced to
construct an isomorphous phase diagram.

In this model, we set Cbasis
2 and Corder

2 in the Fourier space
by a Gaussian peak [14],

Ĉ2(k)i = e−σ 2/δe−[(k−ki )2/2α2
i ]. (12)

Equation (12) contains two exponential terms. The first
exponential term includes the effect of temperature where σ

plays the role of an effective temperature, and δ controls the
difference of different reciprocal lattice vectors. The second
exponential term sets the peak position of the reciprocal lattice
vector ki , which is corresponding to the reciprocal lattice
vector in Eq. (10). σ works as a temperature parameter via
the modulation of the peak height of Ĉ2(k)i . As σ changes,

the stable structure changes. Variation of the Gaussian peak
width α can change the properties of interfaces, defects, and
strain [14,33]. The effect of α on the interface properties will
be discussed in Sec. III.

FIG. 2. (a) Direct pair correlation function for the order square
phase with different temperature parameters σ when c = corder = 0.5,
where the first peak in the direct pair correlation shows the long-
periodic arrangement and the latter two peaks show the basis crystal
structure. (b) A comparison of η between the ordered and disordered
structures. When σ = 0.7, the stable structure is the disordered phase,
while the ordered structure is stable for the other two cases. (c) and
(d) show the spots of η in Fourier space for the ordered and disordered
structures, respectively. The spots of η in (d) show the fundamental
lattices [(1,0) and (1,1)], while those in (c) show a superlattice [( 1

2 , 1
2 )].
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FIG. 3. Calculated phase diagram showing the coexistence be-
tween the ordered and disordered structures.

D. Dynamics equations

Because nA and nB are conservative during phase trans-
formation, η, the sum of GA(nA) and GB(nB), also should
obey a conservative dynamics equation. The dynamics of order
parameter field η and concentration field c obey the usual
dissipative dynamics:

∂η(�r)

∂t
= Mη∇2 δ�F

δη(�r)
, (13)

∂c(�r)

∂t
= Mc∇2 δ�F

δc(�r)
, (14)

where Mη and Mc are kinetic mobilities of the order parameter
η and the concentration field c, respectively.

E. Feasibility in order-disorder systems

In previous sections, we have discussed the free-energy
functional, correlation functions, and dynamics equations.
In this section, we will show the feasibility of our ap-
proach in order-disorder systems by the examples in 2D
and 3D.

For a square lattice in 2D, it contains the fundamental
reciprocal lattice vectors (1,0) and (0,1) and the superlat-
tice reciprocal lattice vector ( 1

2 , 1
2 ) corresponding to k1, k2,

and korder, respectively. In the present study, k1 = 2π/asq,
k2 = 2π

√
2/asq, and korder = √

2π/asq, where asq = 1 (lattice
constant of the fundamental lattice). To let the disordered state
be stable at high temperatures but form ordered superlattices
at low temperatures, we set δ1 = 8, δ2 = 4

√
2, and δorder = 4.

Figure 2(a) shows the direct pair correlation function for a
square ordered AB alloy in 2D at c = corder = 0.5 when σ = 0,
0.1, and 0.2. As shown in Fig. 2(a), there are three peaks of
the direct pair correlation: the first peak, which has the lowest
frequency, works on the superlattice reciprocal lattice vector
( 1

2 , 1
2 ) and the latter two peaks work on the fundamental lattice

vectors (1,0) and (0,1), respectively. In 2D, η in Eq. (10) can
be rewritten as

η = η10 + η11 + η 1
2

1
2
, (15)

where η10 = A10[cos(k0y) + cos(k0x)], η11 = A11 cos(k0x)
cos(k0y), and η 1

2
1
2

= A 1
2

1
2

cos(k0x/2) cos(k0y/2). As the tem-

perature parameter σ increases, the peak height of Ĉ2(k)
decreases and the ordered structure becomes stable. Then
the amplitude difference of the two sublattices appears, as
shown in Fig. 2(b). Figures 2(c) and 2(d) show the fast
Fourier transform (FFT) images of the ordered and disordered
structure, respectively. The spots in the FFT image of Fig. 2(d)
show the fundamental lattices [(1,0) and (1,1)], while those of
Fig. 2(c) show a superlattice ( 1

2 , 1
2 ).

With the parameters mentioned above and through
Eqs. (13)–(15), the phase diagram can be constructed from
the free-energy curves for each bulk phase, as shown in Fig. 3.
At high temperatures, liquid phase is the stable phase. As σ

decreases, the disordered phase separates out from the liquid.
With the further decrease of temperature, the order-disorder
transition occurs.

Similarly, the peak locations of the correlation functions
for ordered structures in 3D also can be obtained by the
diffraction theory: a reciprocal lattice has families of peaks
derived from the interplanar spacings [14]. Table I shows the
peak locations of the correlation functions [Eqs. (11) and (12)]
in reciprocal space for several simple ordered structures: B2
and L12. Again, in 3D, Eq. (10) can be rewritten as

η = η111 + η200 + η100 + η110, (16)

where η111 = A111
∑

h,k,l=±1 cos[k0(hx + ky + lz)],
η100 = A100[cos(k0x) + cos(k0y) + cos(k0z)], η110 = A110

[cos(k0x) cos(k0y) + cos(k0y) cos(k0z) + cos(k0x) cos(k0z)],
and η200 = A200[cos(2k0x) + cos(2k0y) + cos(2k0z)]. With
Eq. (16) and the peak locations of correlation functions
listed in Table I, ordered structures in 3D can be described.
Figure 4 shows the simulated results of the η field for the
ordered structures of B2 and L12. The different colors of
atoms in Fig. 4 reflect the different values of the η field. The
B2 structure can be seen as two overlapping simple cubic
lattices. All A atoms are on the simple cubic lattice α and
all B atoms are on the simple cubic lattice β. As shown in
Fig. 4(a), on the slice of (110) face for B2, there are two
corresponding rectangles for the two simple cubic lattices,

TABLE I. Lattice vectors and peaks locations of correlation functions in reciprocal space for ordered structures of B2 and L12.

Fundamental lattice Superlattice

Order structures Crystal structures Index k Index korder corder

B2 BCC (1,1,0) 2
√

2π/a (1,1,1) 2
√

3π/a 0.5
L12 FCC (1,1,1) 2

√
3π/a (1,0,0) 2π/a 0.25

(2,0,0) 4π/a
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FIG. 4. Simulated results of the η field for the ordered structures
listed in Table I. (a) The slice of (110) face for B2 structures and (b)
the slice of (111) for L12 structures. Different colors of atoms reflect
different amplitudes of η field. The rectangles in (a) and the triangles
in (b) show the two kinds of superlattice in B2 and L12 structures,
respectively.

respectively. The difference of η between the two sublattices
confirms the regular arrangements of atoms of the simulated
results of B2. Similarly, the L12 structure can be seen as one
simple cubic lattice α (all A atoms on the vertex of fcc) and
one octahedron lattice β (all B atoms on the face center of
fcc). As shown in Fig. 4(b), on the slice of (111) face for L12,
there are two corresponding triangles for the two sublattices.
The differences of η field between the two sublattices show
the long-range periodicity of L12, too. The simulated results
show that ordered structures in 3D also can be described by
η and the superlattices can be described by the amplitude
difference between the two sublattices.

III. APPLICATIONS

Here two case studies, growth of ordered precipitations and
evolution of antiphase domains, are presented to demonstrate

the capabilities of our approach in describing order-disorder
phase transitions. Simulations were conducted in a domain of
1024 × 1024 with the dimensionless grid size dx = 0.125 and
time step dt = 0.001. Dynamic equations, Eqs. (13) and (14),
were solved semi-implicitly in the Fourier space with Mη = 1
and Mc = 1. The disordered matrix has an initial composition
of c = 0.47 and that for the ordered domain is c = 0.5 at
σ = 0.02.

A. Precipitation

As we know, precipitation will happen when a supersat-
urated matrix is quenched into an order-disorder coexistence
region in the phase diagram, which is one of the most important
features for the order-disorder phase transition. So the first
case study is about the growth of ordered precipitations.
In the present study, a small spherical domain of ordered
structure with a radius of 8asq was set in the center of the
domain initially. Figures 5(a)–5(c) show the growth process
of an ordered precipitation. It should be noted that, to get
a better presentation, only one-quarter of the computational
domain is shown in Figs. 5(a)–5(c). Through distinguishing
the amplitude of η, we can differentiate between the ordered
and disordered structures and the two sublattices in the ordered
phase. From Figs. 5(a)–5(c), we also can see that the ordered
phase grows through a layer-by-layer mode, i.e., first the atoms
at plane (11) near the order-disorder phase boundary become
ordered and form a step on the boundary near the ordered
domain side; then the step moves forward resulting in the
displacement of (11) layers. Figure 5(d) shows the variation
of volume fraction for the precipitate with time. From this
figure, we can find that the volume fraction of precipitate varies
with time quadratically, indicating that the growth kinetics of

FIG. 5. Simulated results of the ordered precipitate growth process at c0 = 0.47, σ = 0.05. (a)–(c) show the evolution of the η field at
t = 10 000, 100 000, and 200 000, respectively; (d) shows the variation of precipitate volume fraction with time; (e) shows the concentration
profiles across the interface.
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precipitation is controlled by diffusion. Figure 5(e) shows the
concentration profiles across the interface. Because the matrix
is supersaturated, the chemical potential of the matrix is higher
than that for the ordered domain, resulting in the flux of B

atoms toward the growing particle, as shown in Fig. 5(e).
The change of composition makes Corder

2 in Cn
eff(|r − r ′|)

gradually work and then drives the evolution of η, leading
to the occurrence of an order-disorder transition.

B. Evolution of antiphase domain and
antiphase domain boundary

Another important feature for order-disorder transitions
is the evolution of antiphase domains (APDs) [10] which
determine the strengthening mechanisms and deformation
behaviors of ordered phases. As we know, if two APDs impinge
with each other during the growth or coarsening process, they
will not merge directly but a structural defect called antiphase
domain boundary (APB) will be generated. To examine the
capability of our approach in describing order-disorder phase
transitions, the evolution of APDs and the energy of APBs are
checked. The width of APBs can be changed by varying the
width of Gaussian peak α in Eq. (12) and thus the free energy of
APBs. The relationship between the width W of APB and the
peak width α is shown in Fig. 6(a). It shows that W decreases
almost linearly with the increase of α. Figure 6(b) shows the
interface energy of APB γAPB and that for the order-disorder
interfacial boundaries γorder-disorder vs the peak width α. It shows
that, when α � 0.7, γAPB is higher than twice of γorder-disorder,
so in this case APBs will decompose into two single-domain
particles separated by a thin layer of the disordered phase.
When α � 0.8, APBs can be stable.

Figure 7 shows the growth and coarsening process of APDs
when α = 0.4. The initial condition consists of two small
spherical particles of the ordered structure with a radius of
8asq. The two ordered domains are next to each other but
separated by an APB. Such an initial configuration turns out to
be unstable because APB is unstable in this case, as shown in
Figs. 7(a)–7(c). The APDs transformed into two single-domain
particles separated by a thin layer of disordered phase, and the
APB is replaced by two order-disorder interfacial boundaries
and a layer of the disordered phase eventually. Figure 7(d)
shows the concentration change across the interface. The
concentration of the disordered phase between the two APDs
is a bit lower than that of APDs.

Figure 8 shows the variation of γAPB with the temperature
parameter σ when the width of the correlation function α =
0.8 (the black line). For comparison, the variation of γAPB in
the Ni-Al system with temperature calculated by the cluster
variation method (CVM) [34] (the red line) is also shown in
Fig. 8. It shows that the γAPB first increases with σ and then
decreases a little bit, which has a similar tendency with the
calculated results by CVM. This nonmonotonic temperature
dependence of the interface energy has also been confirmed by
M. Asta et al. in their study of fcc substitutional alloys [35].
The similar tendency of APB energy also shows the capability
of our approach.

With the two case studies, we have demonstrated the
capabilities of our approach in describing the order-disorder
transition. With the approach, the PFC model can describe the

FIG. 6. (a) The interface width W as a function of the peak width
α; (b) the variation of APB energy (a) and order-disorder interface
energy (b) with the peak width α.

properties of ordered and disordered structures and APB very
well. With the improved model, we can deal with the problems
on atomic length scales and diffusional time scales.

IV. DISCUSSION AND CONCLUSION

We have introduced an approach to describe order-disorder
transitions based on the PFC model. This approach is very
similar to the model introduced by Alster et al. [27]. Both
works add the long-range information into the original PFC
model. But the origins of the two approaches are different.
Our approach is inspired from the different image intensities
between superlattices of ordered structures in HRTEM images.
So we add a new periodic order parameter into the PFC
model. This periodic order parameter in our model can
reflect the fundamental lattices and the difference between
superlattices of ordered structures. However, Alster et al.
used the concentration wave as the order parameter to
represent ordered structures. In the model by Alster et al.,
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FIG. 7. Evolution of APD when c0 = 0.47, σ = 0.05. (a)–(c) show the atomic image at t = 10 000, 1 000 000, and 2 000 000, respectively;
(d) shows the concentration profiles at different times.

the periodic concentration field reflects the difference between
superlattices, while the periodic atomic density field reflects
the fundamental lattices of ordered structures. These two
approaches would bring several differences in use. Probably
the most outstanding example is in studying the problems of
the elastic-plastic deformations of ordered structures for the
two models. In our model, because the concentration field

FIG. 8. Effect of temperature σ on the interface energy of APBs
at α = 0.8 (the black line); the red line shows the γAPB of γ ′ vs
temperature in the Ni-Al system by using the CVM [34].

is uniform, the elastic-plastic behaviors are mainly described
through the changes of the single periodic field. But in
the model by Alster et al., the elastic-plastic behaviors are
described through the changes of the two periodic fields:
the atomic density field and the concentration field. So if
someone uses the model by Alster et al. to study the problems
of the elastic-plastic deformations of ordered structures, he
needs to take into account the coupling of the two periodic
fields.

In summary, we have developed an approach to describe
order-disorder phase transitions on atomic length scales and
diffusional time scales. Based on the original PFC model, we
added an order parameter η to reflect the atomic potential
distribution inspired from HRTEM. This new order parameter
η includes the information about the regular arrangements of
atoms in ordered structures, and thus can be used to describe
order-disorder systems. Considering the physical fact that
long-range interactions of atoms exist in ordered structures
but disappear in disordered structures, we constructed the
correlation function with two parts: one works on the fun-
damental lattice and one works on the superlattice. From
presenting 2D and 3D ordered structures, and two case studies
including the growth of ordered precipitations and evolution
of antiphase domains, we demonstrated the capabilities and
potential applications of our approach. The improved model
can be used to deal with the issues in order-disorder systems
on atomic length scales and diffusional time scales, such
as microstructure evolution, strengthening mechanisms, and
deformation behaviors of ordered phases.
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