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Numerical analysis of the lattice Boltzmann method for simulation of linear acoustic waves
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We analyze a linear lattice Boltzmann (LB) formulation for simulation of linear acoustic wave propagation
in heterogeneous media. We employ the single-relaxation-time Bhatnagar-Gross-Krook as well as the general
multirelaxation-time collision operators. By calculating the dispersion relation for various 2D lattices, we show
that the D2Q5 lattice is the most suitable model for the linear acoustic problem. We also implement a grid-
refinement algorithm for the LB scheme to simulate waves propagating in a heterogeneous medium with velocity
contrasts. Our results show that the LB scheme performance is comparable to the classical second-order finite-
difference schemes. Given its efficiency for parallel computation, the LB method can be a cost effective tool for
the simulation of linear acoustic waves in complex geometries and multiphase media.
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I. INTRODUCTION

Over the past three decades, the lattice Boltzmann (LB)
method has been established alongside conventional compu-
tational fluid dynamics (CFD) methods as an efficient scheme
for the numerical solution of partial differential equations.
A variety of complex flow problems [1,2] have been tackled
successfully, even within the simplest Bhatnagar-Gross-Krook
(BGK) framework [3]. It has proven particularly useful for
applications involving flows through porous and multiphase
media [4–7]. The method has been extended well beyond
hydrodynamics to solve the governing equations of mag-
netohydrodynamics [8], acoustic and electromagnetic wave
propagation [9,10], fracturing in solids [11], the Schrödinger
equation [12], etc. With a generalized multirelaxation-time
(MRT) collision operator [13–15], the LB scheme can be fine
tuned to more accurately model the physical problem at hand.

The LB method has several distinct advantages over
conventional CFD approaches [4]. The LB equation comprises
a single first-order differential equation, which, in the asymp-
totic limit (Chapman-Enskog expansion procedure [16,17]),
produces the macroscopic equations for mass and momentum
conservation. Only immediate neighbor lattice sites interact in
LB, so that the computation is highly suitable for a parallel-
computing implementation. Imposing boundary conditions in
LB is relatively simple, which makes it suitable to handle
complex geometries.

In the current work, we discuss an application of LB to
model linear wave propagation in seismology. For simplicity
and clarity in understanding numerical performance, we
consider a seismic wave equation of only acoustic waves
(P waves) with applications in, e.g., helioseismology [18].
The propagation medium for these seismic waves can be
highly heterogeneous, comprising a mixture of multiphase
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components in a porous environment. The geometry of the
physical domain of interest may be complicated. The distinct
success of the LB method for multiphase and porous flows
combined with its efficiency in handling complex boundaries
makes it useful to investigate how LB simulations of acoustic
waves compare with standard numerical schemes—such as
finite-differences—employed in exploration seismology.

LB schemes have been analyzed in the context of sim-
ulation of acoustic waves in prior literature. In [19], Marié
et al. investigate sources of errors in LB dispersion as
compared to Navier-Stokes. In [20], Xu et al. propose an
optimization strategy to minimize dispersion errors in the
MRT-LB scheme. In both these studies, a conventional LB
scheme with a nonlinear equilibrium distribution, which
yields the Navier-Stokes equation, i.e., on performing the
Chapman-Enskog expansion, is used [17]. Hence, the resulting
wave equation retains some nonlinearity as well as viscous
dissipation and does not faithfully represent the linear in-
viscid wave equation (1). Instead, a straightforward way to
simulate the inviscid linear wave equation is to use the linear
LB scheme proposed by Chopard [9]. The linear LB scheme
utilizes the linear equilibrium distribution function (15) and
appropriately recovers only the linear inviscid part of the wave
equation (see Appendix B). In this work, we analyze the linear
LB scheme for the simulation of acoustic waves. Quantifying
the numerical ability of a scheme is best done on a fully linear
equation, e.g., [21]. Indeed, our work is relevant in this regard
since it highlights unexpected strengths and weaknesses of the
LB method.

Few authors have considered the linear LB scheme for
the simulation of waves. Viggen [22–24] provides a detailed
account of the application of LB scheme for acoustic waves.
In particular, [22] presents a derivation of the dispersion
relation for the discrete-velocity Boltzmann equation using
the linear equilibrium distribution function and compares it
with the Navier-Stokes equation. As we will show later, the
linear equilibrium distribution function can be written as a
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linear combination of single-particle distribution functions.
Thus we can directly obtain the numerical dispersion rela-
tions without additional linearization procedures. We derive
dispersion relations for the MRT-LB scheme on 2D lattices—
D2Q5 and D2Q9. We also study the numerical anisotropy of
the dispersion relation on these 2D lattices. The dispersion
relations for the BGK-LB scheme are obtained as a special
case when all the relaxation parameters are identical (similar to
finite-difference schemes). The numerical dispersion relation,
as well as the stability of the LB scheme, are sensitive to
the Courant number [25]. A heterogeneous medium may
display large variations in sound speed, and hence the local
Courant number. Thus we study LB dispersion relations at
different Courant numbers and compare it with second- and
fourth-order finite-difference schemes. Significant changes in
sound speed result in corresponding variations in wavelength.
A grid-refinement algorithm (based on [26]) is presented to
simulate waves with uniform grid resolution, i.e., the number
of grid points that resolve the wave. Although our analysis is
performed on a strictly linear problem, the numerical limits of
LB that we have identified are also relevant for standard LB
schemes.

In Sec. II, we briefly discuss the LB methodology and
its application to seismic wave propagation. We describe the
mathematical model for seismic waves and linear LB formu-
lation. We also discuss the parameters which are important for
performance of the LB scheme for the simulation of waves. In
Sec. III, we derive the dispersion relation for the LB scheme
and present LB dispersion curves on 2D lattices. We compare
LB dispersion curves with exact as well as finite-difference
schemes at different Courant numbers. In Sec. IV, we give
a detailed account of the grid-refinement algorithm used to
model waves in heterogeneous media. Finally, in Sec. V,
we present results from simulations in homogeneous and
heterogeneous media.

II. SEISMIC WAVES

A. Macroscopic equations

Seismic P waves in acoustic media can be described by a
linear pressure wave equation with a source term

1

c2
s (x)

∂2
t p(x,t) − ∇2p(x,t) = ∂tS(x,t). (1)

This second-order equation derives from two coupled first-
order equations for continuity,

∂tp(x,t) + c2
s (x)∇ · [ρ0(x)v(x,t)] = c2

s (x)S(x,t), (2)

and conservation of momentum,

∂t [ρ0(x)v(x,t)] + ∇p(x,t) = 0. (3)

Here p(x,t) is pressure fluctuation, v(x,t) is velocity fluctua-
tion, S(x,t) is the scalar source of pressure fluctuations, and
cs(x) and ρ0(x) are the prescribed temporally stationary sound
speed and density of the background medium. The functional
form of cs(x) and ρ0(x) are dictated by the heterogeneity of
the medium and may thus be complicated. The pressure and
the density fluctuations are related by a linearized ideal gas

equation of state,

p(x,t) = c2
s (x)ρ(x,t). (4)

The sound speed cs(x) can be modelled using an isentropic
bulk modulus for the medium [27].

B. LB model

Kinetic theory describes the dynamics of a gas in terms
of the distribution function, which is the probability density
of finding a gas particle in a differential phase-space volume.
The distribution function evolves as particles move (or in LB
terminology, stream) and collide with each other. In the BGK-
Boltzmann transport equation, collision is modelled through a
linear operator with a single relaxation time,

∂tg(x,c,t) + c · ∇g(x,c,t) = −(1/τ )[g(x,c,t) − geq(x,c,t)],

(5)

where g(x,c,t) is the single-particle distribution function [28],
τ is the relaxation time for particle collisions, and geq(x,c,t)
is the equilibrium Maxwell-Boltzmann distribution.

A second-order discretization of the BGK-Boltzmann
transport equation (5) gives the BGK-LB equation [29,30],

gi(x + ciδt,t + δt) − gi(x,t) = −(1/τ )
[
gi(x,t) − g

eq

i (x,t)
]
.

(6)

Both position space and velocity space are discretized; i.e.,
only a finite number of microscopic velocities are allowed.
This is achieved by mapping the computational domain
onto a lattice. In (6), ci is the ith microscopic velocity on
the lattice and gi(x,t) is the corresponding single-particle
distribution function. For the LB scheme, the equilibrium
Maxwell-Boltzmann distribution is truncated at the second
order in velocity [31],

g
eq

i (x,t) = wi

c2
s (x)

{
p(x,t) + ρ0(x)[ci · v(x,t)]

+ ρ0(x)

2c2
s (x)

[ci · v(x,t)]2 − ρ0(x)

2
||v(x,t)||2

}
, (7)

where wi is the lattice weight for the ith microscopic velocity
and cs(x) is the lattice sound speed (see Sec. II C). Here,
the density and momentum fluctuations are obtained by
taking zeroth and first microscopic velocity moments of the
distribution function over the lattice velocity space,

ρ(x,t) =
∑

i

gi(x,t) =
∑

i

g
eq

i (x,t), (8)

ρ0(x)v(x,t) =
∑

i

cigi(x,t) =
∑

i

cig
eq

i (x,t). (9)

The pressure fluctuations p(x,t) are then obtained by using the
equation of state (4).

Depending on the problem, various two and three-
dimensional (3D) lattices are used in LB. The general
nomenclature for lattices is DnQm where n is the dimensions
of position space and m is the number of microscopic velocities
available at each lattice site. For simulating 2D acoustic waves,
we have used two 2D lattices—D2Q5 and D2Q9, with five
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FIG. 1. Lattices used in simulation: (a) D2Q5 lattice; (b) D2Q9
lattice.

and nine microscopic velocities respectively. These lattices
are shown in Fig. 1 and the corresponding lattice velocities are
given in Table I. In both lattices, the microscopic velocity c0

corresponds to the particle at rest.
In the MRT-LB scheme, the different components of the

distribution function g may relax to the equilibrium distri-
bution function geq with different relaxation parameters [13].
The general LB equation is written for the distribution function
column vector g = {gi} as

g(x + cδt,t + δt) − g(x,t) = −M−1S[m(x,t) − meq(x,t)].

(10)

Here, the column vector m consists of conserved and non-
conserved velocity moments of the distribution function. The
orthogonal matrix M transforms the distribution function
vector into the moment vector as m = Mg. The conserved
moments density and momentum fluctuations are given by
Eqs. (8) and (9) respectively. The nonconserved moments
are at higher order in velocity and are calculated using the
microscopic velocity set on a given lattice [13–15]. For the
D2Q5 lattice, the moment column vector is

m = {ρ,ρ0vx,ρ0vy,e,pxx}, (11)

TABLE I. Lattice velocities.

Lattice Lattice velocities

D2Q5 c0 = (0,0),
c1,3,c2,4 = (±1,0),(0,±1).

D2Q9 c0 = (0,0),
c1,3,c2,4 = (±1,0),(0,±1).
c5,7,6,8 = (±1, ±1).

and for the D2Q9 lattice,

m = {ρ,ρ0vx,ρ0vy,e,pxx,ε,qx,qy,pxy}. (12)

Second-order velocity moments e, pxx , and pxy correspond to
the energy, diagonal, and off-diagonal components of stress
tensor respectively and ε, qx , and qy are higher-order velocity
moments on lattice [15].

The equilibrium distribution function vector geq transforms
into the equilibrium moment vector meq in moment space.
Transformation matrices M for D2Q5 and D2Q9 lattices
are specified in Appendix A. S is the diagonal relaxation
matrix consisting of the inverse relaxation times for the
conserved as well nonconserved moments. For the D2Q5
lattice, S = diag(sρ,sv,sv,se,sp) and for the D2Q9 lattice, S =
diag(sρ,sv,sv,se,sp,sε,sq,sq,sp) (where diag refers to diagonal
matrix). The various inverse relaxation times—s—are related
to the macroscopic properties of the fluid which govern the
hydrodynamics and kinetics (Sec. II C). The values of these
parameters can be fine tuned to suit the macroscopic dynamics
of the physical system and also to improve the numerical
stability of the model [15]. The generalized LB equation (10)
can be expanded to obtain the MRT-LB equation in terms of
the distribution column vector alone,

g(x + cδt,t + δt) − g(x,t) = −M−1SM[g(x,t) − geq(x,t)]

= −C[g(x,t) − geq(x,t)]. (13)

Here, C = M−1SM is the collision matrix. When all the
inverse relaxation times are identical, we recover the BGK-LB
equation (6).

The linear wave equation (1) can be modelled by introduc-
ing a source term in the MRT-LB equation (13) [24]. Writing
componentwise, the corresponding equation is

gi(x + ciδt,t + δt) − gi(x,t)

= −
∑

j

Cij

[
gj (x,t) − g

eq

j (x,t)
] + wi S(x,t), (14)

where wi are the lattice weights. Since the first-order macro-
scopic equations (2) and (3) are linear in fluctuating quantities
p(x,t) and v(x,t), we truncate the equilibrium distribution at
the linear term in v(x,t). Thus the numerical model of linear
acoustic waves involves the following linear equilibrium-
distribution function:

g
eq

i (x,t) = wi

c2
s (x)

[p(x,t) + ρ0(x)vα(x,t)ciα]. (15)

The MRT-LB equation (14) along with the linear equilibrium
distribution (15) are collectively referred to as the linear LB
scheme. The solution of (14) using the equilibrium distribution
function (15), with proper choice of relaxation times, yields
the numerical solution of the linear acoustic wave equation for
pressure (1) as well as velocity. We discuss relaxation times
and other LB parameters in the next section.

C. LB parameters

The LB equation (14) represents the governing equation
for linear acoustic waves (1) provided we correctly adjust the
relaxation parameters—s for the MRT scheme and τ for the
BGK scheme. The systematic procedure to obtain macroscopic
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conservation equations (2) and (3) from the LB equation is the
Chapman-Enskog analysis [16,17]. For the BGK-LB scheme,
the Chapman-Enskog expansion gives the kinematic viscosity
on the lattice as [17]

ν(x) = c2
s (x)

(
τ − 1

2

)
δt. (16)

The wave equation (1) has no dissipation term, i.e., kinematic
viscosity is zero. This is achieved by setting the collision
relaxation time τ = 1/2. This particular choice of τ thus
recovers macroscopic equations (2) and (3) describing the
linear acoustic wave [11].

For the MRT-LB scheme, the Chapman-Enskog analysis is
carried out in moments space for each of the conserved and
nonconserved moments. For the D2Q9 lattice, the analysis
shows that the kinematic and bulk viscosities on the lattice
may be set to zero with the choice sp = 2 and se = 2
respectively [15]. For the D2Q5 lattice, setting sp = 2 and
either se = 2 or the lattice sound speed c2

s = 1/2, recovers
linear macroscopic equations (2) and (3) (see Appendix B).
Other relaxation parameters (i.e., apart from sp, se) do not
affect the hydrodynamics of the problem. However, in the
case of the D2Q9 lattice, any choice except se = 2 and sε = 2
causes numerical instability. The origin of these instabilities
may be revealed by an analysis for the linear MRT-LB scheme
similar to one performed in [32].

In order to obtain the full Navier-Stokes equation from the
LB equation, it is essential that microscopic velocity moments
of lattice weights up to the fourth order are identical to
that of the Maxwell-Boltzmann distribution with zero-mean
velocity [17,33]. However, the Chapman-Enskog expansion
shows that, for the linear LB scheme that we use, velocity
moments of lattice weights up to the second order are relevant
for obtaining the macroscopic conservation Eqs. (2) and (3) [9].
The constraints on lattice weights for the linear LB scheme are
(all odd-order moments vanish)∑

i

wi(x) = 1,

∑
i

wi(x)ciαciβ = c2
s (x)δαβ. (17)

In the Chapman-Enskog expansion, the second constraint
above determines proportionality between density and the
pressure term in the momentum equation [see Eqs. (B12)
and (B16)] and hence the local sound speed cs(x). The
Chapman-Enskog expansion also shows that the local lattice
sound speed may be controlled by spatially adjusting the
rest-particle lattice weight w0 [9]. This is achieved by setting

w0(x) = 1 − η(x)2, (18)

where η(x) = cs(x)/cs max � 1, where cs max is the maximum
sound speed in the medium. In addition, because of lattice
symmetry, not all lattice weights are different. For instance, in
the D2Q5 lattice, we must have w1 = w2 = w3 = w4. Also,
lattice weights cannot be negative. Thus, given the value of
η(x), Eqs. (17) and (18) determine the lattice parameters—
weights wi(x) and sound speed cs(x).

Using (15), lattice weight constraints (17), and transfor-
mation matrix M (see Appendix A) for LB lattices, second-
and higher-order velocity moments of the linear equilibrium

distribution can be calculated. Thus, for the D2Q5 lattice,
we get

e(0) = −4g
(0)
0 + g

(0)
1 + g

(0)
2 + g

(0)
3 + g

(0)
4

= −4ρ + 10ρc2
s , (19)

and

p(0)
xx = g

(0)
1 − g

(0)
2 + g

(0)
3 − g

(0)
4 = 0. (20)

Similarly, higher-order velocity moments of the linear equilib-
rium distribution on the D2Q9 lattice are calculated.

III. DISPERSION ANALYSIS

A. Grid resolution (R)

In a numerical simulation, δt ∼ δx (acoustic scaling) and
δx ∝ N−1/3 in three dimensions where N is the total number
of grid points. Hence, the total number of time steps scales
with N1/3. The cost of a time step scales linearly with the total
number of grid points N . Hence, the cost of the numerical
simulation scales as O(N4/3) in three dimensions. Therefore,
an important performance criterion of a numerical technique
used to model wave propagation is the accuracy of the solution
at low grid resolution. A natural way to define the grid
resolution is to consider the number of grid points required
to resolve the characteristic wavelength in the problem. Thus,
the grid resolution is given by R = (λc/δx), where λc is the
characteristic wavelength. The characteristic wavelength can,
for instance, be the shortest wavelength in the problem.

B. LB dispersion relation

The dispersion relation captures the connection between
the vector wave number k and the frequency ω of the wave
as captured by the numerical scheme. For waves traveling in
homogeneous, dissipation-free media, ω and k are proportional
to each other in all directions, i.e., there is no dispersion.
However, a numerical scheme used to simulate these waves
may introduce artificial dispersion and attenuation. We analyze
the dispersion characteristics of the MRT-LB scheme for D2Q5
and D2Q9 lattices by studying the response of the scheme to
plane waves in homogeneous media, i.e., cs(x),ρ0(x) = const.

We can express the equilibrium distributions geq as a linear
combination of the distribution functions g using (8), (9),
and (15). This relation for the D2Q5 lattice is given by

g
eq

i = wi

⎧⎨
⎩

∑
j

gj + (
1
/
c2
s

)
[cix(g1 − g3) + ciy(g2 − g4)]

⎫⎬
⎭,

(21)

and for the D2Q9 lattice,

g
eq

i = wi

⎧⎨
⎩
∑

j

gj + (
1
/
c2
s

)
[cix(g1 − g3 + g5 − g6 − g7 + g8)

+ ciy(g2 − g4 + g5 + g6 − g7 − g8)]

⎫⎬
⎭. (22)
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Using these relations, Eq. (13) can be rewritten as

g(x,t + δt) − g(x − cδt,t) = −M−1SMAg(x − cδt,t), (23)

where for the D2Q5 lattice

A =

⎡
⎢⎢⎢⎢⎢⎣

1 − w0 −w0 −w0 −w0 −w0

−w1 1 − w1
(
1 + 1

/
c2
s

) −w1 −w1
(
1 − 1

/
c2
s

) −w1

−w2 −w2 1 − w2
(
1 + 1

/
c2
s

) −w2 −w2
(
1 − 1

/
c2
s

)
−w3 −w3

(
1 − 1

/
c2
s

) −w3 1 − w3
(
1 + 1

/
c2
s

) −w3

−w4 −w4 −w4
(
1 − 1

/
c2
s

) −w4 1 − w4
(
1 + 1

/
c2
s

)

⎤
⎥⎥⎥⎥⎥⎦

.

Similarly, matrix A for the D2Q9 lattice can be constructed.
The distribution function is initialized such that macroscopic
variables p(x,t) and v(x,t) evolve in time as a plane wave. This
is achieved by initializing the j th component of the distribution
function (in Fourier space) as

gj (k,ω) = wj (1 − cj · k/ω) exp[ι(k · x − ωt)]. (24)

Note that the coefficient of these distribution function plane
waves is chosen such that we recover initial pressure and
velocity plane waves consistent with Eqs. (2) and (3) from
Eqs. (8) and (9). Substituting (24) in the Fourier transform
of (23) gives us the dispersion relation for the MRT-LB scheme
with a linear equilibrium distribution:

exp(−ιωδt)g(k,ω)

= (1 − M−1SMA)diag[exp(−ιk · cj δt)]g(k,ω), (25)

where g(k,ω) is the distribution function column vector in
Fourier space.

Equation (25) is solved numerically to obtain the linear
MRT-LB dispersion relation. The eigenvector corresponding
to the propagating mode is, in general, a linear combi-
nation of hydrodynamic variables pressure and velocity in
moments space. In Fig. 3, dispersion curves for the BGK-
and MRT-LB schemes on D2Q5 and D2Q9 lattices are
plotted for propagation along θ = 0◦ and θ = 45◦ (see Fig. 2).
The corresponding numerical attenuation (imaginary part of
frequency ω) is also plotted. The nondimensional frequency
(real and imaginary) ω∗ = (ωδx)/csπ is plotted as a function
of the nondimensional wave number k∗ = (kδx)/π . Note that
the nondimensional wave-number k∗ also corresponds to grid
resolution R (Sec. III A), with k∗ = 1 corresponding to the
Nyquist limit of two grid points per wavelength. Thus the
working grid resolution for the LB scheme can be deduced
from the dispersion curve by marking a point on the curve

FIG. 2. Direction of propagation for plane waves on the lattice.
The numerical dispersion relation strongly depends on the angle θ

along which the waves are propagating.

where it starts to deviate significantly from the exact curve.
Lattice weights are determined from constraint equations (17)
and (18) with the condition that η(x) = 1 corresponding to
a homogeneous medium. For the D2Q5 lattice, we obtain
w0 = 0,w1 = w2 = w3 = w4 = 1/4. For the D2Q9 lattice,
(17) and (18) result in an underdetermined set of equations
for lattice weights. Thus, there is freedom to choose any
combination of lattice weights for D2Q9 [but satisfying (17)
and (18)]. For the curve in Fig. 3 (D2Q9-con), we choose
conventional lattice weights for D2Q9: w0 = 4/9,w1 = w2 =
w3 = w4 = 1/9,w5 = w6 = w7 = w8 = 1/36.

Dispersion curves for the BGK- and MRT-LB scheme with
sp = 2 and se = 2 on the D2Q5 lattice are identical. Further,
because the values of relaxation parameters for conserved
moments, sρ and sv , are not relevant, the BGK- and MRT-LB
D2Q5 schemes we use are identical. Additionally, these
schemes are attenuation free, as desired for our problem.
The D2Q5 dispersion is exact for propagation along θ = 45◦.
The BGK-LB scheme on the D2Q9 lattice is also attenuation
free. However, the dispersion curve deviates significantly
from the exact, especially for propagation along θ = 45◦. The
MRT-LB scheme on the D2Q9 lattice gives better dispersion
characteristics at the cost of (small) attenuation. Also, these
dispersion curves at best match D2Q5 counterparts. Thus the
BGK-LB scheme on the D2Q5 lattice has the best dispersion
characteristics.

Here we highlight the subtle distinction between free
and forced waves which may be relevant for the dispersion
analysis. Free waves have real wave number and complex
frequency, whereas forced waves have complex wave number
and real frequency. Hence free and forced waves respond
differently to dissipation in the system and their dispersion
characteristics are also affected [27]. In our work, we are
interested in comparing LB numerical schemes with stan-
dard finite-difference schemes. Hence, we are considering
acoustic wave propagation in dissipation-free media for
which the distinction between free and forced waves is not
relevant [21].

C. Optimized lattice weights for the D2Q9 lattice

For the D2Q5 lattice, Eqs. (17) and (18) yield a complete
system of equations for lattice parameters. However, for
the D2Q9 lattice, we obtain an underdetermined system
of equations. Since the D2Q9 lattice weights cannot be
uniquely determined, we vary the lattice weights within these
constraints. For each set of weights for the D2Q9 lattice, we
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FIG. 3. The BGK- and MRT-LB numerical dispersion and attenuation curves for D2Q5 and D2Q9 lattices. The real or imaginary component
of the nondimensional frequency (ωδx)/csπ , is plotted against the nondimensional wave number (kδx)/π . Panels (a) and (c) show numerical
dispersion for propagation along θ = 0◦ and θ = 45◦ respectively and panels (b) and (d) show numerical attenuation for propagation along
θ = 0◦ and θ = 45◦ respectively. Lattice weights used for D2Q5 are w0 = 0,w1 = 1/4. For D2Q9, conventional lattice weights w0 = 4/9,w1 =
1/9,w5 = 1/36 are used (curves marked D2Q9-con). For the MRT implementation, relaxation parameters sp and se are set to 2 for both lattices.
For D2Q9, relaxation parameter sε is also set to 2 and sq is set to 1. Relaxation parameters for the conserved moments sρ and sv can be set to
any value as it does not affect the hydrodynamics. The D2Q5 dispersion curves for the BGK- and MRT-LB schemes are identical (better than
D2Q9). The legend in the first plot also applies to the rest of the plots.

calculate the numerical dispersion in Eq. (25). Performing
this exercise, the lattice weights for the D2Q9 lattice which
yield the best dispersion curves are obtained as w0 = 0,w1 =
ε,w5 = 1/4 − ε where ε is a very small positive number. Note
that ε = 0 causes instability, as the lattice sound speed cs

becomes unity (see Appendix D). The optimum curves are
plotted in Fig. 4 (D2Q9-opt) and compared with the D2Q5 as

well D2Q9 curves with conventional weights. We see that
dispersion curves of D2Q9-opt match best with the exact
curves for propagation along θ = 0◦. However, this particular
choice of lattice weights makes D2Q9 roughly equivalent to
D2Q5 rotated by 45◦. Note that the D2Q9 lattice weights
w0 = 0,w1 = 1/4,w5 = 0 give the D2Q5 lattice and hence
identical dispersion relations to the D2Q5 scheme.
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FIG. 4. The optimum dispersion curves for the D2Q9 lattice. Here, the real component of the nondimensional frequency, (ωδx)/csπ , is
plotted against the nondimensional wave number (kδx)/π for propagation along θ = 0◦ shown in panel (a) and θ = 45◦ shown in panel (b).
Lattice weights used for D2Q5 are w0 = 0,w1 = 1/4. However, lattice weights required w0 = 0,w1 = 0.001,w5 = 0.249 make the D2Q9
lattice equivalent to the D2Q5 lattice rotated by 45◦.
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FIG. 5. Comparison of the BGK-LB D2Q5 dispersion curves (normalized sound speed (ωδx)/kcsπ vs normalized wave number (kδx)/π )
with second- and fourth-order FD schemes. Panels (a) and (b) show numerical dispersion at Courant number C = 0.66 (maximum allowed
value for the fourth-order FD scheme) for propagation along θ = 0◦ and θ = 45◦ respectively. Panels (c) and (d) show numerical dispersion at
Courant number C = 0.33 for propagation along θ = 0◦ and θ = 45◦ respectively. The BGK-LB D2Q5 curves are identical to the second-order
FD curves for these propagation angles. The fourth-order FD scheme has better dispersion characteristics overall. The legend of the first plot
also applies to the rest of the plots.

D. Comparison with finite-difference schemes

The discussion hitherto suggests that BGK-LB with D2Q5
is the best LB scheme for the simulation of linear acoustic
waves. We compare this scheme with standard schemes used
in seismology—the second- and fourth-order finite-difference
(FD) schemes. The stability of FD schemes as well as the LB
scheme depends on the local Courant number which is given
by [25,34]

C = cs(δt/δx), (26)

where cs = cs(x) is the local sound speed. From Eq. (26),
we see that the Courant number is the ratio between the
physical information propagation speed and the numerical
information propagation speed. For the BGK-LB D2Q5
scheme, the numerical information can propagate only along
the axes with speed δx/δt = 1 and hence it propagates with
speed 1/

√
2 ≈ 0.71 along the diagonal. Hence, the maximum

Courant number Cmax ≈ 0.71 which is also the maximum
lattice sound speed (see Appendix D). For the second-order
and the fourth-order FD schemes used here (see Appendix C),
the maximum allowed Courant number Cmax is approximately
equal to 0.71 and 0.66 respectively. Considering these limits,
we study the dispersion relation for different values of the
Courant number. In Fig. 5, the BGK-LB D2Q5 dispersion
relation is compared with the second- and the fourth-order
FD scheme at C = 0.66 and C = 0.33, for propagation
along θ = 0◦ and θ = 45◦. These plots have normalized

sound speed on the y axis rather than frequency. For these
directions, the dispersion curves of the BGK-LB D2Q5 and
the second-order FD scheme are identical (see Appendix E).
As shown in Fig. 6, the BGK-LB D2Q5 and the second-order
FD dispersion curves for the intermediate propagation angles
are also identical, except at very low grid resolution where
the BGK-LB D2Q5 is slightly better. The fourth-order FD
scheme has better dispersion characteristics which further
improve with decreasing Courant number. However, for
propagation along 45◦ at high Courant numbers (close to
Cmax = 0.66 for the fourth-order FD scheme), the BGK-LB
D2Q5 (and the second-order FD) is more accurate.

IV. GRID REFINEMENT

Seismic waves travel through heterogeneous media where
background density and sound speed may vary significantly
across the domain. The characteristic wavelength of seismic
waves is directly proportional to the sound speed and the
accuracy at low grid resolution (Sec. III A) is an important
performance criterion for numerical schemes modeling seis-
mic waves. It is therefore desirable to keep the grid resolution,
R = (λc/δx), constant across the computational domain. If
we model heterogeneous media as a patchwork of domains of
homogeneous media, we will need a grid-refinement scheme
for the LB simulation to maintain grid resolution across a
varying sound speed.
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FIG. 6. Comparison of the BGK-LB D2Q5 dispersion curves [normalized sound speed (ωδx)/kcsπ vs normalized wave number (kδx)/π ]
with exact and second-order FD scheme at Courant number C = 0.71 (maximum allowed value for both the BGK-LB D2Q5 and the
second-order FD scheme), for propagation along θ = 15◦ shown in panel (a) and θ = 30◦ shown in panel (b). These BGK-LB D2Q5 dispersion
curves are slightly better than second-order FD. The legend of the first plot also applies to the second plot.

The underlying requirement for the LB grid-refinement
algorithm is to facilitate streaming of distribution functions
across different patches of locally homogeneous media. With
the grid-refinement scheme, lattice spacing δx is set to vary
depending on the sound speed. To maintain the microscopic
velocities, corresponding changes in the time step δt are
required [26,35]. The LB algorithm naturally splits into two
steps—streaming and collision. So it is convenient to maintain
a time-step ratio in multiples of 2 between neighboring patches
of locally homogeneous media. Accordingly, the ratio of lattice
spacing between two neighboring patches of homogeneous
media should also be in multiples of 2.

Simulations in heterogeneous media were carried out
using the LB grid-refinement scheme based on an algorithm
suggested by Dupuis et al. [26]. In order to understand the
method, let us consider a heterogeneous medium consisting of
two regions of homogeneous media connected at the interface
Fig. 7(a). The region on the left has greater sound speed and
thus larger characteristic wavelength than the region on the
right. To maintain the grid resolution, we need a coarse grid
on the left and a fine grid on the right. Let the ratio of lattice
spacing between the two domains be n = (δxc/δxf ) where
c stands for coarse and f stands for fine. Note that n is a
multiple of 2. During the interchange between the coarse and
fine domains, distribution functions should be appropriately
scaled. The distribution function can be composed as a sum of
equilibrium and nonequilibrium parts. Since the equilibrium

distribution is a function of local macroscopic variables p

and v, it should remain unaltered during the interchange.
The scaling of the nonequilibrium part is determined through
Chapman-Enskog analysis [26]. Thus we have

g
eq,c

i = g
eq,f

i = g
eq

i , (27)

where g
eq,c

i and g
eq,f

i are the equilibrium distribution functions
for the coarse and the fine domain respectively and

gc
i = g

eq

i + (
g

f

i − g
eq

i

)
n, g

f

i = ĝ
eq

i + (
ĝc

i − ĝ
eq

i

)
(1/n),

(28)

where ĝi are spatially and temporally interpolated distribu-
tion functions on the coarse grid. Since τ = 1/2 (BGK-LB
scheme), the kinematic viscosity (16) remains zero even if
the time step δtl is varying across computational domain. As
illustrated in Fig. 7(b), we follow the following procedure for
time evolution on a composite coarse fine grid:

(i) Initialize coarse (C) and fine (F) grid distribution
functions to equilibrium values at t = 0.

(ii) Advance the coarse-grid distributions to t = 2 with
collision and streaming.

(iii) If the wave is traveling from the coarse to the fine
domain, calculate the fine-grid distribution functions at the
interface at t = 1 (thick line) using (28) with spatial and
temporal interpolation of the coarse-grid distribution functions

FIG. 7. Mesh refinement scheme: (a) coarse-fine interface; (b) LBM sequence on composite mesh—interpolation sequence is based on
scheme proposed in [35].
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at t = 0 and t = 2. Else, fine-grid distribution functions are
unchanged.

(iv) Evolve fine-grid distribution functions from t = 1 to
t = 2 through collision and streaming.

(v) If the wave is traveling from the coarse to the fine
domain, correct fine-grid distribution functions at the interface
according to (28) using coarse-grid distribution functions only
at t = 2. Else, if the wave is traveling from the fine to the
coarse domain, correct coarse-grid distribution functions at
t = 2 according to (28) using fine-grid distribution functions
at t = 2.

(vi) Evaluate and register macroscopic variables at t = 2
on all grid nodes.

(vii) Evolve the fine-grid distribution functions from t = 2
to t = 3.

The procedure is repeated for the desired total evolution
time.

Attendant to simulating on nonuniform grids are spurious
reflections that occur at the interface [36]. Indeed, the low
order of accuracy of LB combined with the abrupt halving in
grid spacing at the coarse-fine grid interface creates spurious
reflections. Here we mitigate these spurious reflections by
specifying the direction of wave propagation at the coarse-fine
grid interface.

Another type of spurious reflection arises when distribution
functions from the coarse region or the fine region hit the
domain boundary at the interface. To counter it, we introduce
an overlap region [see Fig. 7(a)] of few grid points where the
coarse domain extends into the fine domain and vice versa.
Streaming distributions coming from either domain, instead
of stopping at the interface, proceed in the overlap region
on respective grids. The overlap regions consist of nodes
which form sponge layers [37]. At a sponge node, during each
collision, the distribution function is reduced by a fraction of
its value. Thus, the sponge layers gradually absorb the wave as
it propagates in the overlap region. This results in negligible
reflections back into the physical domain. However, physical
reflections are not affected as accurate boundary conditions
are still maintained at the interface. Macroscopic variables are
evaluated using distribution functions at legitimate coarse and
fine nodes.

V. NUMERICAL EXPERIMENTS

A. Waves in homogeneous media

The findings of the dispersion-relation analysis are re-
inforced through simulation tests in homogeneous media.
For test simulations, the source used to mimic the seismic
disturbance is

S(x,t) = −(1 − 4ξ 2) exp(−2ξ 2)δ(x − xs), (29)

where

ξ = 2πfc

3

(
t − 3

2fc

)
, (30)

and where central frequency fc = 10 Hz and wave velocity
vs(x) = 4 km/s. The source is located at a point xs in the
domain. The temporal variation of the source is shown in Fig. 8.
For homogeneous media, we set the mean density ρ0(x) =
1 kg/m3. The domain size for the simulation is 60λc, λc being
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FIG. 8. Time variation of model source for acoustic simulations.

the central wavelength and simulations are carried out with
grid resolution varying from 16 grid points per λc to four
grid points per λc. For the source term given by (29), wave
equation (1) admits an analytical solution (in Fourier space)

p̂(x,ω) = − ι

4

dS(x,ω)

dt
H

(2)
0 (k|x − xs |), (31)

FIG. 9. Simulations of waves in homogeneous medium. Panels
(a) and (b) show simulation using the BGK-LB scheme on D2Q5
and D2Q9 lattice respectively. Panels (c) and (d) show simulation
using the MRT-LB scheme on D2Q5 and D2Q9 lattice respectively.
The D2Q5 lattice with weights w0 = 0 and w1 = 1/4 and the D2Q9
lattice with weights w0 = 0, w1 = 0.01, and w5 = 0.24 are used. For
the MRT-LB simulation sp,se = 2 on both lattices. For the D2Q9
lattice, sε is also set to 2 and sq is set to 1. The grid resolution is 16
points per wavelength. The source is located at the center. Since the
BGK-LB D2Q9 dispersion relation deviates significantly from exact,
different wave numbers propagate at different speeds, resulting in a
series of trailing waves behind main wave front. These trailing waves
are eliminated in the MRT-LB simulation due to attenuation. Both
the BGK-LB and the MRT-LB simulations on the D2Q5 lattice are
identical and better than D2Q9.
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FIG. 10. The time responses of the medium at distance r = 21λ from source. Panels (a) and (b) show the time response from BGK-LB
simulation of wave propagation along θ = 0◦ and θ = 45◦ respectively. Panels (c) and (d) show the time response from MRT-LB simulation of
wave propagation along θ = 0◦ and θ = 45◦ respectively. Numerical results are compared with the analytical result. Both BGK- and MRT-LB
D2Q5 simulations are identical and the schemes capture the response pulse in close approximation to the analytical result. For the BGK-LB
D2Q9 simulation, the primary pulse arrives approximately at the same time as the analytical result. However, there are a series of trailing
response pulses after the main pulse. The MRT-LB D2Q9 simulation removes the trailing waves due to attenuation. But overall the performance
is less accurate than D2Q5.

where H (2)
n is the Hankel function of the second kind. The so-

lution in time domain is obtained by taking the inverse Fourier
transform. The wave is excited by the source (29) at a point
xs , typically at the center. The resulting waves propagate in all
directions. Figure 9 shows a snapshot of the propagating wave
front in the homogeneous medium. The LB simulations are car-
ried out using the 2D lattices D2Q5 and D2Q9. In the BGK-LB
D2Q5 and D2Q9 simulations, we use relaxation time τ = 1/2
(see Sec. II C). In the MRT-LB D2Q5 simulation we set only sp

and se equal to 2 and values of the other relaxation parameters
are not relevant. In the MRT-LB D2Q9 simulation, sε is also set
to 2 and sq is set to 1. For the D2Q5 lattice, simulations with the
MRT-LB scheme and the BGK-LB scheme are identical. For
both simulations, we see a distinct wave front with a compact
shape at θ = 45◦. For the BGK-LB D2Q9 simulation, we see
a trail of waves following the main wave front as the lattice
responds differently to waves of different spatial wave num-
bers. With the MRT-LB D2Q9 simulation, this trail of waves
is eliminated as dispersion performance improves (see Fig. 3).
However, the main wave front in the D2Q5 simulation is more
isotropic and less dispersed than in the D2Q9 simulation.

These results are compared to the exact analytical solution
(31) by studying the time response at different points in the
medium. In Fig. 10, the time response curve at two points in
the medium obtained using the BGK- and MRT-LB scheme on
D2Q5 and D2Q9 lattices is compared with the exact result. The

overall results for D2Q5 are better than for D2Q9, as expected
from the dispersion analysis.

These results suggest that the BGK-LB D2Q5 is the best
choice for simulating linear acoustic waves. A detailed look
at the time response pulse and a comparison with second- and
fourth-order finite-difference schemes for propagation along
θ = 15◦ and θ = 30◦ is presented in Fig. 11. We see that
BGK-LB D2Q5 and the second-order finite-difference scheme
results are comparable, consistent with the dispersion curves
in Fig. 6. Overall however, the fourth-order finite-difference
scheme is more accurate than the LB scheme. The simulations
at low grid resolution show similar trends.

B. Waves in heterogeneous media

The simulations in a heterogeneous medium are carried out
using the same source (29). The heterogeneous medium we
consider comprises two homogeneous media with different
sound speeds, joined together to form an interface. The ratio
of sound speeds in the two domains, i.e., velocity contrast, is
0.8. Accordingly, the grid on the left is coarse and the grid on
the right is fine. We implement the grid-refinement algorithm
discussed in Sec. IV. The results are shown in Fig. 12.

Figure 12(a) shows simulations in a homogeneous medium
with grid refinement. The source is located on the left, i.e.,
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FIG. 11. Comparison of the BGK-LB D2Q5 scheme with second- and fourth-order finite-difference schemes. Detailed view of time
responses at distance r = 21λ from source for wave propagation along θ = 15◦ shown in panel (a) and θ = 30◦ shown in panel (b).

coarse grid. The BGK-LB scheme on the D2Q5 lattice is used.
Waves propagate smoothly across the interface without any
artificial reflection. The only difference between the left and
the right is the resolution, which is eight points per wavelength
on the coarse side and 12.8 points per wavelength on the fine
side. Note that the simulated wave front is broader in the coarse
domain compared to Fig. 9(a). This is because resolution

FIG. 12. A snapshot of the propagating wave front using grid
refinement with the BGK-LB scheme on the D2Q5 lattice (a)
in a homogeneous (uniform) medium and (b) in a heterogeneous
(nonuniform) medium. For both the media, the left side is the
coarse computational domain and the right side is the fine compu-
tational domain. A line separating the two domains is also shown.
For the homogeneous medium, we see no artificial reflection at
the coarse-fine interface. For the heterogeneous medium, we see a
reflection at the interface because of the sound speed contrast (0.8)
between the coarse and fine domains.

in the coarse domain is lowered by a factor of 2 compared
to the resolution in the computational domain in Fig. 9(a).
Figure 12(b) shows the simulation in the heterogeneous
medium. Waves from the coarse domain suffer a reflection
when they cross the medium boundary. On the fine side, waves
propagate with a reduced speed.

VI. CONCLUSIONS

We have demonstrated a successful formulation of linear
acoustic wave propagation using the BGK- and MRT-LB
frameworks with a linear equilibrium distribution function,
proposed in [9]. Similar to analysis performed in [15] for the
conventional LB scheme, we develop a formalism to calculate
the dispersion relations for the linear BGK- and MRT-LB
scheme. With our formalism, it is possible to compare the
performance of various LB lattices for simulation of linear
acoustic waves. Our formalism is also useful in comparing
the dispersion relation of the LB schemes with standard
finite-difference schemes for a given Courant number. The
LB dispersion relations as well as numerical simulations are
in reasonable agreement with theoretical results.

Our dispersion analysis establishes that the fourth-order
finite-difference scheme is better than any LB numerical
scheme for the simulation of the linear acoustic waves. As with
the finite-difference schemes [21], the numerical dispersion of
the LB scheme is also anisotropic. Our dispersion analysis
shows that for the linear LB scheme, the numerical dispersion
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is most inaccurate if the wave is propagating along one of
the directions of LB particle streaming. Hence, the dispersion
relations for the D2Q9 lattice with the BGK and the MRT
schemes are worse than for the D2Q5 lattice. In general,
the dispersion performance of the LB scheme is degraded
as we increase the number of streaming directions on the
lattice. For the D2Q5 lattice however, the BGK and the
MRT dispersion performance is identical even with only
two relaxation parameters sp and se set equal to 2 in the
MRT scheme, a requirement necessary to recover macroscopic
equations (2) and (3). Thus, the BGK-LB scheme on the
D2Q5 lattice is the best suited LB numerical model for
seismic waves. Also, the BGK-LB D2Q5 scheme—which is
a second-order scheme—is comparable with the second-order
finite-difference scheme.

To keep the computational cost of simulation low, the
numerical scheme used should be sufficiently accurate even
with low grid resolution, i.e., the number of grid points
per wavelength. For heterogeneous media, the wavelength in
the domain changes as a function of the local sound speed.
Depending on the change in wavelength, the grid size needs to
be altered to maintain the number of grid points that resolve the
wave, i.e., the grid resolution. This requires a grid-refinement
algorithm for the LB scheme to smoothly accommodate the
change in the grid size across the computational domain. With
the grid-refinement algorithm presented here, it is possible
to maintain a uniform grid resolution and accuracy of the
simulation over the entire computational domain. We have
successfully implemented the algorithm to simulate waves
in heterogeneous media with velocity contrasts using the
BGK-LB scheme on D2Q5 lattice. The techniques used here
can be easily extended to 3D wave propagation problems
in much more complicated environments. Overall, the LB
scheme is therefore a promising tool for faster, cost-effective
simulation of waves in seismology.
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APPENDIX A: TRANSFORMATION MATRIX M

For the D2Q5 lattice,

M =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

−4 1 1 1 1

0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎦

,

and for the D2Q9 lattice,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

−4 −1 −1 −1 −1 2 2 2 2

0 1 −1 1 −1 0 0 0 0

4 −2 −2 −2 −2 1 1 1 1

0 −2 0 2 0 1 −1 −1 1

0 0 −2 0 2 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

APPENDIX B: CHAPMAN-ENSKOG ANALYSIS FOR THE
LINEAR MRT-LB SCHEME ON D2Q5 LATTICE

In the Chapman-Enskog multiscale expansion proce-
dure [16,17], the distribution function and the time and spatial
derivatives are expanded in terms of the small expansion
parameter ε (Knudsen number) [31],

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · · , (B1)

∂t = ε∂
(1)
t + ε2∂

(2)
t , ∂x = ε∂ (1)

x , (B2)

gi(x + ciδt,t + δt) =
∞∑

n=0

εn

n!
(∂t + ci · ∇)ngi(x,t). (B3)

Using these expansions in (14) (without the scalar source term)
and retaining terms only up to O(ε2) we obtain the following
equations (order by order in ε):

ε0 : g
(0)
i = g

eq

i , (B4)

ε1 :
(
∂

(1)
t + ci · ∇(1)

)
g

(0)
i = −(1/δt)

∑
j

Cij g
(1)
j

= −(1/δt)
∑

j

(M−1SM)ij g
(1)
j ,

(B5)

ε2 : ∂
(2)
t g

(0)
i + (

∂
(1)
t + ci · ∇(1)

)
g

(1)
i

+ (δt/2)
(
∂

(1)
t + ci · ∇(1)

)2
g

(0)
i

= −(1/δt)
∑

j

Cij g
(2)
j

= −(1/δt)
∑

j

(M−1SM)ij g
(2)
j . (B6)

Transforming these equations into the moment space gives

ε0 : m(0) = meq, (B7)

ε1 :
(
∂

(1)
t I + E ·∇(1)

)
m(0) = −(1/δt)Sm(1), (B8)

ε2 : ∂
(2)
t m(0) + (

∂
(1)
t I + E · ∇(1))m(1)

+ (δt/2)
(
∂

(1)
t I + E · ∇(1))2

m(0) = −(1/δt)Sm(2), (B9)
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where E = Mdiag(c0,c1,c2, . . .)M−1(diag refers to diagonal
matrix) and I is the identity matrix. Equation (B9) can be
simplified using (B8) as

ε2 : ∂
(2)
t m(0) + (

∂
(1)
t I + E · ∇(1)

)
(I − S/2)m(1) = −Sm(2).

(B10)

In the case of the D2Q5 lattice we have

M−1 =

⎡
⎢⎢⎢⎢⎢⎣

0.2 0.0 0.0 −0.2 0.0

0.2 0.5 0.0 0.05 0.25

0.2 0.0 0.5 0.05 −0.25

0.2 −0.5 0.0 0.05 0.25

0.2 0.0 −0.5 0.05 −0.25

⎤
⎥⎥⎥⎥⎥⎦

,

also

Ex =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0.4 0 0 0.1 0.5

0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,

Ey =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0

0 0 0 0 0

0.4 0 0 0.1 −0.5

0 0 1 0 0

0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

Using (15), components of the equilibrium moment vector are
obtained as

meq =

⎡
⎢⎢⎢⎢⎢⎣

ρ(0)

ρ0v
(0)
x

ρ0v
(0)
y

e(0)

p(0)
xx

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

ρ(x,t)

ρ0(x)vx(x,t)

ρ0(x)vy(x,t)

−4ρ + 10ρ(x,t)c2
s (x)

0

⎤
⎥⎥⎥⎥⎥⎦

.

For the conserved moments—fluctuating density and
momentum—ρ(k),ρ0v

(k)
x ,ρ0v

(k)
x = 0 for k > 0. Writing ρ =

ρ(x,t), v = v(x,t), ρ0 = ρ0(x), and cs = cs(x) and substituting
these values in (B8), we obtain at the O(ε) following set of
equations for each component of m:

m0 : ∂
(1)
t ρ + ∇(1) · (ρ0v) = 0, (B11)

m1 + m2 : ∂
(1)
t (ρ0v) + ∇(1)

(
ρc2

s

) = 0, (B12)

m3 : ∂
(1)
t

(
10ρc2

s

) + 5 ∇(1) · (ρ0v) = −(se/δt)e
(1), (B13)

m4 : ∂ (1)
x (ρvx) − ∂ (1)

y (ρ0vy) = −(sp/δt)p(1)
xx . (B14)

Similarly using (B10), we obtain at O(ε2), for the conserved
components of m [using e(1) and p(1)

xx from (B13) and (B14)

respectively]

m0 : ∂
(2)
t ρ = 0, (B15)

m1 + m2 : ∂
(2)
t (ρ0v) − δt

(
c2
s − 1

/
2
)
(1/se − 1/2)∇(1)

× [
∂

(1)
t

(
10ρc2

s

) + 5∇(1) · (ρ0v)
]

− (δt/2)(1/sp − 1/2)
{
∂ (1)
x

[
∂ (1)
x (ρvx) − ∂ (1)

y (ρ0vy)
]
x̂

+ ∂ (1)
y

[
∂ (1)
x (ρvx) − ∂ (1)

y (ρ0vy)
]
ŷ
} = 0. (B16)

Equations (B11) and (B15) add to give the continuity equa-
tion (2) (without the scalar source term). Since the D2Q5 lattice
cannot satisfy isotropy of the fourth-order tensor [17,33], the
exact recovery of the Navier-Stokes equation is not possible
from (B12) and (B16). However, by setting sp = 2 and either
se = 2 or c2

s = 1/2, the linear conservation of momentum (3)
is recovered.

APPENDIX C: FINITE-DIFFERENCE SCHEMES
USED FOR COMPARISON

The second-order accurate (O[2,2]) finite-difference solu-
tion of the linear wave equation is obtained by using centered
differences for the spatial and temporal derivatives,(

un+1
i − 2un

i +un−1
i

)/
�t2 = c2

(
un

i+1 − 2un
i + un

i−1

)/
�x2.

(C1)

The fourth-order accurate (O[2,4]) solution is obtained by
solving coupled equations (2) and (3) simultaneously. These
equations are of the general form

∂tu = a∂xv, ∂tv = b∂xu. (C2)

We use a four-point stencil for spatial derivatives as specified
below:

(
un+1

i − un
i

)/
�t

= a
(−vn

i+1 + 27vn
i − 27vn

i−1 + vn
i−2

)/
24�x, (C3)

(
vn+1

i − vn
i

)/
�t

= b
(−un+1

i+2 + 27un+1
i+1 − 27un+1

i + un+1
i−1

)/
24�x. (C4)

Note that we can also derive Eq. (C1) from Eq. (C2) by taking
second-order centered differences and eliminating v. We stop
the simulation well before the waves reach boundary of the
computational domain.

APPENDIX D: COURANT NUMBER
FOR THE LB SCHEME

The local Courant number given by (26) depends on the
local sound speed cs . For the LB scheme, the dependence
of C on lattice parameters can be deduced from (17). In
particular, for the D2Q5 lattice, the relation between C and
the rest particle weight w0 is given by

C =
√

1 − w0

2
. (D1)

The rest particle weight w0 is modulated in order to obtain the
locally varying lattice sound speed for heterogeneous media.
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However, it is essential to choose w0 such that C is always real
and less than unity which is always true for the D2Q5 lattice.
For homogeneous media, it is convenient to set w0 = 0 which
gives the maximum allowed Courant number Cmax = 1/

√
2

for the LB D2Q5 scheme. In the case of D2Q9, there is no
definite relation between C and w0. Hence, w0 needs to be
chosen carefully.

APPENDIX E: ANALYTICAL 1D DISPERSION RELATION
FOR MRT-LB D2Q5 SCHEME

The solution of the eigenvalue equation (25) gives the
dispersion relation for the MRT-LB scheme. For the D2Q5
lattice, the characteristic equation is a fifth-order polynomial
and hence writing down the general analytical solution is
not possible. However, one can obtain the analytical solution
for the propagation along the x axis (θ = 0◦) by considering
projection of the D2Q5 lattice on the x axis, i.e., the D1Q3
lattice (see Fig. 13).

In the D1Q3 lattice, the lattice velocities are c0 = (0,0)
and c1,2 = (±1,0). Using the constraints on the lattice weights
[Eq. (17)] and the lattice symmetry we have w1 = w2 = w

and w0 = 1 − 2w. Also the lattice sound speed cs = 2w

(homogeneous media). The matrix

M =

⎡
⎢⎣

1 1 1

0 1 −1

−2 1 1

⎤
⎥⎦

transforms distribution functions to the moments space vari-
ables m = {ρ,ρ0vx,e}. For the D1Q3 lattice, the matrix A in

FIG. 13. The D1Q3 lattice: Projection of the D2Q5 lattice in one
dimension.

Eq. (23) is

A =

⎡
⎢⎣

2w 2w − 1 2w − 1

−w 1 − w
(
1 + 1

/
c2
s

) −w
(
1 − 1

/
c2
s

)
−w −w

(
1 − 1

/
c2
s

)
1 − w

(
1 + 1

/
c2
s

)
⎤
⎥⎦.

Substituting this in the eigenvalue equation (25) yields the
characteristic equation

(λ + 1)
{
λ2 − λ 2

[
1 − 2c2

s sin2(k/2)
] + 1

} = 0, (E1)

where λ = exp(−iω). Clearly, one root is λ = −1 and hence
ω = π which corresponds to a nonpropagating mode. The
other roots are

λ = [
1 − 2c2

s sin2(k/2)
] ± i

√
1 − [

1 − 2c2
s sin2(k/2)

]2
. (E2)

With the choice [1 − 2c2
s sin2(k/2)] = cos θ , λ = exp (±iθ )

and eigenvalues for the propagating modes

ω = ± arccos
[
1 − 2c2

s sin2(k/2)
] = ±2 arcsin [cs sin (k/2)].

(E3)

This is identical to the 1D dispersion relation for the second-
order Fd scheme in(C1).
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