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Machine learning applied to proton radiography of high-energy-density plasmas
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Proton radiography is a technique extensively used to resolve magnetic field structures in high-energy-density
plasmas, revealing a whole variety of interesting phenomena such as magnetic reconnection and collisionless
shocks found in astrophysical systems. Existing methods of analyzing proton radiographs give mostly qualitative
results or specific quantitative parameters, such as magnetic field strength, and recent work showed that the
line-integrated transverse magnetic field can be reconstructed in specific regimes where many simplifying
assumptions were needed. Using artificial neural networks, we demonstrate for the first time 3D reconstruction
of magnetic fields in the nonlinear regime, an improvement over existing methods, which reconstruct only in
2D and in the linear regime. A proof of concept is presented here, with mean reconstruction errors of less than
5% even after introducing noise. We demonstrate that over the long term, this approach is more computationally
efficient compared to other techniques. We also highlight the need for proton tomography because (i) certain
field structures cannot be reconstructed from a single radiograph and (ii) errors can be further reduced when
reconstruction is performed on radiographs generated by proton beams fired in different directions.
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I. INTRODUCTION

Magnetic fields generated in laser-matter interactions are
of primary interest in high-energy-density physics [1]. For
example, magnetic fields generated by the Weibel instability
can explain the collisionless shocks that are found in young
galaxies and other astrophysical systems [2,3]. In inertial
confinement fusion, magnetic fields are used in one approach
to reduce heat losses and thus improve performance of
implosions [4], and in another approach (using cylindrical
implosions) as a necessary criterion to reach ignition [5]. Also,
magnetic reconnection is a commonly studied process, which
converts some of the magnetic energy of a system into heat,
and understanding the heating mechanism well could lead to
better hohlraum design for inertial confinement fusion [6].

Proton radiography is an extensively used technique that
characterizes electric and magnetic fields in plasmas over
a wide range of field strengths [7]. A polyenergetic proton
beam, with typical energies on the order of 10 MeV, is usually
produced by high-intensity laser interaction with solid targets
[8]. This beam then interacts with an object of interest (such
as plasmas or shock-compressed matter) and gets deflected as
a result of the Lorentz force or collisions with atoms [9]. The
outgoing beam is captured on a radiochromic film (RCF) stack,
which can resolve both spatial and energy profiles [10] (see
Fig. 1 for an example of an experimental radiograph). In this
paper we consider the case where the proton only interacts
with the magnetic fields of high-energy-density plasmas via
the Lorentz force, though our method also applies to other
forms of scattering.

Various methods have been developed in analyzing proton
radiographs. Using the principles of differential scattering and
stopping, density profiles of dense matter can be retrieved
from radiographs [11]. Via scaling laws, field strengths of
electric and magnetic fields can be estimated [12–14]. Also,
radiographs can be used to qualitatively understand electric and

magnetic field structures [15–17]. Furthermore, radiographs
can be simulated numerically in order to identify features
found in experimental radiographs [18,19].

It is only recently that techniques have been developed to
reconstruct fields. The relations between the field structures
and proton radiographs have been established by Kugland
et al. [20] under certain simplifying assumptions, allowing
one to obtain the line-integrated transverse magnetic field
from a radiograph by solving a 2D Poisson equation. Graziani
et al. [21] and Kasim et al. [22] provided extensions to this
technique, under similar assumptions. As such, radiographs
of systems that do not obey any of the assumptions in
Refs. [20–22] can only be analyzed qualitatively.

Machine learning, a field of study which enables the
performance of a computer (with respect to a certain task)
to increase with its experience, has seen many applications in
artificial intelligence problems such as image recognition, rec-
ommender systems, and speech-to-text [23]. Due to its ability
to discover structures in high-dimensional data, artificial neu-
ral networks (one example of machine learning) has seen many
applications in physics, such as analyzing particle accelerator
data [24], reconstructing images in optical tomography [25],
and retrieving 3D potentials in electron scattering [26]. The
flexible nature of artificial neural networks and the prevalence
of its usage in image recognition problems prompt us to posit
its usage in imaging 3D magnetic field structures without a
need for simplifying assumptions, addressing the gaps found
in existing radiograph inversion techniques.

In this paper, we first review existing work on inverting
proton radiographs. We then introduce key ideas of artificial
neural networks and review their applications in physics. Next,
we outline our new method of using artificial neural networks
to reconstruct, for the first time, 3D magnetic fields in the
nonlinear regime. We also suggest a simple way of retrieving
field parameters such as characteristic lengths. Via simulations,
we show a proof of concept for the above ideas and discuss how
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FIG. 1. Sample of an experimental radiograph. The whiter re-
gions indicate areas with higher proton intensity.

noise and selection of training data affect our results. Using
an example, we highlight the need for proton tomography.
Finally, we compare the artificial neural network technique
with the existing methods of radiograph inversion and suggest
a variety of extensions to our research.

II. THEORY

A. Existing methods of retrieving magnetic fields
from radiographs

In this subsection, we will outline the foundational work
on proton radiograph inversion by Kugland et al., move on
to discuss Graziani et al. and Kasim et al.’s extensions, and
conclude with the gaps in these methods.

First, we go through Kugland et al.’s [20] definitions: The
coordinates are defined such that the object is placed at z = 0
(object plane), and (x,y) refers to the coordinates on the image
plane (see Fig. 2). At the object plane, the proton’s coordinates
are denoted as (x0,y0). The distance between the proton source
and the object is l while the distance between the object to the
image plane (radiochromic film stack) is L. a, the characteristic

FIG. 2. Diagram of a typical proton radiography setup. A point
source of distance l away from the object emits a beam of protons
moving generally in the z direction. L is the distance between the
object and image plane.

length of the object, is assumed to be much smaller than l

(paraxial limit) and L � l for high magnification.
In order to get a tractable result, Kugland et al. have made

some simplifying assumptions. We start off with those relating
to the proton source: (i) The source can be treated as a point
source. Else, the radiograph will be blurred and the resolution
of field structures will be affected. (ii) The protons deviate
from their straight-line trajectories solely due to the Lorentz
force interaction with the object, and we can ignore space-
charge effects because the beam is charge-neutral as a result of
comoving electrons [27]. (iii) The angular width of the beam is
much greater than a/l so that intensity variations in the image
plane are due to proton interactions with the object, and not
the angular distribution of the proton beam.

Consider the dimensionless parameter

μ ≡ lβ

a
, (1)

where a is a characteristic length of the electromagnetic field,
and β is a characteristic deflection angle. One core assumption
in Kugland et al. is that μ � 1 (hence known as the linear
regime), where the spatial variation of the intensity on the
screen is small. This is in contrast to the nonlinear regime
(μ on the order of 1 or more) where the intensity variations
are large, leading to nonlinear features. One example of
nonlinear features is caustics, which occurs when the Jacobian
determinant ∣∣∣∣ ∂(x,y)

∂(x0,y0)

∣∣∣∣ = 0, (2)

resulting in features of high intensity (usually multiples of the
background intensity).

Furthermore, assuming that the velocity of the proton v
is approximately constant while the proton is within the
object (trajectories are not perturbed within the plasma so
dt = dz0/v), the only relevant component of the magnetic
potential is the one in the z direction, Az. Defining the
line-integrated potential as

�(x0,y0) =
∫ ∞

−∞
Az(x0,y0,z0)dz0, (3)

then with all the assumptions listed above, Kugland et al.’s
formula for radiograph inversion reads

∇2
⊥�(x0,y0) =

√
2mpK

el

(
1 − I

I0

L2

l2

)
, (4)

where ∇⊥ is the gradient with respect to the transverse
coordinates (x0,y0), mp is the mass of the proton, K is the
(nonrelativistic) kinetic energy of the proton, e is the charge of
an electron, I is the proton intensity distribution at the image
plane, and I0 is the proton intensity distribution in the object
plane. As such, given the intensity profile at the object plane
I0(x0,y0) and radiograph intensity profile I (x,y) (which can be
transformed to I (x0,y0) via the mapping x = L

l
x0,y = L

l
y0)

in the regime μ � 1, one can solve a 2D Poisson equation
to get the line-integrated potential �(x0,y0), thereby allowing
one to reconstruct the line-integrated transverse magnetic field
by taking the curl.

Using a series of perturbations, and assuming the linear
regime μ � 1, Graziani et al. [21] proposed a correction term
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in the right-hand side of Eq. (20) in Kugland et al. (Eq. (4)
in this paper), which leads to a second-order nonlinear partial
differential equation. The authors then conducted a simulation
of their proposed equation and found that their method
reconstructed the line-integrated magnetic field accurately at
locations near the peak field strength but was inaccurate at
locations where the field strengths are at least 3 orders of
magnitude less than the peak field strength. Also, Graziani
et al. briefly sketched a method to retrieve the line-integrated
magnetic field in the nonlinear regime, assuming that the
direction of the proton trajectory within the object is nearly
constant.

Another method, based on computational geometry, was
implemented by Kasim et al. [22]. This method works well in
the beginning of the caustic regime (early part of the nonlinear
regime where μ > 1), but the relative errors start to become
very large in the regime of branching caustics (later part of the
nonlinear regime). Also, Kasim et al. demonstrated the large
errors that come with solving the Poisson equation in Kugland
et al. for a system in the nonlinear regime.

So far, we have seen that existing methods of magnetic
field reconstruction require simplifying assumptions in order
to get an equation that, when solved, gives the line-integrated
transverse magnetic field or magnetic potential, which can be
used to derive the magnetic field. This highlights two gaps: (i)
In later parts of the nonlinear regime (e.g., branching caustics
regime), there is no known reconstruction method despite the
fact that nonlinear features do occur in some experimental
radiographs [28–30]. In this regime, experimental radiographs
are analyzed by comparison to simulated radiographs of a
hypothesized magnetic field structure. (ii) In both regimes,
there is no reconstruction method that can give the 3D magnetic
field. As we will demonstrate in the next few subsections, the
proposed artificial neural network method can address both
gaps.

B. Artificial neural networks (ANN)

Artificial neural networks are a class of models inspired by
biological neural networks, commonly used for tasks that are
too complicated for rule-based programming. A neuron, the
basic unit of an artificial neural network, takes an input vector
x, and returns a scalar output y given by

y = S(w · x + b), (5)

where w is the weight vector of the neuron, b is a bias term,
and S is an activation (or transfer) function, usually a nonlinear
function such as the sigmoid function s(t) = 1

1+e−t or the
hyperbolic tangent (see Fig. 3).

An artificial neural network consists of many of these
neurons joined by the inputs and outputs (i.e., the output
of several neurons is fed into the input of another neuron),
and parameterized by θ , the vector of weights and biases.
There are many variants of artificial neural networks such
as recurrent neural networks, cascade-forward networks, and
the feedforward neural network. A typical feedforward neural
network consists of an input layer with n inputs, hidden layers
of arbitrary numbers of neurons and an output layer of m

neurons (see Fig. 4). Information only moves forward (hence
the name feedforward), and between adjacent layers: The

FIG. 3. A neuron, the basic unit in an artificial neural network.
The input vector x is mapped to a scalar y via a nonlinear function
S. The connections represent the inputting of elements of x into the
neuron, and each connection is assigned a weight, which is used in
calculating the output.

output from the Lth layer strictly goes into the input of the
(L + 1)th layer. Essentially, the feedforward neural network is
a function that maps a vector in Rn to a vector in Rm.

One very powerful feature of feedforward artificial neural
networks is that with just a single hidden layer and any appro-
priate choice of activation function (the sigmoid or hyperbolic
tangent suffices), it can approximate any continuous function
to any desired degree of accuracy given enough neurons in
the hidden layer [31]. As such, feedforward artificial neural
networks are universal approximators, so if we encounter
errors during application, it must be due to (i) inadequate
learning, which can arise from insufficient training data or
improper implementation of the training process (more on the
training process in the next paragraph), (ii) insufficient neurons
in the hidden layer, or (iii) a stochastic relationship between
inputs and the desired outputs.

While Ref. [31] established that feedforward artificial
neural networks can express any continuous function, we
also need to know how to select the appropriate θ so that
the artificial neural network is a good approximation to our
desired function g(x). Given data on inputs x and targets g(x),
we can train the artificial neural network: Upon specifying an
objective function (e.g., mean-squared error between the target
g(x) and the output of the artificial neural network y(x,θ )), we
can use backpropagation [32] (a method of finding the gradient

FIG. 4. Schematic of a feedforward neural network, where the
outputs of one layer are fed into the inputs of an adjacent layer. It
takes a vector x ∈ Rn and outputs a vector y(x,θ ) ∈ Rm, where θ

represents the parameters (weights and biases) of the neural network.
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of the objective function with respect to θ ) in conjunction with
an optimization algorithm (e.g., stochastic gradient descent) to
iteratively adjust θ until the objective function is minimized.

Given the merits of artificial neural networks mentioned
above, it is no surprise that artificial neural networks are
being used in some areas of physics. In astrophysics, artificial
neural networks are being used to separate astrophysical
signals from the cosmic microwave background [33] and
to classify stars and galaxies [34]. In optical tomography,
Kamilov et al. [25] used artificial neural networks to enhance
the beam propagation method [35] and retrieve the index of
refraction of a 3D object. The images reconstructed from this
technique were found to be of higher quality than images
from optical diffraction tomography and Radon tomographic
reconstruction. In dynamical electron scattering experiments,
Van den Broek et al. used artificial neural networks to retrieve
3D potentials [26].

In terms of retrieving information from proton radiographs,
artificial neural networks can be used as an input-output map.
Given the radiograph pixel values as inputs, the artificial
neural network should output useful quantities related to the
B field. Such an artificial neural network can be trained (i.e.,
the weights are selected) by applying backpropagation and
optimization algorithms to many sets of input (radiograph
pixels) and target (B field quantities) examples. After enough
training examples, the artificial neural network will become
a tool that can estimate B field quantities given a radiograph.
One key strength of the artificial neural network method is
that the bulk of the computational cost comes from generating
training data and training the artificial neural network, which
is a one-off cost.

III. METHODS

A. Reconstruction of an arbitrary B field

In this section, we outline the steps to using an artificial
neural network to reconstruct any arbitrary B field. First, we
expand the magnetic field B(r) as a linear combination,

B(r) = α1B1

(
r − r1

σ1

)
+ α2B2

(
r − r2

σ2

)
+ . . .

=
N∑

n=1

αnBn

(
r − rn

σn

)
, (6)

where N is the number of terms used in the expansion,
αn is a scalar coefficient for the nth term, Bn is a “basis”
magnetic field, rn is the position offset of the field, and σn is a
scaling factor. With enough basis fields, one can describe fields
representative of those found in high-energy-density plasmas
[18], such as the Weibel instability. While not necessary, these
basis fields should be chosen such that most magnetic fields in
plasmas can be represented with as few basis fields as possible,
so that we require less training data to train the artificial neural
network. One possible way to achieve this is to use principal
components analysis (PCA) [36] on a large dataset of known
B fields in plasmas. Principal components analysis looks at
a large set of multidimensional vectors and first finds the
direction of highest variance in the data (the first principal
component), and then finds a set of vectors orthogonal to the

first principal component that explains the remainder of the
variance. While B(r) is a vector field, it can be converted into
a vector c for principal components analysis by concatenating
the magnetic fields at various different points, e.g., for a grid
that runs from 0 to 9 in the x, y, and z directions, we can write

c =

⎡
⎢⎢⎣

B(r000)
B(r001)

...
B(r999)

⎤
⎥⎥⎦, (7)

where rxyz is the vector (x,y,z). If such convenient basis fields
cannot be determined, we can use the fact that all magnetic
fields can be expanded in a basis written in the form of Eq. (7),
where each element of the vector corresponds to a basis field
(i.e., B1 corresponds to Bx(r000), B2 corresponds to By(r000),
B3 corresponds to Bz(r000), B4 corresponds to Bx(r001) and so
on).

Next, generate training data by creating variations of the
parameters αn, σn, and rn in the form

g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

r1
σ1
...

αN

rN

σN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

and then conducting numerical simulations (e.g., using soft-
ware packages mentioned in Refs. [18,19]) to obtain the ra-
diograph for each variation of the parameters. The radiograph
is expressed as a vector where each element represents the
intensity of the protons at a specific pixel.

Then, using the radiograph pixel values as inputs and
g as the targets, apply backpropagation and optimization
algorithms to train the feedforward neural network [32].
(This procedure selects the weights and biases of the neural
network and is done easily in most machine learning frame-
works/packages.) After training, the artificial neural network
is ready to reconstruct B fields: Input the radiograph into the
artificial neural network to obtain the predicted parameters
[in the form of Eq. (8)] and insert these values into Eq. (6).
See Fig. 5 for a schematic of the training and reconstruction
process.

B. Assumptions, practical considerations, and implementation

In our simulations, we have made some assumptions for
simplicity, but these assumptions are not crucial in the success
of our approach. We assumed that the probe beam only
interacts with the plasma via the B field (no electric fields
or collisions with matter). We also assumed that the proton
source is a point source, and the probe beam is a planar sheet
(velocities in the z direction, before deflection from the plasma,
are uniform). As feedforward artificial neural networks are
universal function approximators, in principle the technique
outlined in the previous section will still work even if the
assumptions are violated (e.g., protons interact with the electric
field of the plasma, protons collide with the plasma, proton
source is of finite size, probe beam follows a specific angular
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FIG. 5. Schematic of the prediction and reconstruction process.

distribution), as long as we include these effects during the
production of training data (radiographs).

To obtain the radiographs we start off with the Lorentz force
equation for B fields only, given by

dv
dt

= e

mp

v × B. (9)

This equation, along with dr
dt

= v was numerically inte-
grated given the initial conditions of r and v to get the final
positions of the protons on the screen. These final coordinates
are then binned in order to produce radiographs.

We used a fully connected (dense) feedforward artificial
neural network for simplicity, and we will discuss the pos-
sibilities of using other types of artificial neural networks
in Sec. V. Scaled conjugate gradient was the optimization
algorithm of choice during training because: (i) it is not RAM
intensive (this is an important factor because in order to get
more accurate results, training with more complicated B fields
and higher resolution radiographs are required, resulting in
an increase in the number of weights in the artificial neural
network. If the optimization algorithm does not scale well, an
impractical amount of RAM will be required); (ii) it can take
advantage of parallel CPU and GPU computing, allowing it to
run effectively on supercomputing clusters.

Before the training process, the entire data set is scaled so
that each feature of the input and target (e.g., σ1, α1, the proton
intensity in pixel 1 etc.) falls in the range [−1,1] to prevent
features of small magnitude from converging slowly during
optimization [37], and the scaling is undone afterwards. The
objective function was chosen to be the mean-squared error
(MSE) between the artificial neural network output and the
target.

Due to the flexibility of artificial neural networks, overfit-
ting (accidental modeling of noise) is an issue so early stopping
and neural network regularization are implemented. In early
stopping, training is halted when the errors start increasing
on a data set that was not used in the training process [38].

This is done by first splitting the entire simulated data set
into training, validation, and testing sets at random in the
ratio 70/15/15. The artificial neural network is applied to the
training set, and during each iteration the mean-squared error
for the validation set is calculated. Initially, after each iteration,
the artificial neural network becomes better at modeling the
physical phenomenon and the validation mean-squared error
will decrease. There will come to a point when the artificial
neural network starts to model the noise in the training set,
and the validation mean-squared error will stop decreasing
and eventually start increasing (see Fig. 6 for an illustration).
Training is halted after a specified number of iterations fail to
decrease the validation mean-squared error. In neural network
regularization [39], the objective function is modified by
adding a term proportional to the mean-squared weight, and
the constant of proportionality is known as the regularization
parameter (chosen via cross-validation). This penalizes the

Training itera�on 

Errors 

Valida�on error 

Training error 

Training beyond 
this point leads to 
overfi�ng 

FIG. 6. Typical curves of training and validation errors with
respect to training iteration. Beyond a certain point, the artificial
neural network starts to model noise, causing the validation error to
increase. Training should be halted when this happens.
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TABLE I. Parameters for simulations in the following subsections. The proton velocities for subsection F refer to protons in the beam fired
in the z direction.

Value in subsection A–E Value in subsection F

Ellipsoidal blob parameter a/mm 0.1 0.7
Ellipsoidal blob parameter b/mm 1
Flux rope height/mm 2 0.3
Flux rope parameter a/mm 0.8 0.5
Distance between proton source and object l/mm 7
Distance between object and screen L/mm 93
Number of neurons in input layer 2500 5000
Number of neurons in output layer 2 for subsections A, B, D, F and 1 for subsections C, E
Velocity of protons in the z direction/ms−1 106

Velocity of protons in the x, y direction/ms−1 Ranges from −5 × 104 to 5 × 104 Ranges from −6.9 × 105 to 6.9 × 105

neural network for having large weights or too many neurons,
thus encouraging simpler models.

At this point, the artificial neural network is used to predict
quantities on the testing set, and the testing errors are indicative
of the artificial neural network’s overall performance. For each
simulated data set, the training process is run with the number
of neurons in the hidden layer ranging from 10 to 100 in
steps of 10, and the configuration with the lowest value of
the objective function (mean-squared error plus regularization
term) is initially picked. If the value of the objective function
is still decreasing when 100 neurons are used, then the search
is extended in steps of 10 till 150 neurons. Once a single-layer
configuration is picked, another search is performed with
multiple hidden layers (in increments of one layer), up to
five hidden layers. Similarly, if the value of the objective
function is still decreasing when five hidden layers are used, the
search is extended to ten hidden layers. After this search, the
configuration with the lowest value of the objective function
is picked and reported in the Results section.

C. Retrieval of specific parameters

The idea presented in Sec. III A requires large amounts of
data and processing power, and might be more than necessary
if the user only intends to retrieve certain parameters of the
B field, such as the peak field strength or the full width half
max (FWHM) of a Gaussian magnetic flux rope, instead of
reconstructing the entire field. This assumes that the user
already knows the remainder of the parameters beforehand.
For example, if the user only wants to retrieve the peak B field
strength (proportional to the αi coefficient), then the model
of the B field, the offset ri, and the scaling factor σi must
be known. In this case, the user can repeat the procedure
in Sec. III A, except with the following changes: (i) data is
generated by varying only the parameter(s) of interest; (ii) the
target vector consists of only the parameter(s) of interest. In
fact, this can be applied to parameters other than αi, ri, and
σi . For example, in an ellipsoidal magnetic blob (which is a
spheroid), there are two characteristic lengths, one characteriz-
ing the length in the xy plane a and the other characterizing the
length along the z-axis b. If the user knows all other parameters
and wants to retrieve a and b, then an artificial neural network
trained on simulated radiographs which variation is only due
to varying values of a and b will do the job.

IV. RESULTS AND DISCUSSION

We have simulated special cases of Eq. (8) as a proof
of concept of the idea in Sec. III A. All results shown here
come from applying a trained artificial neural network on the
testing set (which is not used in training the artificial neural
network), and is indicative of the performance when tested on
experimental data. Some of the simulation parameters used in
the following subsections can be found in Table I.

A. Reconstructing magnetic fields, a proof of concept

Consider the following two fields: (a) a magnetic ellip-
soidal blob, representative of fields generated by the Weibel
instability [2], that can be written as

Bφ = B0
r0

a
exp

[
−

(
r2

0

a2
+ z2

0

b2

)]
, (10)

where B0 is proportional to the peak field strength, r0 is the
distance to the center in the xy plane, z0 is the distance to
the center along the z axis, and a, b are characteristic lengths
of the ellipsoid; (b) a magnetic flux rope of Gaussian cross
section, representative of fields due to laser generated plasma
flows [40], can be written as

By = B0exp

(
−x2

0 + z2
0

a2

)
, (11)

where B0 is the peak field strength, x0 and z0 are the distances
to the center along the x and z axes, respectively, and a is a
characteristic length of the Gaussian.

In terms of Eq. (8), we assign α1 to B0 of the magnetic
ellipsoidal blob and α2 to B0 of the magnetic flux rope. α1 was
varied from 5 to 6 T (defocusing) in steps of 0.01 T while α2

was varied from 2.01 to 3 T in steps of 0.03 T, and all other
parameters were kept constant. Radiographs of 50 by 50 pixels
were generated for each configuration. As mentioned earlier,
70% of these radiographs were randomly chosen to train the
artificial neural network, 15% were randomly assigned to the
validation set to prevent overfitting, and the trained artificial
neural network was used to predict the α1 and α2 values on
the remainder 15% of the radiographs. The errors, defined as
| predicted value−actual value

actual value |, are plotted in Fig. 7. We see that nearly
all the errors are less than 5%, suggesting that the full scale
implementation outlined in Sec. III A will work given enough
basis fields. Though there are some undesirable outliers in α2,
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FIG. 7. Error histograms for the α coefficients of two basis fields,
using an artificial neural network with 1 hidden layer consisting of
10 neurons. The mean errors are 0.34% and 2.74%, while the median
errors are 0.20% and 1.29% for α1 (ellipsoidal blob, left) and α2 (flux
rope, right), respectively. More parameters can be found in Table I.

it is likely to be a result of inadequate data rather than a flaw
in the artificial neural network method. This will be discussed
in Sec. IV E.

B. Obtaining B field parameters from a
magnetic ellipsoidal blob

In this subsection, we demonstrate that (i) the artificial
neural network method works in the nonlinear regime, and
(ii) the parameter retrieval concept in Sec. III C can be done.
Here, we retrieve the field strength coefficient α and the scaling
factor σ .

Radiographs for a magnetic ellipsoidal blob were generated
with α [representing B0 in Eq. (10)] ranging from 0.1 to 0.3 T
(defocusing) in steps of 2 × 10−4 T and σ ranging from 0.9 to 1
in steps of 0.02. This spectrum of α spans both the caustic and
noncaustic regime, as can be seen by the radiographs plotted
in Fig. 8. The histogram of errors are plotted in Fig. 9. We can
see that the average errors are well below 1%, suggesting that
artificial neural networks can be used for parameter retrieval,

2000

4000
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8000

500

1000
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FIG. 8. Left: Radiograph for a magnetic ellipsoidal blob at B =
0.1 T, σ = 1. This is in the noncaustic regime, where the ring around
the center is smeared out. Right: Radiograph for a magnetic ellipsoidal
blob at B = 0.3 T, σ = 1. This is in the caustic regime, where most
of the protons fall into a very thin ring. The scales are in arbitrary
units.

FIG. 9. Error histograms for α (left) and σ (right) for a magnetic
ellipsoidal blob, using an artificial neural network with 1 hidden layer
consisting of 50 neurons. The mean errors are 0.26% and 0.05% while
the median errors are 0.20% and 0.04% for α and σ , respectively.
More parameters can be found in Table I.

an alternative to reconstructing entire magnetic fields. We also
see that this method works in the nonlinear regime, where
μ ≈ 2.

C. Branching caustics

The power diagram method [22] gives relative errors of
more than 10% in the branching caustics regime. Here we show
that the artificial neural network method is flexible enough
to accommodate this scenario. We extend the range of field
strengths in Sec. IV B to range from 0.1 to 1.5 T in steps
of 2 × 10−4 T, spanning the linear, caustic, and branching
caustic regime. As an illustration, the horizontal profile of the
radiograph at 1.5 T (branching caustics regime) is plotted in
Fig. 10. The error histogram is plotted in Fig. 11 and we can
see that all the errors are well below 1%.

D. Effect of noise on accuracy

So far we have shown that artificial neural networks trained
on noise-free radiographs can retrieve quantities from noise-
free radiographs with a high accuracy. We proceed to explore
the changes in accuracy when noise is introduced into all the
radiographs (training, validation, and testing sets). Suppose
a pixel in the radiograph has a value of χ and we want to
introduce random noise of x%. Then each pixel is replaced by
a random value from a Gaussian distribution with a mean of
χ and a standard deviation of χ × x%. This was done for x

= 5, 10, 20, and 30 percent on the radiographs in Sec. IV B,
and the entire process of training and prediction was repeated.
The error histograms for α and σ are plotted in Fig. 12. We
notice that for both quantities, it takes an increase from 5% to
30% noise in order to roughly double the mean and median
errors. This demonstrates the robustness of artificial neural
networks to noise, although noise does occasionally cause
very high errors. It is worth noting that the right model to
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FIG. 10. Horizontal profile of a radiograph for a magnetic
ellipsoidal blob at 1.5 T, the branching caustics regime. Notice that
there are two maxima in the intensity profile, instead of one in the
case of the caustic regime.

use is Poisson noise, but that model approximates Gaussian
noise for a large number of particles per pixel, which is true in
our case. The relationship between errors and input noise for
various configurations of artificial neural networks is further
explored in Refs. [41–44].

E. Effect of the amount of training data on accuracy

While the artificial neural network method seems promising
so far, it is reliant on the large amounts of training data (specif-
ically, the amount of information in the data, or information
entropy) for its accuracy. To elucidate this fact, we generated

FIG. 11. Error histogram of α for a magnetic ellipsoidal blob
spanning the linear, caustic, and branching caustic regime, using an
artificial neural network with 1 hidden layer consisting of 10 neurons.
The mean error is 0.06% while the median error is 0.04%. More
parameters can be found in Table I.

data for a magnetic ellipsoidal blob and varied only α between
the values 0.1 to 1.5 T, similar to the scenario in Sec. IV C,
except with a larger step size of 10−3 T. The error histogram is
plotted in Fig. 13. In comparison to Fig. 11, we see that having
a larger step size and thus having less information leads to
an increase in errors. This, combined with the universality
of the artificial neural network proved in Ref. [31], suggests
that extreme outliers in errors can be overcome by generating
more data that increases the information entropy of the data set
and retraining the neural network. The relationship between
errors and size of data set for various configurations of artificial
neural networks is further explored in Refs. [44–47].

F. Limitations of proton radiography and the need
for proton tomography

Proton radiographs do not necessarily form one-to-one
relationships with field structures: Suppose that at the edge
of a plasma that is facing the proton beam, there is a very
strong B field that deflects the incoming protons before
these protons could penetrate further. Then the radiograph
formed is independent of the B fields in the remainder of
the plasma, because no protons interact with it. Due to the
lack of information in the radiographs, no method can fully
reconstruct the B fields. As such, there is a need to modify
the experimental setup to capture more information from the
B field.

One possible way to capture more information is to include
more probe beams in different directions (tomography). As an
example, consider two adjacent field structures, the ellipsoidal
blob (field strength parameter assigned to α1, ranging from
9 to 9.25 T in steps of 0.005 T) and the flux rope (field
strength parameter assigned to α2, ranging from 0.3 to 0.4
T in steps of 0.002 T), with the former obscuring the latter
in the z direction by 0.5 mm. When the artificial neural
network method was used on radiographs due to a beam fired
in the z direction, the errors in the retrieved field strength
of the flux rope are very high (top panel, Fig. 14) due to
the lack of protons probing the field structure. When another
probe beam was fired in the x direction (with x velocity of
106 ms−1 and y, z velocities ranging from −2 × 105 ms−1 to
2 × 105 ms−1) and the radiographs were used in addition to the
ones from the probe beam in the z direction, errors for both field
strengths decrease by at least an order of magnitude (bottom
panel, Fig. 14). This demonstrates two facts: (i) the artificial
neural network method (and any other method) cannot fully
reconstruct magnetic fields if the radiographs carry insufficient
information; (ii) including more information decreases errors,
even if the field structure is not obscured, as can be seen by
the reduction in errors for α1 in Fig. 14. We hope this will
inspire future work on theoretical error bounds in artificial
neural networks given the lack of information in the data set.

G. Comparison with the existing radiograph
inversion techniques

The artificial neural network method addresses the two gaps
in existing reconstruction techniques, by being able to work
in the nonlinear regime (such as the branching caustic regime)
and to produce 3D reconstruction of the magnetic field. While
existing inversion techniques rely on the paraxial limit for
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FIG. 12. Error histograms of α and σ when 5, 10, 20, and 30 percent noise is introduced into the radiographs for a magnetic ellipsoidal
blob. The artificial neural network configurations are: 8 hidden layers with 80 neurons per layer, 5 hidden layers with 50 neurons per layer, 6
hidden layers with 70 neurons per layer, and 7 hidden layers with 100 neurons per layer for 5, 10, 20, and 30 percent noise, respectively. For
α, the mean errors are 0.92%, 1.14%, 1.49%, and 1.91%, while the median errors are 0.73%, 0.82%, 1.19%, and 1.46% for 5, 10, 20, and 30
percent noise, respectively. For σ , the mean errors are 0.18%, 0.24%, 0.31%, and 0.41%, while the median errors are 0.14%, 0.18%, 0.25%,
and 0.31% for 5, 10, 20, and 30 percent noise, respectively. Notice that it takes an increase from 5% noise to 30% noise in order to roughly
double the mean and median errors, indicating that the artificial neural network method is robust to noise. More parameters can be found in
Table I.

simplicity, the artificial neural network technique does not
rely on such a limit, and in fact would benefit more if the
paraxial limit was not used—the protons should ideally have
nonzero velocities in the x and y directions so that it will

FIG. 13. Error histogram in α for a magnetic ellipsoidal blob
(more parameters in Table I) when the step size is increased by a
factor of 5, leading to less data. The mean error is 0.20% and the
median error is 0.16%, using an artificial neural network with 7
hidden layers with 40 neurons per layer.

be deflected by Bz, allowing the artificial neural network to
capture more information and thus reconstruct the magnetic
fields more accurately.

Also, existing techniques assume that the protons move in
a straight line within the plasma, but this assumption does not
hold when the B field is so strong that deflection occurs within
the plasma. As a result, the existing techniques will inevitably
fail in the limit of extremely large B fields. In comparison, the
neural network method will work because it does not require
this assumption.

One major benefit of using artificial neural networks is the
long-run computational cost savings. Generating each set of 50
by 50 pixel radiographs (one radiograph for each variation of
parameters) takes on the order of hours and days using 16 cores
on one node of the Arcus Phase B supercomputer [48]. Training
the artificial neural network takes on the order of minutes and
hours when using a single GPU on the Arcus Phase B, for
neural networks with up to 10 hidden layers, with each layer
consisting of up to 150 neurons. Reconstruction takes on the
order of seconds without using any parallel processing or GPU.
If this project were to go full-scale, we can see that most of
the computational cost is in the generation of training data and
the training of the artificial neural network, which is a one-off
cost. In comparison, existing methods of reconstruction have
a recurring cost. As such, over the long run, if the artificial
neural network is used to invert sufficiently many radiographs,
the artificial neural network method is computationally more
efficient.
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FIG. 14. Error histograms of α1 (left) and α2 (right) for two
scenarios. Top panels: Using radiographs generated by proton beams
in the z direction as training data, the mean errors are 1.20 × 10−2%
and 3.48% while the median errors are 3.59 × 10−3% and 2.50%
for α1 and α2, respectively, using an artificial neural network with 1
hidden layer consisting of 30 neurons (more parameters in Table I).
The errors for α2 (field strength of the flux rope) are high because the
field structure associated with α1 (ellipsoidal blob) is deflecting many
protons away from the flux rope, causing a lack of information in the
resulting radiographs. Bottom panels: Using radiographs generated
by proton beams in the z and x directions as training data, the mean
errors are 1.81 × 10−4% and 0.11% while the median errors are
1.41 × 10−4% and 8.68 × 10−2% for α1 and α2, respectively, using
an artificial neural network with 1 hidden layer consisting of 110
neurons. We see that upon including data from the proton beam in
the x direction, more information for both field structures is added to
the data set and errors reduce by at least an order of magnitude.

However, the artificial neural network method has some
drawbacks. For example, the overall accuracy of the artificial
neural network can only be determined empirically, whereas
error propagation can be performed for existing techniques.
While the artificial neural network method will allow for
computational cost savings over the long run, the minimal
startup computational cost to get it working for a nontrivial
field structure is quite high, because the artificial neural
network must be trained with many basis fields before it can
be used. This is in contrast to existing techniques, where any
field, as long as the assumptions are met, can be imaged with
the computational cost of solving a differential equation.

V. CONCLUSIONS AND FUTURE WORK

In conclusion, we have reviewed existing techniques on
analyzing B fields from proton radiography and the basics
of artificial neural networks. Using the fact that artificial
neural networks are highly flexible function approximators,
we proposed for the first time the idea of using artificial
neural networks to reconstruct arbitrary B fields and retrieve
important field parameters.

Via simulations, we showed that an artificial neural network
can reconstruct B fields that can be expressed as linear

combinations of two fields, and retrieve useful quantities
of B fields such as characteristic lengths. We also explored
the effects of noise and size of data set on the accuracy of
the artificial neural network, and found that artificial neural
networks are robust to noise. Artificial neural networks can
accommodate a wide variety of scenarios and assumptions
which existing techniques cannot, such as the branching
caustics part of the nonlinear regime. We also highlighted the
need for proton tomography as certain field structures cannot
be reconstructed fully due to the lack of information from a
single radiograph.

As the usage of artificial neural networks in diagnosing
B fields in high-energy-density plasmas is new, there are
many avenues where this work can be developed further.
For example, we can explore the effects of a mismatch in
noise between the training set and testing set, because the
noise in experimental data is not known beforehand. There are
at least three ways to improve the accuracy of the artificial
neural network: (i) experiment with other types of artificial
neural network architecture. For example, convolutional neural
networks are a type of feedforward artificial neural network
where the connections between neurons are inspired by the
animal visual cortex [49] and, as such, perform very well in
image recognition. Since radiograph inversion involves image
recognition, convolutional neural networks could offer better
performance than the fully connected (dense) feedforward
neural network used in this paper. Recurrent neural networks
are a class of artificial neural networks where the neuron
connections form directed cycles, and such architecture has
advantages in analyzing time series data. We could use recur-
rent neural networks on a time series of proton radiographs to
shed light on the dynamics of the B field and hence the plasma.
(ii) Include energy-resolved radiographs. In our simulations,
we only looked at the spatial distribution of the protons,
so including extra information on the proton energies could
improve accuracy. (iii) Study the effects of the number of pixels
on accuracy. It is interesting to note that promising results were
obtained despite the low resolution of the radiographs (50 by 50
pixels). Understanding the effects of discretization noise could
help us determine the quality of radiographs to be generated
in order to train an artificial neural network to a specific
accuracy.

Furthermore, the artificial neural network approach can
be extended to similar systems, such as diagnosing electric
fields in plasmas or characterizing micromagnetic patterns in
magnetic media via electron scattering [50]. Finally, a full-
scale implementation of an artificial neural network that can
reconstruct any B field is a possibility we can look forward to.

ACKNOWLEDGMENTS

The authors acknowledge the support from the plasma
physics HEC Consortium EPSRC Grant No. EP/L000237/1,
as well as the Hartree Centre, Daresbury Laboratory, Central
Laser Facility, and the Scientific Computing Department at the
Rutherford Appleton Laboratory. The authors acknowledge
the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work [48]. N.C.
acknowledges financial support from the Singapore govern-
ment. M.F.K. gratefully thanks the Indonesian Endowment

043305-10



MACHINE LEARNING APPLIED TO PROTON . . . PHYSICAL REVIEW E 95, 043305 (2017)

Fund for Education for its support. M.C.L. thanks the Royal
Society Newton International Fellowship for support. The

authors acknowledge support from OxCHEDS and P.A.N. for
his William Penney Fellowship with AWE plc.

[1] S. Eliezer, Plasma Phys. Control. Fusion 45, 181 (2003).
[2] C. Huntington, F. Fiuza, J. Ross, A. Zylstra, R. Drake, D. Froula,

G. Gregori, N. Kugland, C. Kuranz, M. Levy et al., Nature Phys.
11, 173 (2015).

[3] M. L. Bernet, F. Miniati, S. J. Lilly, P. P. Kronberg, and M.
Dessauges-Zavadsky, Nature 454, 302 (2008).

[4] O. V. Gotchev, P. Y. Chang, J. P. Knauer, D. D. Meyerhofer, O.
Polomarov, J. Frenje, C. K. Li, M. J.-E. Manuel, R. D. Petrasso,
J. R. Rygg, F. H. Séguin, and R. Betti, Phys. Rev. Lett. 103,
215004 (2009).

[5] M. Basko, A. Kemp, and J. Meyer-ter-Vehn, Nuclear Fusion 40,
59 (2000).

[6] P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S.
Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay,
M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W.
Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K.
Krushelnick, Phys. Rev. Lett. 97, 255001 (2006).

[7] M. Roth, J. Instrument. 6, R09001 (2011).
[8] National Research Council, Division on Engineering and Phys-

ical Sciences, Board on Physics and Astronomy, Committee
on High Energy Density Plasma Physics, and Plasma Science
Committee, Frontiers in High Energy Density Physics: The
X-Games of Contemporary Science (National Academies Press,
2003).

[9] A. Ravasio, L. Romagnani, S. Le Pape, A. Benuzzi-Mounaix,
C. Cecchetti, D. Batani, T. Boehly, M. Borghesi, R. Dezulian,
L. Gremillet, E. Henry, D. Hicks, B. Loupias, A. MacKinnon,
N. Ozaki, H. S. Park, P. Patel, A. Schiavi, T. Vinci, R. Clarke,
M. Notley, S. Bandyopadhyay, and M. Koenig, Phys. Rev. E 82,
016407 (2010).

[10] F. Nürnberg, M. Schollmeier, E. Brambrink, A. Blažević, D.
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