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We present a general framework for classifying partially observed dynamical systems based on the idea of
learning in the model space. In contrast to the existing approaches using point estimates of model parameters
to represent individual data items, we employ posterior distributions over model parameters, thus taking into
account in a principled manner the uncertainty due to both the generative (observational and/or dynamic noise) and
observation (sampling in time) processes. We evaluate the framework on two test beds: a biological pathway model
and a stochastic double-well system. Crucially, we show that the classification performance is not impaired when
the model structure used for inferring posterior distributions is much more simple than the observation-generating
model structure, provided the reduced-complexity inferential model structure captures the essential characteristics
needed for the given classification task.
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I. INTRODUCTION

Classification is a basic machine learning task. Conven-
tional classification algorithms operate on numerical vectors.
Over the past decade, such algorithms have been extended
for classifying data with more complex structure, e.g., time
series data [1,2]. In many real-world applications, time series
data can be irregularly and/or sparsely sampled. This poses
a challenge for time series classification. On the other hand,
the data-generating processes in such applications could be
well understood and mechanistic models accounting for the
data structure could have been developed in the form of
dynamical systems. Using such mechanistic models in time
series classification would allow for natural incorporation of
the domain experts’ knowledge. In this setting, time series
data can be seen as partial observations of the underlying
dynamical system and the machine learning task becomes
classification of partially observed dynamical systems. In this
work, we formulate and validate a general framework for such
classification tasks.

Xing et al. [2] distinguish two major conventional ap-
proaches to time series classification, in particular, feature-
based and distance-based approaches. Feature based ap-
proaches construct discriminative features on the time series
data. These can be local patterns (i.e., short subsequences) [3],
or global ones resulting from time-frequency and wavelet
analysis [4]. Distance-based methods classify time series
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based on a distance (e.g., Euclidean distance) between time
series pairs. This approach is not directly applicable for the
time series of variable length. To circumvent this problem,
“dynamical time wrapping” (DTW) methods have been devel-
oped. In DTW two time series are aligned according to some
criteria so that a distance can be calculated [5]. However, such
approaches are not applicable for classifying irregularly and
sparsely sampled time series. More importantly, they do not
utilize the available experts’ knowledge about the underlying
processes. Alternatively, model-based approaches have also
been adopted for time series classification, e.g., hidden Markov
model (HMM)–based approaches for biological sequence
classification [6]. In those approaches, a prototypical time
series model is constructed for each time series class. For
example, if the prototypical model is probabilistic, the class
label for a new time series is given by the model with the
highest likelihood for that time series (or the highest posterior
probability, if class priors are available). However, a single
model may not adequately represent all time series in the
given class. From this point of view, it is more desirable to
represent time series by individual models. In this setting, the
classifier employed classifies individual models (that stand for
individual time series) and thus operates in the model space.
We refer to this approach as “learning in the model space”
(LiMS) and have adopted it for classifying partially observed
dynamical systems.

In most LiMS methods for time series classification, given
a time series, a point estimate of model parameter is used to
represent that time series. Such estimates could be used directly
as feature vectors. In this case, any vector-based classifier
could be employed for the task. For example, Brodersen
et al. [7] employ the dynamic causal model (DCM) [8] to
represent individual functional magnetic resonance imaging
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(fMRI) data from each participant. The maximum–a posteriori
estimates of a model parameter were then used as feature
vectors for classifying DCMs. In Chen et al. [9,10], a reservoir
computation model was used as a generic nonparametric model
to represent nonlinear time series data. A high dimensional
dynamical reservoir was fixed and individual time series
were represented by the corresponding read-out mappings
from the generic dynamic reservoir. The estimated read-out
parameters were then used as a feature vector for time series
classification. In both approaches, their respective parameter
space is considered as a linear metric space and its global
metric tensor can be learned in a supervised manner, so as to
improve the classification performance.

Other LiMS approaches use direct model distances (e.g.,
geodesic on the model manifold) instead of global metric
in the parameter space. Such approaches treat the parameter
space as a nonlinear metric space and learn metric on the
underlying manifold. Such a nonlinear structure could be
induced by the intrinsic properties of the underlying processes,
or by the constraints imposed on the models [e.g., stability of
autoregressive (AR) models]. To compute geodesic distances,
one can first reconstruct the underlying metric tensor field
in the parameter space. Cuzzolin [11] and Cuzzolin and
Sapienza [12] propose a general framework based on pullback
metric to learn discriminative metric tensors in the space
of linear dynamical systems (LDSs) and hidden Markov
models (HMMs), respectively. The manifold structure in the
parameter space is induced by stability constraints on the
LDS parameters, or by normalization constraints on the HMM
parameters.

Yet another class of LiMS approaches is formulated in
the framework of kernel machines. Although the employed
kernels do not fully recover the underlying metric tensor
field, they still define useful distance functions that account
for the underlying nonlinear structure in the parameter space.
Typically, the kernels used have been developed to operate
on probability distributions or measures, for example, ker-
nels based on (information-theoretic) divergence functions
between two distributions (e.g., KL divergence [13]). In
particular, Chan and Vasconcelos [14,15] used KL kernels
on vector autoregressive (VAR) models to classify dynamic
textures in video sequence analysis. Jebara et al. [16] proposed
the probability product kernel (PPK), which can be seen
as a dot product in the function space of two probability
distributions. Bhattacharyya kernels, a special case of PPK,
are related to the Hellinger distance between two functions. In
Jebara et al. [16] PPK kernels were used to classify both LDS
and HMM. Computation of KL and PPK kernels is analytically
tractable only for simple classes of dynamical systems, such
LDS and HMM. In general, their computation could be very
expensive, since it can involve an infinite-dimensional integral
over all possible state trajectories; Binet-Cauchy kernels could
be seen as a counterpart of PPK kernel for deterministic
dynamical systems [17,18]. In contrast to PPK, Binet-Cauchy
kernels are defined as a dot product in the trajectory space.
For deterministic systems, their trajectories are completely
determined by their model parameters and the initial states.
Extension of Binet-Cauchy kernels to stochastic dynamical
systems is related to kernel mean embedding (KME) [19].
In KME, the embedding maps each distribution onto the

Hilbert space induced by a chosen kernel [20]. In essence,
PPK and KME are two kernels developed for classification of
probability densities, distributions, or measures. When PPK
and KME kernels are applied to classification of stochastic
dynamical systems, they effectively operate on probability
measures over system trajectories. Each measure is specified
by a model parameter vector and a point estimate of this
parameter vector is usually inferred from data so as to specify
the corresponding measure.

Finally, we mention two kernels used in the literature for
model-based time series classification that fall outside the
LiMS framework since no individual models are inferred
from individual time series. The Fisher kernel proposed by
Jaakkola and Haussler [21] uses a single fixed time series
model. Each time series is then represented by a tangent
vector in the tangent space of that model. The AR kernel
proposed by Cuturi and Doucet [22] is a marginalization kernel
applied to AR models [23]. Each time series is represented by
a (infinite-dimensional) “profile vector”—the AR likelihood
for a set of model parameters, given that time series. The
kernel between two time series is the dot product of the
two corresponding profile functions, weighted by a prior
distribution over the AR parameters.

In this paper, we present a general framework for classifying
partially observed dynamical systems based on LiMS. One key
ingredient of this framework is that given a model structure of
parametrized dynamical systems, we represent each partially
observed dynamical system (i.e., each time series) by a
posterior distribution over model parameters. In contrast to all
model-based approaches surveyed above, our approach takes
into account the model uncertainty around each individual
model. This is of particular relevance for the sparsely sampled
time series as it could give rise to a considerable amount of
uncertainty around the inferred model. For the classification
task, we not only employ PPK and KME, two well-established
distributional kernels, to classify those posterior distributions
but also develop a distributional classifier specifically based
on LiMS. The differences between inclusion of various types
of treating model uncertainties (KME, PPK, LiMS) in the final
stage of the classification process are studied and spelled out
explicitly in Sec. IV.

To precisely present our LiMS framework, we clearly
distinguish between model structure, structural model, model
(instance), and (model) class, and model parameter. As
dynamical systems are of our primary interest, the term “model
structure” occurring in this paper refers to a particular causal
relationship between state variables and their time derivative
[see Eq. (1)]. This relationship is usually parametrized, which
induces a metric parameter space. Structural model refers
to a family of dynamical systems with a common model
structure—parameter settings can vary. A dynamical system
with a particular parameter setting is referred to as a model.
A class of models is a subset of all models within a given
structural model—their model parameters either occupy a
domain in the parameter space or are sampled from a class-
conditional probability distribution over the model parameters.

In the experiments we evaluate the performance of the
three classifiers (LiMS, PPK, and KME) on two test beds,
one representant of ODE (GnRH, Sec. V A), the other of
SDE (SDW, Sec. V B). For a fair comparison all three
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classifiers were implemented in the framework of kernel logis-
tic regression (KLR, Section III B). Our study addressed two
important issues for classifying partially observed dynamical
systems (PODS):

(1) The influence of model uncertainty on classification in
the model space. Model uncertainty arises when the underlying
system is not completely observed. It is represented through
posterior distribution over the model parameters inferred from
the partial observations. It is natural to expect that the posterior
over possible model parameters, given the observations, is
a better (model space) representation of the observed time
series than a single parameter, e.g., MAP point estimate. It
is also natural to expect that the classification performance
will increase with reducing model uncertainty. We compare
the LiMS, PPK, and KME classifiers in terms of capability
to deal with increased levels of model uncertainty quantified
through entropy of the posterior distributions. We also use the
level of observation noise σ or the number of observations n

as surrogate uncertainty measures.
(2) Performance degradation when the structural model

used to represent the observed time series through posterior
distributions over its model parameters is a reduced structural
model of the true one generating the training and test data.
There can be several reasons for the inferential model structure
to be different from the underlying data generating one. For
example, in real-world applications, it is inevitable that there is
a gap between the real world and the mathematical model de-
veloped to account for it. Alternatively, while the given math-
ematical model can be considered adequate, it is too complex
and computationally expensive to simulate. To circumvent this
problem, a reduced model structure could be used to represent
time series, as long as it captures characteristics relevant for
the given classification task. We compare the classification
performance between different inferential model structures
ranging from the full, multiple-compartment pathway ODE
model to the trivial single compartment model. Analogous
experiments were performed in the SDE case—SDW models
representing data generated by stochastic multiwell systems.

The rest of this paper is organized as follows. We first
formulate our framework in Sec. II. Section III presents
an implementation of this framework by means of KLR.
In Sec. IV we further establish connections between LiMS,
PPK, and KME classifiers. Section V introduces two classes
of dynamical systems used to validate our framework, and
the experiments are detailed in Sec. VI. Finally, Sec. VII
summarizes key research findings.

II. FRAMEWORK

A. Problem settings

First, a classification task is formulated as follows: Suppose
we have N examples in the form of N labeled univariate or
multivariate time series, denoted by {(Yk,ck) : k = 1, . . . ,N}
where Yk denotes the kth time series and ck represents its
binary label. As we do not assume that all time series are
collected on a fixed, regular time grid, each time series Yk

is accompanied with a sequence of observation times {tki }Lk

i=1

at which the observations {yk
i }Lk

i=1 are collected. Hence the
kth time series is jointly represented by Yk = (tk,Yk) with

tk = {t ki : i = 1, . . . ,Lk} and Yk = {yk
i : i = 1, . . . ,Lk}. Note

that the length of time series Lk can vary across examples.
However, the dimensionality d of the observed time series is
assumed to be fixed. The task is to predict a label for a new
time series Y of length L. Due to variability of observation
times and length of the training time series, direct application
of a vector-based classifier would not be suitable. Note that
if the training time series were long enough and “suitably”
sampled, one could represent each time series through, e.g., a
vector of Fourier or wavelet coefficients. However, we do not
wish to impose any such restrictions and in particular, we are
interested in cases of short, sparsely, and irregularly sampled
time series.

We propose to represent time series by a set of individual
time series models from a given model class. In particular,
since the observed time series can be noisy, short, and
irregularly sampled, each time series will be represented as
the posterior distribution over the models, given the time series
itself and model prior.

B. Model-based representation

In our work, a dynamical system approach is adopted to
model time series. In other words, we consider a given time
series as a (possibly partial) observation of some underlying
dynamical system from a parametric class of dynamical
systems. In the following, we first introduce a mathematical
representation of the class of dynamical systems considered in
this work. Next, a model accounting for partial observations is
formulated. Following this, we introduce a Bayesian approach
for representing partially observed dynamical systems.

A continuous-time deterministic dynamical system can
be mathematically represented as a multivariate ordinary
differential equation (ODE):

dxt

dt
= f(xt ; ψ), (1)

where xt ∈ X ⊂ RD denotes D-dimensional state vector at
time t . The mapping f specifies the dynamics of this system by
defining the functional relation between state xt and drift dx

dt
at

time t . This mapping is parametrized by ψ . Note that model
parameter ψ includes the initial state x0, unless x0 is assumed
to be known.

A stochastic dynamical system can be considered as an
ODE driven by a multivariate random process parametrized
by covariance matrix �. Each component of this process is a
standard univariate Brownian motion scaled by square root of
the corresponding diagonal term of �. Its covariance structure
at t is specified by the nondiagonal terms. It is equivalent to
adding Gaussian noise to the drift. Mathematically, this system
can be represented by a multivariate stochastic differential
equation (SDE):

dxt = f(xt ; ψ) dt + �1/2 dbt (2)

where the vector bt collects the D independent standard
Brownian motions. A SDE’s initial condition is specified by a
probability distribution over x0, which is often assumed to be
a Gaussian distribution with mean μ0 and covariance matrix
�0. As in ODEs, the initial condition specification is part of
the model parameters ψ .
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All model parameters are collected in vector θ , i.e., for
ODEs θ = ψ and for SDEs θ = (ψ,�).

Observations {y1,y2, . . .}, yt ∈ Y ⊂ Rd from the underly-
ing dynamical system’s trajectory xt are obtained through a
measurement function h:

yi = h(xti ) + εti for i = 1,2, . . . , (3)

where εti denotes observation noise at time ti . In general,
h can be a parametric function with unknown parameters.
Frequently, h represents a set of indicator functions which
specify a subset of state variables that are directly observed.
For clarity in formulating our general framework, we assume
h to be an identity function. Observation noise εt is often
assumed to be independent and identically distributed (i.i.d.)
Gaussian noise with zero mean and error covariance matrix R.
In this work, we treat model parameters and the parameters of
observation noises differently. We assume that R is known—it
can be determined from prior knowledge. For example, it is
feasible to have a reliable estimate of measurement noise for
experiments in physics. Of course, the inferential framework
can be extended with an estimation or marginalization of the
noise parameter R, should such a need arise.

In the learning in the model space (LiMS) framework,
the observed time series are represented through models
parametrized via θ . Given a time series Y = (ti ,yi)Li=1, a
maximum likelihood (ML) estimate of θ can be obtained by
maximizing the likelihood function

p(Y|θ ,t; R) =
L∏

i=1

N (yi |xt (θ),ti ,R) (4)

for an ODE system and

p(Y|θ,t,R) = Ext |θ

[
L∏

i=1

N (yi |xt ,ti ,R)

]
(5)

for an SDE system. Ext |θ [ ] denotes expectation with respect
to the probability measure over all possible system trajectories
xt specified by the SDE with model parameter vector θ . As
trajectories of a continuous-time dynamical system are infinite
dimensional, numerical integration over such trajectories is
computationally very expensive and approximation is required
for computing the expectation. However, this approach ignores
uncertainty around the model estimate. In cases where only
noisy and/or sparse data are available, any point estimate
of the model parameter is not a sufficient representation of
the partially observed dynamical system. Instead, we propose
a Bayesian approach to represent model uncertainty via the
posterior distribution of θ as follows:

p(θ |Y,R) = p(θ |Y,t,R) ∝ p(Y|θ ,t,R)p(θ), (6)

where p(θ) is the prior over θ . In most cases, computation
of the normalizing term is analytically not tractable and the
posterior has to be approximated by using a finite grid in
the parameter space or by sampling or variational methods
[24–27].

C. Classification framework

Formulation of a classifier for partially observed dynamical
systems in the LiMS framework depends on the way the

underlying systems are represented. We consider two different
options:

(1) Representation through data Y = (Y,t). The resulting
classifier operates directly and solely on the data. A proba-
bilistic classifier of this kind is formulated by defining the
conditional probability P (c|Y) that is used to predict label c

in a probabilistic manner. Note that this classifier completely
ignores the underlying model and thus is of disadvantage if
the underlying model structure is known.

(2) Representation via posterior distributions over model

parameters, π (θ)
def= p(θ |Y,R). Thus, the counterpart of

P (c|Y) is P (c|π ). The resulting classifier actually operates in
the space of posterior distributions rather than in the model or
data space. The posterior π (θ) is shaped by the metric structure
in parameter space that encodes intrinsic information about
the underlying dynamical system. In addition, it represents
the uncertainty that arises due to a finite number of (possibly
irregularly sampled) observations and observation noise.

Our classifier is of the latter type. In the following we derive
the predictive distribution P (c|Y) of class labels given the data
and the model structure. Recall that given a model structure
f, data Y is assumed to be sampled from a hidden trajectory
xt generated by model fθ (an unknown model parameter θ

sampled from a prior distribution over θ ). Further, we assume
that class label c is not conditional of R, that is, P (c|Y) =
P (c|Y,R). To take this additional knowledge into account, we
express P (c|Y) as

P (c|Y,R) =
∫

Dx

∫
dθ P (c|Y,xt ,θ ) p(xt ,θ |Y,R), (7)

where the hidden trajectory xt and unknown model parameter
θ are both marginalized out. The density p(xt |θ,Y; R) is
defined with respect to the standard Brownian motion and∫
Dx represents the path integral over trajectories. The above

formulation implies a classifier P (c|Y,xt ,θ ) which utilizes the
model instance θ , the trajectory xt generated by fθ , and noisy
observations Y assumed to be sampled from xt . Given fθ , xt

is either specified deterministically (in the case of ODEs),
or is driven by a standard Brownian motion (in the case of
SDEs). Assuming that no additional relevant information for
the classification task could be extracted from observation
noise or observation times (the noise and observation times
processes are not conditional on the class label), all the relevant
information in (Y,xt ,θ ) for the class label prediction can
be conditioned on the model parameter θ . Consequently, we
replace P (c|Y,xt ,θ ) with P (c|θ ).

Equation (7) now reads

P (c|Y,R) =
∫

dxt

∫
dθ P (c|θ ) p(xt ,θ |Y,R)

=
∫

dθ P (c|θ )
∫

dxt p(xt ,θ |Y,R)

=
∫

dθ P (c|θ ) π (θ)

= Eπ(θ )[P (c|θ )]

= Q(c|π ). (8)

Note that the classifier Q(c|π ) operates on posterior distri-
butions π , but is based on the classifier P (c|θ ) operating on
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model parameters. In summary, the LiMS classifier defined by
Eq. (8) is deduced from a conventional classifier operating on
data under the assumption that class label c is not conditional
of the observations and the unobserved trajectory.

In the following, we define the theoretical risk for Q(c|π ).
Generally, theoretical risk for a classifier is defined through
a joint distribution over the input and label spaces and a loss
function quantifying the cost of misclassification. In our case,
the joint distribution of (π,c) is written as P (c)P(π |c), where
P denotes a distribution over distributions (random measure).
The loss function we employ is the negative log likelihood,
− ln P (c|π ). The theoretical risk of Q(c|π ) can be written as

R[Q(c|π )] = EP (c)[EP(π |c)[− ln Q(c|π )]]. (9)

It is difficult to formulate P as a parametric generative
model. For the classifier Q(c|π ), however, based on (8),
we have R[Q(c|π )] = R[P (c|Y)]. The theoretical risk for
P (c|Y) is given by

R[P (c|Y)] = EP (c)[Ep(θ ,xt ,Y,R,t|c)[− ln P (c|Y)]], (10)

where

p(θ ,xt ,Y,R,t|c) = p(θ |c)p(t)p(R)p(Xt |θ)p(Y|xt ,t,R).

(11)

A parametric formulation of the above theoretical risk is
obtained by adopting (i) a parametric noise model for
p(Y|xt ,t,R); (ii) a parametric dynamical noise model p(xt |θ);
(iii) a prior for the covariance of the observational noise p(R);
(iv) a point process for p(t) in the observation window; and
(v) an appropriate model for p(θ |c). We write a density for t
since it is defined with respect to the standard Poisson process.

III. IMPLEMENTATION

A. Computing the posterior distributions

For partially observed nonlinear dynamical systems the
computation of posterior distributions is analytically not
tractable. Therefore, the expectation over θ with respect to
π (θ) in Eq. (8) can only be computed via approximation. There
exist two principled approximation strategies that have the
required convergence properties: Approximation by sampling
and finite-grid approximation. Note that when the number of
samples or the size of finite grid go to infinity, the approximate
posterior shall converge towards the exact one. Alternatively,
there exist several variational procedures that approximate
posterior densities under fixed-form assumption.

In the first approach (approximation by sampling), the
posterior distribution is approximated by

π (θ) ≈ 1

Nθ

Nθ∑
n=1

δ(θ − θn), (12)

where θ1, . . . ,θNθ
are Nθ parameter vectors which are in-

dependently sampled from π (θ). Accordingly, the classifier
defined in Eq. (8) is approximated by

Q(c|π ) ≈ 1

Nθ

Nθ∑
n=1

P (c|θn). (13)

As the posterior distribution is only known up to normalizing
constant, Markov chain Monte Carlo (MCMC) algorithms are
the most efficient sampling method.

In the second approach (finite-grid approximation), one
could first compute the unnormalized posterior density (that
is, the product of normalized prior and likelihood densities)
over a finite grid approximating the parameter space and
then normalize those values into a multinomial distribution
approximating the posterior density. We denote this grid and
the multinomial posterior probabilities on the grid by

Gθ = {
θG

1 , . . . ,θG
NG

θ

}
(14)

and⎧⎨
⎩πn = p

(
Y|θG

n

)
p
(
θG
n

)
∑NG

θ

k=1 p
(
Y|θG

k

)
p
(
θG
k

) : n = 1, . . . ,NG
θ

⎫⎬
⎭, (15)

respectively. The resulting approximate classifier is given by

Q(c|π ) ≈
NG

θ∑
n=1

πnP
(
c|θG

n

)
. (16)

For SDE, however, the marginal likelihood for each parameter
vector on the grid is analytically not tractable and thus
the likelihood is not normalized. To solve this problem at
low computational cost, we employ the variational Gaussian
process approximation method for computing the approximate
marginal likelihood [26]. In the literature, variational Bayes
(VB) methods have also been adopted for approximate infer-
ence in partially observed dynamical systems. Particularly, in
the field of fMRI data analysis, a family of partially observed
dynamical systems termed as dynamical causal model (DCM)
has been developed for modeling and analysis of fMRI time
series. Moreover, the VB approaches equipped with Laplace
approximation were employed to infer DCM from fMRI
data [28]. In our case we use a variational method not to
approximate posterior over the models, but to approximate
posterior over state trajectories in the case of stochastic
systems.

B. Kernel logistic regression for binary classification

In the following, we first briefly introduce kernel logistic
regression (KLR) as a (binary) classifier for vectors (e.g.,
model parameter θ ). We then present an extension of KLR
for distributions so that the classifier can be directly applied to
posteriors π (θ).

A binary KLR classifier operating on θs is defined via

P (c = 1|θ ) = ζ (wᵀ�(θ)), (17)

where ζ ( ) denotes a sigmoid function [that is, for real number
a, ζ (a) is defined as 1

1+exp(−a) ], w is an m-dimensional classifier
parameter, and � represents a (nonlinear) mapping of the Dθ -
dimensional model parameter vector θ to an m-dimensional
feature space:

� : θ �−→ [
K
(
θ,θF

1

)
, . . . ,K

(
θ ,θF

m

)]ᵀ
, (18)

where K( ,θF
1 ), . . . ,K( ,θF

m) act as basis functions in
the parameter space centered at parameter vectors from
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Fθ = {θF
1 , . . . ,θF

m}. In this work, we define K( , ) by a
Gaussian kernel,

K(θ1,θ2) = exp

(
−‖θ1 − θ2‖2

2

ρ

)
, (19)

where ‖ ‖2 is the Euclidean norm and ρ > 0 is a scale
parameter. Note that in our case, kernels are simply used as
basis functions for the nonlinear classifier construction. In
other words, we do not require a Mercer kernel, as our model
fitting does not involve a linear classifier construction in the
feature space induced by the kernel.

For learning the classifier parameter w, a training set
of N labeled model parameters S = {(θ1,c1), . . . ,(θN,cN )},
ci ∈ {0,1}, would be used to obtain the maximum likelihood
estimate (MLE) of w:

ŵMLE = arg max
w

N∏
k=1

z
ck

k (1 − zk)1−ck with

zk = ζ (wᵀ�(θ k)). (20)

This is equivalent to minimizing the cross entropy error,

Eθ (w|S) = −
N∑

k=1

ln P (ck|θ k; w) (21)

= −
N∑

k=1

ck ln(zk) + (1 − ck) ln(1 − zk) (22)

=
N∑

k=1

(
−1

1∑
l=0

Ql
k ln

(
P l

k

))
(23)

=
N∑

k=1

H (Qk,Pk) (24)

with

Ql
k =

{
ck if l = 0
1 − ck if l = 1 and

P l
k =

{
zk if l = 0
1 − zk if l = 1 , (25)

where H (Qk,Pk) denotes the cross entropy of probability
distributions qk and pk .

For a gradient-based minimization of E with respect to w,
the gradient is computed as

∇wE =
∑

k:ck=1

(zk − 1)�(θ k) +
∑

k:ck=0

zk�(θ k). (26)

Next, we present a gradient-based algorithm to learn a
classifier that operates on the posterior distributions using a
training set given as

V = {(π1(θ ),c1), . . . ,(πN (θ),cN )}. (27)

Recall that this classifier is defined as expectation of a
probabilistic base classifier operating on the model parameter
with respect to the posterior distribution [see Eq. (8)]. In
this setting, the base classifier’s free parameter automatically
becomes the free parameter of the distributional classifier. On
the other hand, the base classifier is trained by maximizing

the likelihood function of class label assigned to a model
parameter. Naturally, the classifier that classifies the posterior
distribution should be trained by maximizing the expectation
of the likelihood function with respect to the posterior
distribution. Therefore, the classifier parameter is obtained by
minimizing the cross entropy error,

Eπ (w|V ) = −
N∑

k=1

ln

(∫
dθ πk(θ )P (ck|θ ; w)

)
. (28)

The approximate cross entropy error is computed by

Êπ (w|V ) = −
N∑

k=1

ln

⎛
⎝ NG

θ∑
n=1

πn
k P
(
ck

∣∣θG
n ; w

)⎞⎠, (29)

where πn
k denotes the normalized posterior weight on the nth

grid point for the kth posterior. The corresponding gradient is
given by

∇wÊπ =
NG

θ∑
n=1

[
Z1

n

(
(zn − 1)�

(
θG

n

))+ Z0
n

(
zn�

(
θG

n

))]
, (30)

where zn = ζ (wᵀ�(θG
n )),

Z1
n =

∑
k:ck=1

πn
k zn∑NG
θ

l=1 πl
kzl

and Z0
n =

∑
k:ck=0

πn
k (1 − zn)∑NG
θ

l=1 πl
k(1 − zl)

.

(31)

Note that �(θG
n ) is a m-dimensional vector whose j th compo-

nent is given by K(θG
n ,θF

j ). The two grids on the parameter
space, G (posterior support) and F (basis functions centers),
can be the same, or F can be a subset of G.

IV. CONNECTION TO RELATED WORKS

In literature, most distributional classifiers combine an
existing kernel-based classifier, such as SVM, with a kernel
that is defined on the space of distributions. An example of
such a kernel is the so-called probability product kernel [16],

KPPK(π1,π2) =
∫

�

dθ πα
1 (θ)πα

2 (θ ), (32)

where π1 and π2 are two distributions over a metric space � and
α > 0 is a tempering parameter. In recent literature, another
kernel on distributions has been introduced based on Hilbert
space embedding [19,20]. Given a universal kernel k : � ×
� −→ R, there exists an injective mapping from distribution
space Q to feature space,

μQ : Q → H, π �−→
∫

�

k(θ, )π (θ) dθ . (33)

This mapping is called kernel mean embedding (KME). As
the embedding is bijective, no information encoded in the
probability distribution is lost through the mapping. The
mapping in turn defines a kernel on probability distributions,
K : Q × Q −→ R:

KKME(π1,π2) = 〈μπ1 ,μπ2〉H
=
∫

θ∈�

dθ

∫
η∈�

dη π1(θ )π2(η)k(θ,η). (34)

043303-6



CLASSIFICATION FRAMEWORK FOR PARTIALLY . . . PHYSICAL REVIEW E 95, 043303 (2017)

We compare these two distributional classifiers (one based
on KPPK, the other one based on KKME) with our classifier in
terms of their predictive class distributions, given a test input
(distribution) π :

(i) probabilistic classifier based on probability product
kernel (PPK):

P (c = 1|π ) = ζ

⎛
⎜⎜⎜⎜⎝
∫

�

πα(θ)

⎡
⎢⎢⎢⎢⎣

N∑
i=1

viπ
α
i (θ)

︸ ︷︷ ︸
ϒPPK(θ ;v)

⎤
⎥⎥⎥⎥⎦ dθ

⎞
⎟⎟⎟⎟⎠ (35)

= ζ (Eπ [ϒPPK(θ ; v)]), (36)

where ϒPPK(θ ; v) denotes the function to be learned (by
adjusting the free parameter v) for classifying distributions;

(ii) probabilistic classifier based on kernel mean embedding
(KME):

P (c = 1|π )

= ζ

(∫
θ∈�

π (θ )

[∫
η∈�

[
L∑

i=1

viπi(η)

]
k(θ,η) dη

]
dθ

)

= ζ

(∫
θ∈�

π (θ )

[
L∑

i=1

vi

∫
η∈�

πi(η)k(θ,η) dη

]
dθ

)
(37)

= ζ

⎛
⎜⎜⎜⎜⎝
∫

θ∈�

π (θ)

[
L∑

i=1

viπ̃i(θ )

]
︸ ︷︷ ︸

ϒKME(θ ;v)

dθ

⎞
⎟⎟⎟⎟⎠ (38)

= ζ (Eπ [ϒKME(θ ; v)]), (39)

where π̃i are kernel-smoothed posteriors πi and ϒKME(θ ; v) is
the function to be learned;

(iii) probabilistic classifier proposed in this work [Eq. (8)]:

P (c = 1|π ) =
∫

�

π (θ)ζ

( m∑
i=1

wik
(
θ,θF

i

)
︸ ︷︷ ︸

ϒLiMS(θ ;w)

)
dθ (40)

= Eπ [ζ [ϒLiMS(θ ; w)]], (41)

where ϒLiMS(θ ; w) is learned by adjusting the free parameter
w.

We implemented both PPK and KME within the KLR
framework. These KLR classifiers are trained exactly in the
same way as the KLR classifier operating on model parameter
vectors. The only difference between them lies in which
basis functions are used in the classifier construction (that is,
Gaussian kernel, posterior distributions from the training set,
or those posterior distributions smoothed by Gaussian kernel).

To see a deeper connection between the three classifiers
above, consider first the usual setting of kernel logistic
regression,

P (c = 1|θ ) = ζ [ϒ(θ)]. (42)

This can be interpreted as follows: The model imposes a
smooth field (natural parameter of Bernoulli distribution) ϒ(θ)
over the inputs θ .

The field assigns to each input a real number that expresses
the “strength” with which that particular input wants to belong
to class +1. Pushing the field through the link function ζ

creates a new field ζ [ϒ(θ)] over the inputs, assigning to each
θ the probability with which it belongs to class +1.

In case our inputs are not individual models θ , but
(posterior) distributions π over the models, the classifier (42)
can be generalized in two ways:

(1) Use the posterior distribution π to average over
individual natural parameters ϒ(θ) to create the overall mean
natural parameter Eπ [ϒ(θ)]. This can then be passed through
the link function ζ to calculate the class +1 probability for
π , ζ (Eπ [ϒ(θ)]). This scenario can be described as forming
an (infinite) ensemble to form the overall opinion about the
strength of π belonging to class +1 and only then turning
it into the class probability. This option is taken by the
classifiers based on probability product kernel and kernel mean
embedding, (36) and (39), respectively.

(2) Use the posterior distribution π to average over
individual class probabilities ζ [ϒ(θ)] to form the overall
class probability Eπ (ζ [ϒ(θ)]) of π . This corresponds to
creating an ensemble of probabilistic classifiers ζ [ϒ(θ)] acting
on individual models θ , as done by the proposed classifier
[see (41)].

One can view the latter approach Eπ (ζ [ϒ(θ)]) as a
regularization of the former one ζ (Eπ [ϒ(θ)]). Loosely
speaking, when collecting ensemble votes to form an opinion
about the probability of class +1 given π , Eπ (ζ [ϒ(θ)])
ignores the (potentially huge) differences between individual
natural parameters ϒ(θ) giving negligible differences in the
probabilities ζ [ϒ(θ)] because of the saturation regions at both
extremes of the link function ζ . This effectively collapses
input regions of models θ with high positive field values into
a single high class probability region. Analogously, regions
of models θ with low negative values will be identified into a
low class probability region.

Another point of view is to compare the models for the field
ϒ(θ ) utilized in the three classifiers. In all cases the fields are
modelled as linear combinations of basis functions. Because
kernels of the classifiers based on probability product kernel
and kernel mean embedding operate on full distributions,
the basis functions for modeling the field ϒ(θ) are the
(possibly tempered) training posterior distributions πα

i or their
kernel-smoothed versions π̃i , respectively [see (35) and (38)].
In contrast, the proposed classifier (41) models the field ϒ(θ)
in a less constrained framework of kernel regression as a linear
combination of kernel basis functions k( ,θF

i ) [see (40)]. In
particular, no assumption is made that the field should lie in
the span of the training distributions πα

i or their smoothed
versions π̃i .

V. TEST BEDS

In this work, we validate our general framework using two
example dynamical systems: Gonadotropin-Releasing Hor-
mone Signalling model (GnRH) [29] and stochastic double-
well systems (SDW) [30]. GnRH is an example of ordinary
differential equation (ODE) systems and SDW is an example
of stochastic differential equation (SDE). GnRH is also an
example of the biological pathway or compartment model.
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FIG. 1. (a) Schematical representation of three nested GnRH signaling model structures (M1, M2, and M3). The signaling pathway in
these model structures is highlighted by the flow of red, blue, and green arrows, respectively. Each model structure is comprised of GnRH
signal as the driving input, GSU time series as the measurable output, and one to three compartments along its signaling pathway. (b) Two
classes of GnRH model parameter pairs (KdT F1

, KdT F2
) that determine subject-specific functional relationship between GnRH pulse frequency

and the integrated GSU measure: (1) class of normal subjects with bell-shaped frequency-response relationship (blue diamonds) and (2) class
of abnormal subjects with simple frequency dependency of the GSU measure (red disks). These two classes are separated by two straight lines
in the log-log parameter space.

A. GnRH signaling model

Mathematically, GnRH signaling model is represented by
an ODE system with 11 state variables. These state variables
include concentrations of gonadotropin releasing hormones
([GnRH]) and gonadotropin hormones ([GSU]) as the driving
input and measurable output of this structural model (respec-
tively). The remaining state variables can be grouped into three
compartments along the signaling pathway: (1) C1 for GnRH
binding process; (2) C2 for extracellular signal regulated
kinase (ERK) activation; and (3) C3 for transcription factor
(TF) activation. We refer to this model structure as M1 and
further introduce two reduced model structures derived from
M1 in the following. In Fig. 1, we highlight the signaling
pathway in M1 by red arrows. By removing the compartment
C2 from the pathway, we obtain a two-compartment model
structure denoted by M2 (see blue arrows in Fig. 1). When we
further remove C3 from the pathway, M2 is reduced to M3
(see green arrows in Fig. 1) in which GnRH signals directly
modulate stimulation of transcriptional activation. Actually,
M1, M2, and M3 make up a hierarchy of three nested GnRH
model structures. Their corresponding structural models can be
used as building blocks to represent subject-specific behavior
of [GSU] response to varying [GnRH] frequencies at different
complexity levels.

GnRH signal is the chemical signal which stimulates the
reproductive endocrine system. This signal is modeled by

d[GnRH]

dt
= −[GnRH] + pGnRH{H (t mod f −1)

−H [(t mod f −1) − tp]}, (43)

where pGnRH is the GnRH pulse magnitude, f is the pulse
frequency, and tp is the pulse duration. In this work, we set
pGnRH to be a constant (i.e., pGnRH = 0.1) and treat both f and

tp as model parameters. Equation (43) can also be formulated
as a mapping between time t and [GnRH]t by

[GnRH]t = g(t ; f,tp). (44)

The amount of TF1 and TF2, denoted by [TF1] and [TF2], are
two state variables in C3 which modulate the dynamics of the
GSU expression as follows:

d[GSU]

dt
= Kcomplex

⎛
⎜⎜⎜⎝

[TF1]
KdTF1

[TF2]
KdTF2

[DNATOT]2

(
1 + [TF1]

KdTF1

+ [TF2]
KdTF2

)2

⎞
⎟⎟⎟⎠

− d[GSU][GSU], (45)

where KdTF1
and KdTF2

are the dissociation constants of
[TF1] and [TF2], respectively. They are both considered as
model parameters. The remaining model parameters are set
values reported in the literature [29]. In summary, the GnRH
signaling model structure has one observable and four free
model parameters. The observable is GSU and the model
parameters are as follows: GnRH pulse frequency f , GnRH
pulse duration tp, the dissociation constant of [TF1], KdTF1

,
and the dissociation constant of [TF2], KdTF2

. Also, the GnRH
model can be formulated as a mapping between [GnRH]t and
[GSU]t by

[GSU]t = M
(
[GnRH]t ; KdTF1

,KdTF2

)
= M

[
g(t ; f,tp); KdTF1

,KdTF2

]
, (46)

where the mapping M can be set as one of the three nested
GnRH model structures (that is M1, M2, or M3).

It is widely accepted that the reproductive system is
controlled via GnRH pulse frequency. This frequency varies
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under different physiological conditions, affecting the tran-
scription of GSU and secretion of reproductive hormones that
are crucial for the physiology of the reproductive system.
GnRH frequency decoding mechanisms vary under normal
and pathological conditions, but two main possibilities exist:
(1) increasing pulse frequency simply increases output (GSU)
until a maximal response is maintained with continuous
stimulation [see Fig. 6(a) in Trapeva-Atanasova et al. [29]];
and (2) pulsatile stimuli may elicit maximal responses at
submaximal frequencies, generating a bell-shaped frequency-
response relationship [see Fig. 6(b) in Trapeva-Atanasova
et al. [29]]. In this work, we utilize these two mechanisms
to define two classes of subjects: “abnormal” [mechanism (1)]
and “normal” [mechanism (2)] subjects. It has also been shown
in Trapeva-Atanasova et al. [29] that the frequency-response
behavior of GnRH models is determined by KdTF1

and KdTF2
,

but not by tp. Fig. 1(b) shows that in the space of (log KdTF1
,

log KdTF2
), there exist three linearly separated domains in

which only one of two frequency-response behaviors (linear
or bell shaped) is observed. The domain in the middle repre-
sents the normal subjects, whereas both remaining domains
represent the abnormal subjects. It should be noted that those
four parameters of the GnRH model actually play different
roles in the classification task. The dissociation constants KdTF1

and KdTF2
are two class-defining model parameters and their

values vary under different medical conditions. Therefore, it
is of most importance to account for uncertainty around these
two parameters via posterior distribution. In contrast, GnRH
pulse frequency f is used to generate [GSU] time series under
different physiological conditions. Those [GSU] time series
generated under different f values are needed to accurately
infer KdTF1

and KdTF2
. Note that in the classification task, f

is a controlling parameter and their values are known. The
GnRH pulse duration tp accounts for the individual variability
that is related neither to the medication conditions nor to the
physiological conditions. Therefore, it is not conditioned on
class labels and it also remains a constant with varying f for
each subject.

As subjects from two different classes differ in how their
[GSU] responses change with varying pulse frequency, it is
thus not sufficient to represent individual subjects by Eq. (46).
Instead, we define the following composite GnRH model to
represent those subjects:

[GSU]1
t = M

(
g(t ; f1,tp); KdTF1

,KdTF2

)
,

... (47)

[GSU]6
t = M

(
g(t ; f6,tp); KdTF1

,KdTF2

)
,

where six different pulse frequencies in this model are set
as follows: f1 = 1

8 , f2 = 1
4 , f3 = 1

2 , f4 = 1, f5 = 2, and
f6 = 4. The chosen frequencies adequately cover the entire
permissible range. Note that the measurable output of this
composite GnRH model structure is ([GSU]1

t , . . . ,[GSU]6
t )ᵀ

and (KdT F1
, KdT F2

, tp) is its model parameter triple.
For the classification task, we use the composite model

structure given by Eq. (47) to define two classes of subject-
specific GnRH models and generate training and testing data
accordingly. When Eq. (47) is used as a data-generating
structural model, we set M by M1 because the full model

TABLE I. The truncated Gaussian distributions of three GnRH
model parameters (i.e., log KdTF1

, log KdTF2
, and tp) used for generat-

ing the training and testing set of GnRH models.

Parameter Mean Variance Lower bound Upper bound

log KdTF1
−1.6 0.2 −2.0 0.2

log KdTF2
−1.1 0.2 −1.5 0.2

tp 7.5 0.8333 5 10

structure is considered as the most realistic mathematical
model among M1, M2, and M3. The model parameters KdT F1

,
KdT F2

, and tp are sampled from three separate truncated
Gaussian distributions. For details, we refer to Table I in
Sec. VI B. Based on their KdT F1

and KdT F2
values, all subjects

are labeled as “healthy” or “abnormal” as illustrated in Fig. 1.
However, for the inferential task inside the classification

process, we set M to M1, M2, or M3 as three inferential
composite GnRH models used in the validation experiment.
This allows us to assess whether the gap between the data-
generating and inferential model structure could hamper the
classification performance of our LiMS framework.

B. Stochastic double-well systems

The stochastic double-well (SDW) system is mathemati-
cally defined as

dxt = 4(xt − a)
(
d2 − x2

t

)︸ ︷︷ ︸
f (xt )

+κ2 dbt , (48)

where bt represents the univariate standard Brownian motion
and θ = (d,κ,a) collects the three model parameters, namely
the well location parameter d, well asymmetry parameter
a, and standard deviation κ of the dynamical noise. Equa-
tion (48) shows that the drift term f (xt ) is not explicitly time
dependent. Therefore, the underlying dynamics is governed
by the potential u(x) with f (x) = −∇xu(x). Moreover, the
equilibrium probability distribution of its state x is given
by peq(x) ∝ exp(− u(x)

κ2 ) [31]. The potential corresponding to
Eq. (48) is given by

u(x) = x4 − 4
3ax3 − 2d2x2 + 4ad2x. (49)

The equilibrium probability distribution of two example SDWs
is shown in Fig. 2(a). We can see that there exist two
metastable states located at x = d and x = −d. The larger
is the dynamical noise variance κ2, the more frequent are the
transitions from one metastable state to the other. Figure 2
shows that the peak probability for κ = 1.0 (red solid curve) is
larger than that for κ = 1.5 (blue dash-dot curve). For positive
well asymmetry parameter a, the transition from x = −d

to x = d is more likely than the transition in the opposite
direction. As a result, the equilibrium probability at x = d is
higher than that at x = −d (see red solid curve in Fig. 2).
Analogously, the equilibrium probability at x = −d is higher
than that at x = d for negative well asymmetry parameter (see
blue dash-dot curve in Fig. 2). The dynamics of double-well
systems is dominated by switching between the two wells.
We also study more complex multiwell systems where the
potential has more than two wells. An example of such a
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FIG. 2. (a) Equilibrium probability distribution of states x for four example stochastic double-well systems with (d,κ,a) = (1.0,1.0,0.1)
(red solid curve), (d,κ,a) = (1.3,1.5, − 0.1) (blue dash-dot curve), (d,κ,a) = (1.0,1.5,0) (red dashed curve), and (d,κ,a) = (1.2,1.5,0) (blue
dotted curve). (b) The same as in (a) but for stochastic multiwell systems.

multiwell system dominated by an overall two-well structure
[wells in positive range of x are generally deeper than those
in the negative range (or vice versa)] is given below [see also
Fig. 2(b)]:

dxt = −∇xũ(x) + κ dw with
(50)

ũ(x) = u(x) + 1
2 cos(4πx),

where ũ denotes the perturbed potential.
In this work, we formed two classes of SDWs through

two class-conditional Gaussian distributions in the parameter
space as follows: (d̄1 + εd,κ̄1 + εκ,ā1) for class 1 and (d̄0 + εd ,
κ̄0 + εκ , ā0) for class 0, where (d̄1,κ̄1,ā1) and (d̄0,κ̄0,ā0)
denote the class-conditional prototypical model parameter; εd

and εκ are Gaussian-distributed zero-mean random variables
with standard deviations 0.1/3 and 0.05/3, respectively.

An example of two such classes of SDWs is defined by
(d̄1,κ̄1,ā1) = (1.3,1.5, − 0.1) and (d̄0,κ̄0,ā0) = (1.0,1.0,0.1)
corresponding to the blue dash-dot and red solid curves in
Fig. 2(a), respectively. It is more likely for the trajectories
from class 0 to stay above, rather than below, the horizontal
line with xt = 0. The opposite holds for class 1. This is
because the asymmetry parameters of these two classes take
their values with opposite signs. As a result, the classification
task can be well accomplished by a classifier based on simple
features directly extracted from the signal—in this case the
overall trajectory mean. Figure 3 illustrates a contrasting task
in which two classes of SDWs are defined by (d̄1,κ̄1,ā1) =
(1.2,1.5,0) and (d̄0,κ̄0,ā0) = (1.0,1.5,0) [see the blue dotted
and red dashed curves, respectively, in Fig. 2(a)]. As the mean
asymmetry parameter is set to zero for both classes, the overall
trajectory mean fluctuates around zero across the trajectories
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FIG. 3. (a) The observed trajectories of ten example stochastic double-well systems from each of two clusters in Fig. 2 (red curves with
empty circles vs blue curves with filled circles). The range of each subpanel’s vertical axis is scaled to [−2.5, + 2.5]. The intersample interval
(ISI) is 0.5, and the variance σ 2 of Gaussian distributed observation noise is 0.04. (b) The same as in (a) but for σ 2 = 0.36.
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FIG. 4. Classification performance as function of log kernel width (i.e. log10 ρ) using Learning in Model Space (LiMS) method to classify
Partially Observed GnRH Models. Panel (a): The inter-sample intervals (ISI ) is fixed 75 while the noise standard deviation varies across
the set {0.1,0.03,0.01,0.005,0.001} (red squares, blue circles, magenta diamonds, green triangles, and black left triangles, respectively). All
observations were sampled on a fixed regular grid over a 7.5h time window. Panel (b): The standard deviation of observation noises is fixed
to 0.3 while the ISI value varies across the set {15,30,45,75,90} (red squares, blue circles, magenta diamonds, green triangles, and black
left triangles, respectively). The observation times are random and the ISI -values given are the expected value. Values of the kernel width
hyper-parameter for the LiMS classifier were taken from {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5,1,5,10,50}. Note that the kernel width
hyper-parameter ρ of LiMS and KME classifier is introduced in Eq. (19) as the scale parameter of Gaussian kernels.

in each of these two classes. We thus hypothesize that in such
cases, the proposed classification LiMS framework will be
superior to classification based on direct signal based features.

VI. EXPERIMENTS

A. Practical issues

In this section we discuss a number of practical issues
related to testing the LiMS, KME, and PPK classifiers:

(i) Does the input of a distributional classifier need to be
normalized? For the task of classifying PODS, the actual
input is the posterior distribution over parameter vectors. In
our setting, it includes a set of posterior probabilities defined
on a grid of parameter vectors. For PPK classifiers, only

those probabilities are used and thus there is no need for
normalization. For the other two classifiers, however, we use
parameter vectors (on the grid) together with the corresponding
posterior probabilities. Moreover, the parameter vectors are
involved in the classification via a spherical kernel function that
is defined on the product of two parameter grids. Therefore, we
normalize the parameter grid to vary in each dimension from 0
to 1. Of course, the original parameter values associated with
grid points will be preserved.

(ii) How to initialize the classifier’s parameters for
gradient-based training?

We implement all three classifiers in the KLR framework.
Hence, the PPK-based classifier parameter effectively weights
the training examples, whereas in the case of LiMS and KME,
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FIG. 5. As same as in Fig. 4 but for classification performance as function of log tempering parameter (i.e., log2 α) using probability
product kernel (PPK) method. The tempering PPK hyperparameter took values from {1/32,1/16,1/8,1/4,1/2,1,2,4,8}. Note that the tempering
hyperparameter α of PPK classifier is introduced in Eq. (32).
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FIG. 6. Same as in Fig. 4 but for kernel mean embedding (KME) classifier.

the parameter puts weights on the model grid. In this work, all
elements of the parameter vectors are initialized by drawing
from Gaussian distribution with zero mean and unit variance.
The parameters are then optimized through gradient descent
as explained in Sec. III B. This procedure is repeated N init

times, resulting in N init classifiers combined in flat ensemble
outputting the average of the N init predictive class probabilities
(given a test input). We set N init = 15.

(iii) For the binary classification tasks in this work, we first
generate the training and hold-out test sets with balanced class
distribution, each containing 200 observation time series. Both
classes from the training set are randomly subsampled (without
replacement) to 45 time series (out of 100), yielding a training
batch of 90 time series. This is repeated N rand = 10 times.
We then report the mean (± standard deviation) classification
performance on the test set across the N rand runs.
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FIG. 7. Relationship between classification performance and
model uncertainty measured by average posterior entropy. Each data
point corresponds to one of 15 data sets in group 1, group 2, and
group 3. The x- and y coordinate of each �, �, and ◦ point display
the average posterior entropy and the accuracy for LiMS, PPK, KME
classifiers, respectively.

B. GnRH signalling model

To conduct experiments with the classification task defined
in Sec. V A, we generate two independent sets of GnRH
models for training and testing (200 labeled models each). To
that end we randomly sample 400 parameter vectors θGnRH =
( log KdTF1

, log KdTF2
,tp) of the GnRH model. We consider log

values of KdTF1
and KdTF2

since their permissible range extends
over several magnitudes. Each of the three model parameters
are sampled from the corresponding Gaussian distribution
truncated to the permissible range. For each parameter, the
mean and standard deviation of the untruncated Gaussian are
set to the midpoint and radius, respectively of the permissible
range (see Table I). The parameter vectors are then labeled as
class 0 (normal conditions) or class 1 (abnormal conditions)
as described in Sec. V A (see the right panel of Fig. 1).

As the task is to classify PODS, we generate a variety
of observation time series with different observation settings
(number of observations, observation times, and observational
noise level). To sample observations from the GnRH model we
first simulate GnRH (8-h window) and record the observable
trajectory [GSU] at six different pulse frequencies. This results
in a six-dimensional [GSU] trajectory with a time resolution
of 1 min. Throughout the experiments, the initial values of
state variables in GnRH model are fixed but the trajectory
over the first half hour is discarded. This ensures that the
transient behavior has been ignored and only the attractor part
of individual trajectories is used for sampling observations and
thus the initialization of the GnRH model has little influence on
inferring the underlying model from observations [29]. Given
a simulated [GSU] trajectory, we generate 15 observation sets
using different pairs of observation noise level σ and the
intersample interval (ISI). The observation sets are organized
in three groups (five sets in each group):

Group 1. In each of the five observation sets, observations
were sampled regularly every ISI = 75 min over 7.5 h, yielding
six observation times. The level σ of observation noise in the
five observation sets was set to 0.1, 0.03, 0.01, 0.005, and
0.001. Hence, the observation sets in this group correspond to
the partially observed GnRH model with five different levels
of model uncertainty controlled by σ .
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TABLE II. Sign-rank tests for comparing the performance of
LiMS, KME, and PPK classifiers at different levels of model
uncertainty with the following one-sided hypotheses: (H1) LiMS
outperforms KME; (H2) LiMS outperforms PPK; and (H3) KME
outperforms PPK. The p values from these tests are given in columns
4–6 and all p values smaller than 0.05 are highlighted in bold font.
The level of model uncertainty is measured by (average) posterior
entropy (column 1). The corresponding observation noise level σ and
the intersample interval ISI values are given in columns 2 and 3,
respectively.

Entropy (σ , ISI) H1 H2 H3

1.7 (0.001, 75) 0.39 0.01 0.01
4.3 (0.005, 75) 0.22 0.00 0.02
5.2 (0.01, 75) 0.49 0.02 0.01
5.6 (0.03, 15) 0.01 0.00 0.00
6.0 (0.03, 30) 0.17 0.00 0.00
6.2 (0.03, 45) 0.09 0.01 0.02
6.4 (0.03, 75) 0.36 0.00 0.00
6.5 (0.03, 90) 0.12 0.07 0.29
7.3 (0.1, 75) 0.95 0.15 0.01

Group 2. Unlike in group 1, the five observation sets
in this group are generated by fixing the observation noise
to σ = 0.03 and varying the number of regularly spaced
observation times within the 7.5-h window. In particular, the
five observation sets contained 5, 6, 10, 15, and 30 observation
times with ISI = 90, 75, 45, 30, and 15, respectively. In this
case, the model uncertainty is controlled by the sparsity of
observations.

Group 3. The σ and ISI values are as same as in group 2,
but the observation times are placed randomly with uniform
distribution over the 7.5-h window.

In order to apply a distributional classifier for the classifi-
cation task, each observation set is represented by the corre-
sponding posterior distribution over the GnRH models. Recall
that in this work we approximate posteriors on a finite grid:
log10 (KdTF1

) = −2.3 + 1.4 i
41 , log10 (KdTF2

) = −2.1 + 1.4 i
41 ,

i = 0,1,2, . . . ,40,41, and tp ∈ {5,6,7,8,9,10}. The finite-grid
encodes our prior knowledge about the biologically permissi-
ble parameter ranges. As the classes are discriminated by KdTF1

and KdTF2
, the inferred posteriors are marginalized over tp.

Experiment 1

In this experiment, we investigated the interplay between
the classification performance of the three classifiers (LiMS,
PPK, KME) and the level of model uncertainty. In particular,
we first used group 1 data to study the relation between
the accuracy and the level of observation noise [panel (a)
in Figs. 4–6]. We then used group 2 and group 3 data to
evaluate the relation between the accuracy and frequency
of observations. The results are presented in panel (b) of
Figs. 4–6. Only performance curves for group 3 are shown
as the results for group 2 are very similar to those for group
3. Finally, we used all groups to assess the interplay between
the accuracy and model uncertainty quantified by the average
posterior entropy (Fig. 7).

Figure 4 shows results for the LiMS classifier. In each
panel, we plot the testing accuracy against the log kernel width

TABLE III. The LiMS’s task performance for classifying partially
observed GnRH model when using three different inferential GnRH
model structures (i.e., M1, M2, and M3 described in Sec. V A) to
infer the input posterior distributions from the [GSU] time series.
For these inferential models, their corresponding mean performance
(± standard deviation) obtained from nine different time series data
sets are summarized in columns 3–5, respectively. The observation
settings of these data sets are given in columns 1 and 2, where σ

denotes the observation noise level and ISI the sampling frequency.

Data sets (σ , ISI) M1 M2 M3

Group 1 (0.001, 75) 0.91 ± 0.02 0.88 ± 0.03 0.90 ± 0.01
(0.01, 75) 0.84 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
(0.1, 75) 0.52 ± 0.01 0.54 ± 0.01 0.54 ± 0.01

Group 2 (0.03, 90) 0.82 ± 0.00 0.81 ± 0.01 0.81 ± 0.01
(0.03, 30) 0.74 ± 0.01 0.73 ± 0.01 0.72 ± 0.01
(0.03, 45) 0.71 ± 0.01 0.70 ± 0.02 0.69 ± 0.01

Group 3 (0.03, 90) 0.83 ± 0.02 0.82 ± 0.02 0.82 ± 0.01
(0.03, 30) 0.69 ± 0.01 0.71 ± 0.01 0.71 ± 0.01
(0.03, 30) 0.68 ± 0.02 0.69 ± 0.01 0.68 ± 0.02

(i.e., log10 ρ) for different σ values [panel (a)], or different
ISI values [panel (b)]. Figure 4 shows in general that the
performance increases with decreasing kernel width until a
saturation level is reached (approximately) at ρ = 1. Recall
that parameter vectors were normalized to lie within the unit
cube. Kernel widths substantially larger than 1 introduce a
strong model bias that leads to performance degradation. The
only exception is the case where the model uncertainty is
so large that the classifier performs as bad as random guess
[see the curve corresponding to ISI = 75 and σ = 0.1 in
panel (a)]. On the other hand, it is interesting to observe
that the performance is quite robust with respect to kernel
width variations below the critical scale of 1. Figure 4 also
shows that the performance increases (almost) monotonically
with decreasing ISI or σ , which confirms the hypothesized
relationship between classification performance and model
uncertainty.

The results for PPK and KME classifier are displayed
in Figs. 5 and 6, respectively. Together with Fig. 4, they
show that the character of the interplay between classification
performance and model uncertainty is very similar for all three
classifiers. Kernel parameters of LiMS and KME classifiers
can be related to each other and from this point of view,
the LiMS classifier appears to be more robust to variations
in the kernel parameter, which is a desirable property. However,

TABLE IV. Left: The specification of two classes of partially
observed stochastical double-well systems in three classification
tasks by their respective prototypical model parameters. Right: The
specification of two groups of observation sets generated for each
of three tasks by their respective observation noise level σ and
intersample interval ISI.

(d̄,κ̄,ā) Class 1 Class 0 (σ , ISI) Group 1 Group 2

Task 1 (1.0, 1.0, −0.1) (1.3, 1.5, 0.1) Set 1 (0.3, 0.5) (0.3, 0.5)
Task 2 (1.0, 1.5, 0) (1.3, 1.5, 0) Set 2 (0.4, 0.5) (0.3, 1.0)
Task 3 (1.0, 1.5, 0) (1.2, 1.5, 0) Set 3 (0.6, 0.5) (0.3, 1.25)
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FIG. 8. Scatter plot of the mean and standard deviation pairs (μy,γy) computed for the time series {yt } observed (1) from different tasks
[from left to right: task 1, task 2, and task 3] and (2) with different (σ , ISI) settings [from top to bottom: (0.2,0.5), and (0.6,0.5)]. The data
points in the scatter plots from class 1 and class 0 are displayed as red diamonds and blue circles, respectively.

the role of the tempering kernel parameter in a PPK classfier is
very different and hence no direct comparison of performance
stability with varying kernel parameter can be made with LiMS
and KME classifiers.

Kernels in KME and PPK classifiers effectively smooth and
temper, respectively, the input posterior distributions. As in the
case of LiMS classifier, for KME the optimal kernel width is
around 1 (parameter vectors are normalized to lie within a unit
cube). For PPK, it seems that in most cases, high classification
performance is obtained when the posterior distributions are
not (or just slightly) tempered. The only exception is group
1 PPK curve corresponding to σ = 0.0001 and ISI = 150,
where the tempering flattens the model posteriors.

Figure 7 shows the classification performance as a function
of model uncertainty for the three PODS classifiers (LiMS,
KME, and PPK). For each of 15 data sets, the level of model
uncertainty is computed by averaging entropies of model
posterior distributions inferred from the individual observed
time series. The performance is quantified through the accu-
racy at the kernel parameter determined individually for each
classifier and each data set on the validation data. For the LiMS
classifier, we chose ρ = 0.5 as the overall “optimal” kernel
width. For the KME classifier, its optimal kernel width is cho-
sen as ρ = 1.0 for group 1 and 2 data and as ρ = 0.5 for group
3 data. In the case of the PPK classifier, we chose α = 0.5 for
group 2 data and α = 1.0 for group 3 data. For group 1 data,
however, the PPK’s optimal tempering parameter decreases
with σ , that is, α = 0.5 for σ = 0.1 and σ = 0.03, α = 0.25
for σ = 0.01 and σ = 0.005, and α = 0.0625 for σ = 0.001.
Recall that for each of the 15 observation sets, we have ten

performance measures obtained on ten resampled training or
hold-out sets. We combine all performance and uncertainty
measures corresponding to the same ISI and σ (regardless of
whether or not the observation times are random) into a single
set. This results in nine sets of (uncertainty, performance)
values. For each set, the corresponding average posterior
entropy, observation noise level σ , and intersample interval ISI
are given in the first two columns of Table II. In Fig. 7 the means
and standard deviations of the performance measures are
plotted against the corresponding average posterior entropy.
The plot shows a clear dropoff in classification performance at
high model uncertainty (of about 5 nats, where nat represents
a unit of entropy, based on natural logarithms). In this respect,
there is no significant difference among the three classifiers.
However, for low and moderate model uncertainty levels both
LiMS and KME outperform PPK. LiMS and KME also have
comparable classification performance. In Table II, the p val-
ues from sign-rank statistical tests are given for the following
one-sided hypotheses: (H1) LiMS outperforms KME; (H2)
LiMS outperforms PPK; and (H3) KME outperforms PPK.
The p values here mean the probability for the corresponding
(one-sided) hypothesis being true just by chance.

Experiment 2

In this experiment we investigate whether the performance
of classifying partially observed GnRH models would be im-
paired if simpler reduced complexity GnRH model structures
M2 and M3 of Sec. V A were used to infer the input posterior
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FIG. 9. Classification performance as function of log kernel width (i.e., log10 ρ) using LiMS classifier to classify partially stochastic
double-well systems for different tasks (from top to bottom: task 1–task 3) and for different observation settings [left: (σ,ISI) = (0.3,0.5),
(0.4,0.5), and (0.6,0.5) with red squares, blue circles, and black diamonds, respectively; right: (σ,ISI) = (0.3,0.5), (0.3,1.0), and (0.3,1.25)
with red squares, blue circles, and black diamonds, respectively)].

distributions representing observation sets generated from the
full model M1.

For each time series data set, we evaluated the LiMS
performance when using the M1- (as a reference), M2- and
M3-generated posterior distributions representing the obser-
vation sequences. The results, summarized in Table III, show
that the performance is closely comparable for all inferential
model structures M1–M3, for all observation sets. Recall that
two classification GnRH classes differ only in their frequency-
response characteristics that are completely determined by the
KdTF1

and KdTF2
values. All three model structures M1–M3 in-

clude compartment C3 which modulates the observable model
output [GSU] via Eq. (45). Moreover, the dynamics of [GSU]
is controlled by KdTF1

and KdTF2
. Our results confirm one of

the key points of this study: For classification of PODS via the
learning in the model space framework, it is not necessary for
the inferential model structure to be a perfect model of the un-
derlying dynamical system generating the data, as long as the
reduced complexity inferential model structure captures the es-
sential characteristics needed for the given classification task.

C. Double-well model

For partially observed stochastical double-well systems
(SDWs), the task is to classify posterior distributions over
the models accessible through parameter vectors (a,d,κ).
Recall that a is the asymmetry parameter, d is the well
location parameter, and κ represents the dynamical noise level.
Also recall that the two classes of SDWs involved in our
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FIG. 10. The same as in Fig. 9 but for classification performance as function of log tempering parameter (i.e., log2 α) using probability
product kernel (PPK) method.

experiments are defined through two class-conditional Gaus-
sian distributions in the parameter space: (d̄1 + εd,κ̄1 + εκ,ā1)
for class 1 and (d̄0 + εd,κ̄0 + εκ,ā0) for class 0, where
(d̄1,κ̄1,ā1) and (d̄0,κ̄0,ā0) denote the class-conditional proto-
typical model parameter; εd and εκ are Gaussian-distributed
zero-mean random variables with standard deviations 0.1/3
and 0.05/3, respectively.

To compare our LiMS classifier with KME and PPK
classifiers, we define a hierarchy of three tasks of increas-
ing complexity, denoted by task 1–task 3 (see Table IV).
Furthermore, to investigate the relation between the level of
model uncertainty and classification performance, for each
of the three tasks, we generate two groups of observation
sets (denoted by group 1 and group 2). Each group consists
of three observation sets with varying degrees of model
uncertainty. As in the GnRH experiment, the model uncertainty

level induced by each observation set is determined by the
corresponding observation noise level σ and the intersample
interval ISI. The increase of uncertainty level in group 1 and
group 2 is modulated by increasing σ and ISI, respectively
(see Table IV). For both groups, the time series in each
observation set were sampled at regularly spaced observation
times (with intersample interval ISI) within the time interval
[0, 50].

As we adopt a finite-grid approximation approach to
compute the model posteriors, the parameter space �

is discretized as follows: d ∈ {0.1,0.2, . . . ,1.9,2.0}, κ ∈
{0.1,0.2, . . . ,1.9,2.0}, and a ∈ {−0.2, − 0.1,0,0.1,0.2}.

One may argue that, given the nature of the classification
tasks outlined above, the mean μy and standard deviation γy

of the observed time series {yt } can provide useful features
for building a classifier solely operating in the signal space.
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FIG. 11. The same as in Fig. 9 but for KME classifiers.

Such feature vectors (μy,γy) can also provide an insight
regarding the task complexity. Figure 8 shows six scatter
plots of (μy,γy) for tasks 1, 2, and 3 (left, middle, and
right column, respectively) and for (σ,ISI) = (0.3,0.5) and
(σ,ISI) = (0.6,0.5) (upper and lower row, respectively). The
class labels are indicated by coloured symbols (red diamonds
for class 1 and blue circles for class 0). For task 1, the
asymmetry parameter a is class dependent and Fig. 8 shows
that in this case, the two classes can be separated simply
by using the time series’ means μy . For example, a positive
value of a would cause the means μy of time series from
the corresponding class to be biased towards a positive value
and vice versa. In task 2, a = 0 for both classes and the
means μy can no longer separate the two classes. However,
classification is still possible in the joint space (μy,γy). By
gradually reducing the difference between the two classes in
terms of the dynamical noise level κ , the classes can be brought

closer together in the (μy,γy) space in a controlled manner. To
tease out possible advantages of the learning in the model
space framework, in all SDW experiments we also employ a
signal-space baseline KLR classifier (bKLR) solely operating
on (μy,γy).

Experiment 1

Figure 9 shows the LiMS performance as a function of
kernel width ρ for tasks 1–3 and for different combinations of
σ and ISI values. In particular, in plots on the left the ISI is
fixed to 0.5 and σ = 0.3,0.4,0.6; in plots on the right the σ

is fixed to 0.3 and ISI = 0.5,1,1.25. Overall, the classification
performance remains robust over a fairly large interval of
intermediate ρ values ranging from 0.01 to 1.0. Naturally,
there is a drop in classification performance at very large
kernel width ρ = 10. Further, as expected, the performance
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FIG. 12. The same as in Fig. 9 but for bKLR classifiers.

decreased monotonically with increasing σ or ISI for all
intermediate kernel widths. These findings match observations
made in the GnRH experiments. Figure 10 shows that the
PPK classifier maintains its maximum performance over an
interval of intermediate tempering parameter values ranging
from α = 2−3 to α = 2. Recall that for GnRH models, the PPK
classifier attained the best performance for α � 1.0. Values
of α > 1 effectively make the input posterior distributions
over the models more peaked prior to classification. Unlike
in the GnRH experiments, in general the KME classifier
retains its best performance for larger kernel widths ρ � 0.5
(see Fig. 11). Figure 12 shows that the performance of the
baseline bKLR classifier increased steadily with the kernel
width, achieving its best performance over a range of large
kernel widths. For subsequent analysis, we chose (using the
validation data) ρ = 0.05, α = 2, ρ = 1, and ρ = 1 as the

overall kernel parameters for the LiMS, PPK, KME, and bKLR
classifiers, respectively.

To compare the four classifiers in a statistical manner,
we tested six different one-sided hypotheses: (H1) LiMS
outperforms KME; (H2) LiMS outperforms PPK; (H3) KME
outperforms PPK; (H4) LiMS outperforms bKLR; (H5) KME
outperforms bKLR; and (H6) PPK outperforms bKLR. In
particular, hypotheses H4–H6 address the question what kind
of learning in the model space classifiers can outperform the
baseline classifier operating in the signal space. The results
are summarized in Table V. All p values smaller than 0.15
are highlighted in bold font. Table V shows that for task 2, all
three posterior-based classifiers clearly outperform the bKLR
classifier. For task 3, LiMS and KME still outperform bKLR.
The results for the simplest task 1 indicate that LiMS would
have the upper hand against bKLR but the overall trend is not

043303-18



CLASSIFICATION FRAMEWORK FOR PARTIALLY . . . PHYSICAL REVIEW E 95, 043303 (2017)

TABLE V. Sign-rank tests for comparing the classification per-
formance between LiMS, KME, PPK, and bKLR classifiers in the
three tasks of classifying partially observed double-well systems,
using the following one-sided hypotheses: (H1) LiMS outperforms
KME; (H2) LiMS outperforms PPK; (H3) KME outperforms PPK;
(H4) LiMS outperforms bKLR; (H5) KME outperforms bKLR; and
(H6) PPK outperforms bKLR. The p values from these tests are given
in columns 3–8 and all p values smaller than 0.15 are highlighted in
bold font. The level of model uncertainty is measured by (average)
posterior entropy (column 2).

Task Entropy H1 H2 H3 H4 H5 H6

Task 1 4.564 0.00 0.00 0.02 0.07 0.73 0.99
4.634 0.01 0.10 0.89 0.48 1.00 0.93
4.654 0.25 0.04 0.30 0.00 0.01 0.01
4.656 0.67 0.01 0.01 0.03 0.09 0.89
4.756 0.13 0.06 0.62 0.22 0.39 0.47

Task 2 4.561 0.50 0.03 0.09 0.00 0.00 0.00
4.682 0.50 0.06 0.13 0.00 0.00 0.00
4.693 0.50 0.13 0.50 0.00 0.01 0.01
4.707 0.50 1.00 1.00 0.00 0.00 0.00
4.835 0.00 0.00 0.94 0.00 1.00 0.73

Task 3 4.659 0.01 0.00 0.14 0.01 0.07 0.36
4.762 0.82 0.10 0.03 0.00 0.00 0.02
4.775 0.22 0.05 0.31 0.40 0.73 0.78
4.837 0.13 0.06 0.16 0.00 0.02 0.04
5.026 0.73 0.13 0.08 0.00 0.01 0.37

clear. Indeed, in task 1 the two classes can be conveniently
separated in the signal space. This analysis shows the overall
superiority of LiMS (but not KME) over PPK. Interestingly
enough, we observed the same general trend of decreasing
classifier performance with increasing model uncertainty in
the input model posteriors.

Experiment 2

Finally, we study to what degree can the use of a simpler
model to obtain representative model posteriors hamper the
classifier performance, provided the observations are gener-
ated by a much more complex model, yet the simpler model
already embodies characteristics needed to perform the given
classification task (see Sec. I). In particular, we form an
extended task 1, task 1e, in which time series in the observation
sets were generated by complex stochastic multiwell systems
with multimodal structure of the equilibrium distribution that
can approximated (for the purposes of classification) by SDW
systems (see Fig. 2). The performance of LiMS classifier in
task 1e, reported in column 2 in Table VI, was compared
with task 1 (column 3 of the same table). The p values for
the one-sided hypothesis stating that a better classification
performance can be obtained in task 1e than in task 1 are given
in column 4. Overall, the performance in task 1e is as good
as in task 1. This confirms analogous findings in the GnRH
experiment, where the use of simplified models, well aligned
with the classification task, did not hamper the classification
performance, even though the observation sequences were
generated by much more complex models (see Sec. VI B,
Experiment 2).

TABLE VI. Comparison of classification performance between
two different classes of data-generating SDW systems: multiwell
systems vs double-well systems. Note that double-well systems are
the inferential model used in both cases.

(σ , ISI) Task 1e Task 1 p value

(0.3, 0.5) 0.992 ± 0.005 0.996 ± 0.004 1.00
(0.4, 0.5) 0.986 ± 0.006 0.987 ± 0.003 0.82
(0.6, 0.5) 0.978 ± 0.009 0.974 ± 0.008 0.09
(0.3, 1.0) 0.984 ± 0.004 0.996 ± 0.005 1.00
(0.3, 1.25) 0.970 ± 0.006 0.991 ± 0.005 1.00

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented a general learning in
the model space (LiMS) framework for classifying partially
observed dynamical systems. The key ingredient of this
framework is the use of posterior distributions over models to
represent the individual observation sets, taking into account
in a principled manner the uncertainty due to both the gen-
erative (observational and/or dynamic noise) and observation
(sampling in time) processes. This is in contrast to the existing
learning in the model space classification approaches that use
model point estimates to represent data items. Another key
ingredient of our approach is a distributional classifier for
classifying posterior distributions over dynamical systems.

We evaluated this classifier on two test beds, namely a
biological pathway model and a stochastic double-well system.
Empirically the classifier clearly outperforms the classifier
based on probability product kernel (PPK)—a state-of-the-
art kernel method for classifying distributions. Moreover,
its performance is comparable with a recent distributional
classification method based on kernel mean embedding. We
derived a deep connection linking those three seemingly
diverse approaches to distributional classification and provided
a plausible explanation concerning superiority of the proposed
classifier over the PPK classifier.

The experiments show a clear relation between model
uncertainty and classification performance. As expected,
the performance drops with increasing model uncertainty.
Principled treatment of model uncertainty in the learning in
the model space approach is crucial in situations charac-
terized by non-negligible observational noise and/or limited
observation times. To illustrate this point further we also
trained a baseline classifier that, given the observed time
series, completely ignores the model uncertainty and instead
of posterior distribution only employs the MAP point estimate
of the model parameter. As all the other classifiers, the baseline
classifier (referred to as MAP) is also implemented in the KLR
framework.

We compared the three posterior based classifiers with the
MAP classifier using both test beds. The comparison follows
the philosophy of comparing baseline classifier (bKLR) with
the distributional classifiers in the SDW experiment (columns
6–8 in Table V). In particular, in the GnRH experiment, we
tested three hypotheses (distributional classifier outperforms
MAP) at nine uncertainty levels (see column 1 in Table II).
Both LiMS and KME classifiers outperform (in the mean)
the MAP classifier in all, except for one, uncertainty levels.
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For LiMS and KME, this superiority is statistically significant
(p < 0.05) in all cases except for the lowest and the two lowest
uncertainty levels, respectively. This is to be expected, as
at low uncertainty levels the posterior over the models can
be reasonably approximated by the MAP model estimate.
In contrast, PPK classifier outperforms the MAP classifier
only at four uncertainty levels, with statistical significance
obtained only at the three highest uncertainty levels. In the
SDW experiment, the tests were performed at 15 uncertainty
levels (see columns 1 and 2 in Table V). The LiMS, KME, and
PPK classifiers outperform the MAP classifier at all 15, 11,
and 7 uncertainty levels, with statistical significance obtained
at 9, 4, and 4 uncertainty levels, respectively.

Crucially, we showed that the classifier performance would
not be impaired when the model class used for inferring pos-
terior distributions is much more simple than the observation-
generating model class, provided the reduced complexity infer-
ential model class captures the essential characteristics needed
for the given classification task. This finding is potentially very
significant for real-world applications. Although mechanistic
models encode expert domain knowledge and are of huge
importance in forward modeling (e.g., assessing response to
drug at certain dosage), such models may be too complex
for the inferential (inverse-task) purposes. Fortunately, much
reduced model alternatives can be used in the learning in
the model space framework if, as explained above, they
already encode features important for the classification task. A
semiautomated task-driven model simplification for learning
in the model space framework is a matter for our future
research.

The classification framework presented in this paper is a
discriminative approach to model-based classification with a
principled treatment of model uncertainty. In the literature, the
“Bayesian model reduction” framework developed by Friston
et al. [32] can be used to effectively generate class-conditional
empirical priors over model parameters of dynamical causal
models, given a training set of the labeled posterior distri-
butions. To classify a new data set, the empirical priors of
all classes can be used to compute their respective Bayesian
model evidence which are subsequently used as scores to
perform classification. This represents a generative approach to
model-based classification in which model uncertainty is taken
into account via Bayesian model reduction in the training phase
and Bayesian model comparison in the testing phase. Further,
Bayesian model reduction could also allow for simultaneously
performing model-based classification with two or more
structural models of different complexities, provided that all
structural models have the same state space but with a different
number of free parameters. In our work, the full and reduced
models we have tested share the same free parameters but with
different dimensionality of their state spaces.
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