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Numerical heating of electrons in particle-in-cell simulations of fully magnetized plasmas
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The role of spatial resolution of the electron gyroradius in electrostatic particle-in-cell (PIC) simulations is
studied. It is demonstrated that resolving the gyroradius is crucial for simulations of strongly magnetized plasmas
and that nonresolving it results in substantial anisotropic heating of electrons. The numerical heating can, in some
cases, be suppressed by the higher-order weighting to the grid, but it cannot be avoided. Possible mechanisms
behind this numerical heating are discussed. The study is carried out with a fully three dimensional electrostatic
PIC code with an external magnetic and electric fields.
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I. INTRODUCTION

Numerical simulation is a common approach for studying
dynamical plasma phenomena. The plasma models usually
depend on the spatiotemporal scales of interest and are
reflected in numerical approaches. Magnetohydrodynamic and
fluid simulations consider plasma as conducting fluids. They
are concerned with slow and large-scale phenomena, thus
assuming that the simulated plasma velocity is the average
over the velocity phase space [1]. In another limit, the Vlasov
codes are concerned with solving the Vlasov equation to study
the evolution of the plasma velocity distribution function
[2]. For studying plasma at a kinetic level, at small and
intermediate scales, the most common numerical approach
is the particle-in-cell (PIC) numerical method [3,4].

In the PIC method a large number of numerical particles
representing electrons and ions are simulated and their
trajectories are followed in self-consistent force fields. To
reduce the numerical complexity and make the large-scale
simulations feasible, the simulated particles interact with each
other via a computational grid that is used to calculate the
force field [3,4]. The use of the grid reduces the complexity
of numerical operations from O(N2), where N is the number
of simulated particles and N2 relates to evaluation of forces
between particle pairs, down to O(N log Ng), where Ng is
the number of grid points, Ng � N and N is now related to
the particle-grid operations (weighting, force projection). Note
that the equations of motion for the simulated particles are the
characteristics of the Vlasov equation, and the PIC method
can be related to solving this equation with the method of
characteristics. While the PIC method gives, in general, much
more noisy results than the Vlasov simulations due to the finite
number of simulated particles, it offers a powerful tool due to
its flexibility and computational efficiency [4].

*mh@ufa.cas.cz

In the standard, explicit PIC method, the trajectories of
simulated particles are usually advanced with the leap-frog or
Boris algorithms [3,4]. The leap-frog method is characterized
by a staggered time-mesh for velocities v and positions x:

xi(t + �t) = xi(t) + vi(t + �t/2)�t,
(1)

vi(t + �t/2) = vi(t − �t/2) + Fi(t)�t/mi,

where i refers to a plasma particle, Fi = qiE is the electric
force projected on the ith particle from the nearest grid points,
and �t is the computational time step. The Boris algorithm
[5,6] accounts for the velocity rotation due to the Lorentz
force FL = q(E + v × B). It rotates velocity v− in the plane
perpendicular to the magnetic field B = m�̂/|q|, where �̂ is
the gyrofrequency, to a new velocity v+:

w = v− + v− × ξ ,
(2)

v+ = v− + w × η,

where ξ = �̂ tan(��t/2), and η = 2ξ/(1 + ξ 2). To combine
the two algorithms, one needs to first half-accelerate the
particle due to the electric force (i.e., advance its velocity for
a half-time step �t/2), rotate the velocity due to the magnetic
field according to Eq. (2), and again half-accelerate the particle
due the electric force using Eq. (1). Thus the mean particle
velocity is used for the Lorentz force calculation.

The force field is calculated with a difference scheme
on the spatial grid from the particle data weighted to the
grid, and then projected to the particles. This particle-grid
interaction introduces the weighting shape factors S, which
depend on the details of weighting routines, usually employing
B-splines. The commonly used weighting is the first-order
linear interpolation S1 (e.g., in Refs. [7–10]), which distributes
the charge density between the nearest gridpoints [two points in
the one-dimensioanl (1D) case]. The second-order (quadratic)
spline S2 which assigns the charge density between more grid-
points (three nearest points in the 1D case), and the nearest grid
point (NGP) scheme, S0 are used less frequently [11,12]. The
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second-order weighting smoothes charge density distribution
and can supress numerical instabilities to the certain level
[13], however, it is computationally more expensive. On the
other hand, the NGP is very fast but it is characterized by an
increased noise level. Therefore, as a compromise, the S1 is
usually chosen due to its effective shape factor [14].

The use of a spatiotemporal grid implies restrictions on the
time step and grid spacing used in the simulations [15]. The
numerical accuracy of the explicit temporal integration (1)
requires that the time step �t < ω−1, where ω is the largest
characteristic frequency in the system (usually the plasma
frequency or electron gyrofrequency) [4,16]. The leap-frog
(1) is numerically unstable for ω�t � 2. For the range 1 <

ω�t < 2 the scheme is stable, however, the numerical error is
considerable. To conserve the energy in the PIC simulation, it
is typically advised to use ω�t � 0.1 [15].

Using a spatial grid leads to condition �x < γλD, where
γ is the numerical factor that depends on the order of
weighting of the fields to the grid points (for the first-order
weighting γ = π ) and λD is the Debye length which is related
to the electron temperature as λD ∼ √

Te. If this condition
is not satisfied, aliasing with the grid will lead to heating
of plasma. The heating will stop when the condition is
fulfilled, i.e., when λD ≈ γ −1�x. Note that this condition can
be generalized as vth�t � �x, thus the particles should not
move more than one grid cell within �t , which implies that the
particle information should be accurately represented on the
grid. In electromagnetic codes the previous conditions lead to
the Courant-Friedrichs-Lewy (CFL) criterion, stating that the
propagation of electromagnetic waves must fulfill c�t < �x.

In the studies of spatial grid effects, most of the efforts
have been put on the resolution of λD [13]. However, in
strongly magnetized plasmas one can have electron gyroradius
rL < λD [17,18]. It is generally accepted that not resolving
the electron gyroradius on the spatial grid (when rL < �x)
does not have consequences on the numerical stability due
to the homogenous distribution of the particles and that
the accurate resolving the gyration by temporal spacing is
sufficient. Birdsall and Langdon [4] noted that smoothing the
distribution function by not resolving the Larmor radius, for
example, when rL � �x, will have a stabilizing effect when
considering the numerical instability of the magnetized plasma
due to a finite time step �t [16]. Only recently has it been noted
that unresolved rL might lead to plasma heating, and that this
parameter regime should be avoided [17,19]. Thus it remains
an open question whether the electron gyroradius needs to be
resolved in PIC simulations and what are the consequences of
the gyroradius resolution for the system stability.

In this paper we study the effects of rL resolution in a PIC
simulation of strongly magnetized plasma. We demonstrate
that for unresolved Larmor radius the electrons are being
heated in the direction perpendicular to the magnetic field.
These effects can be only partially diminished, but cannot be
avoided by using higher-order weighting functions.

II. SIMULATION DESCRIPTION

For our simulations we use a three-dimensional (3D)
momentum-conserving electrostatic code called DIP3D, which
was developed at the University of Oslo and was used many

times before (e.g., Refs. [20–22]). Particles are advanced
with the leap-frog method [Eq. (1)] combined with the Boris
algorithm [Eq. (2)] and electric potential is calculated using the
multigrid method. We use the Cartesian coordinate system, and
can choose between the first- and second-order weightings of
particles and fields [4]. DIP3D also allows to simulate collisions
between charged particles and neutrals using the “null collision
method” [23,24], external electric fields, as well as charging
of dust grains and other objects in plasma [22], however, these
features are not used in this study.

We set the external magnetic field B in the x̂ direction
and use a cubic simulation box with periodic boundaries.
To account for different spacing, we modify the length of
each side and the number of grid cells. We use the Debye
length and plasma density as input parameters, from which we
derive both the plasma frequency and the temperature. Thus
to vary the initial temperature and thermal gyroradius we can
change either the Debye length or density. In all simulations
we resolve the electron Debye length in the spatial domain
and all characteristic frequencies in the temporal domain.
From diagnostics we focus on the velocity phase space and
electric potential distributions. At given time instances we can
reconstruct the electron distribution function, from which we
are able to estimate the electron temperature using the fact that
the second moment of the Maxwellian distribution corresponds
to the temperature by the relation

σ 2
v = v2

th = kBT

m
. (3)

The code can save the electric potential of a grid or subgrid
during the simulation which allows for studying the temporal
evolution of potential fluctuations as well as frequency wave
number spectra in all three directions.

In this study we typically simulate N ∝ 106 particles
per plasma species. Parallelization is done using particle
redistribution over different nodes, and the message-passing-
interface (MPI) is used for the parallel computation. In PIC
simulations one should be aware of having a sufficient average
number of particles per cell (Nc) because the initial level
of potential fluctuation scales with 1/

√
Nc. We verified our

results by varying the number of particles per cell [25], and
found that the current setup is appropriate and that further
increase of Nc does not change the evolution of the system.

We use different simulation setups. In each of them we
have one simulation with the first-order weighting S1 and one
with the second-order weighting S2. These simulations are
labeled A1, A2, B1, B2, C1, C2, D1, and D2, where the capital
letters stand for the setup and the numbers correspond to the
weighting order. The simulation parameters are summarized
in Table I. In these four sets (A, B, C, and D) we use a
different resolution of gyroradius on the grid. Simulations A
have highly unresolved gyroradius. Simulations B also have an
unresolved gyroradius, but the length of the simulation box is
much smaller, while the number of grid points is chosen to have
the same spacing as in simulations A. This is to study whether
the numerical heating does depend on the size of the box.
Simulations C have a well-resolved gyroradius and simultions
D have grid spacing similar to the gyroradius. Thus our
simulations cover three main cases: (i) unresolved gyroradus,
(ii) well-resolved gyroradius, and (iii) gyroradius similar to
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TABLE I. Parameters used in simulations of magnetized plasmas. Numbers 1 or 2 in each setup stands for order of weighting function
S1 and S2, respectively. In all simulations we used the external magnetic field B0 = 0.005x̂ T, electron Debye length λD = 9.76 × 10−3 m,
temperature ratio Te/Ti = 4, and mass ratio mi/me = 500.

Param.\Sim. A1 & A2 B1 & B2 C1 & C2 D1 & D2

Lx, Ly, Lz 0.5 m 0.125 m 0.125 m 0.5 m
ngx, ngy, ngz 64 16 128 128
�x, �y, �z 7.81 × 10−3 m 7.81 × 10−3 m 9.77 × 10−4 m 3.91 × 10−3 m
�t 5 × 10−10 s 5 × 10−10 s 3.9 × 10−10 s 2.5 × 10−10 s
ni,ne 5 × 1012 m−3 5 × 1012 m−3 5 × 1012 m−3 4.3 × 1013 m−3

Ni,Ne 5 × 106 78125 2 × 107 2 × 107

2π/�ce�t 14.3 14.3 18.3 28.6
2π/ωpe�t 99.7 99.7 127.9 68.1
λD/�x 1.249 1.249 9.99 2.49
vth/�ce�x 0.18 0.18 1.43 1.05
Te 8.62 eV 8.62 eV 8.62 eV 74.12 eV

spacing. By comparing results from these three cases we can
obtain the qualitative description of numerical heating due to
the resolution of the gyroradius. Note that in all simulations
the time step is sufficiently small to resolve the electron
gyromotion in the time domain. Thus the Boris algorithm that
is used to advance particle trajectories and velocities is stable.

As an additional case we extend our analysis by including
also external electric field. The electric field is in a direction
perpendicular to the magnetic field and gives rise to the
E × B drift of plasma. The strength of the added electric field
is 550 Vm−1 and drift velocity is vD = 11 000 ms−1. These
values are chosen to obtain supersonic drift velocity and still
to have stable plasma due to the absence of relative drift
speed between species (ions are also fully magnetized). Plasma
parameters of this simulation correspond to the simulation D
while the grid spacing is twice as large, thus the gyroradius is
unresolved. This extra case is considered to verify whether the
flowing magnetized plasma will have similar characteristics as
the stationary magnetized plasma.

III. SIMULATION RESULTS

For all simulation runs shown in Table I we fulfilled all
standard stability criteria such as the temporal resolution
of the highest system frequencies and spatial resolution of
the electron Debye length. Thus the only varying parameter
is the resolution of the electron gyroradius. In the analysis
of the numerical results we focus on the temporal evolution of
the electron temperature, evolution of potential fluctuations,
and wave spectra.

Temporal evolutions of the electron temperature for each
case are shown in Fig. 1. Since the gyroradius is calculated
from the perpendicular thermal velocity, the rL/�x ratio can be
attributed to the perpendicular temperature, therefore we also
show a scale with this ratio. The left panels show temperatures
in each direction for the simulations with the first-order
weighting S1 and the right panels show results for cases with
the second-order weighting S2. In simulations A1 and A2 we
have highly unresolved electron gyroradius rL/�x ≈ 0.18 and
well-resolved gyrofrequency 2π/�ce�t ≈ 14.3. We observe
heating of electrons in the perpendicular directions for case
A1. The heating starts approximately after 80 plasma periods.

For the case with the second-order weighting A2, we do not
observe any significant heating and the temperatures only
fluctuate around their initial values.

The temperature increase may be reflected in the temporal
evolution of potential fluctuations. The potential fluctuations
for both runs are shown in Fig. 2(a). For the case with the first-
order weighting we observe an increase in root mean square
(RMS) of potential fluctuations: their level doubles during
the simulation. However, for the case with the second-order
weighting we see a slight decrease in RMS values, indicating
smoothing of the potential. The oscillations in RMS values
visible at the beginning of the simulation are related to the ion
plasma oscillations. To further study the potential fluctuations
we present in Fig. 3 snapshots of the potential density in the
plane perpendicular to the magnetic field at different time
instances corresponding to the initial state, growing phase,
and the later stage. A striking feature is the growth of potential
filaments aligned with the magnetic field lines, which give rise
to strong density gradients in the perpendicular directions as
well as growth in the amplitudes.

In view of our results, it may be instructive to analyze also
the wave spectra. We present spectra for the perpendicular di-
rection obtained from the whole simulation run in Fig. 4 (upper
panels for A1). For clarity we show spectra of potential fluc-
tuations around frequencies where there is the largest activity.
In the left-upper panel we see activity around the upper hybrid
frequency with several harmonics, which is typical for the
perpendicular direction in magnetized plasmas. In the right-
upper panel, there are oscillations on the ion plasma frequency
that dominate. We note that the signature of the ion plasma
oscillations becomes less visible at the later stage of the simu-
lation, which agrees with the results for the potential evolution.

In simulations B1 and B2 we use the same plasma
parameters, and the same grid spacing as in setups A1 and
A2. However, the size of the simulation box is different to
study if the box size can affect electron heating. The temporal
evolution of electron temperature is shown in Fig. 1 (B1,B2)
and it is clear that the box size has a negligible effect on
the evolution of the electron temperature: the heating in
perpendicular directions has a similar rate as the heating in
simulation A1. Similarly to simulations A2, in simulations
B2 we do not observe any heating for the case with the
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FIG. 1. The electron temperature evolution for all simulation runs. The first-order weighting is given in the left column, while the
second-order weighting is in the right column. Magnetic field is oriented in the x direction. The scale on right side corresponds to the
rL/�x ratio.

second-order weighting. A different situation is in the case
of potential fluctuations. It is obvious from Fig. 2(b) that the
initial fluctuation is lower in cases B than in simulations A1
and A2. It is because the number of simulated particles is the
same as in simulations A, but the volume of one elementary
cell (�x × �y × �z) is much smaller than in the previous

case. For the first-order weighting we observe exponential
growth of fluctuations starting after approximately 40 electron
plasma periods and lasting until approximately 130 plasma
periods when the growth becomes smaller. At the end of the
simulation, the fluctuations reach a level that is similar to those
in simulations A1. The evolution of potential fluctuations in
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(a) (b)

(c) (d)

FIG. 2. Temporal evolution of RMS values of normalized potential fluctuations. In each figure the simulation with the first-order weighting
is depicted by solid black line and the case with the second-order weighting by dashed blue line. Note that the vertical scale in panel (c) is
different than in other panels.

simulations B2 shows damping, similar to simulations A2. We
checked also the potential density in the plane perpendicular to
the magnetic field, and just like in setup A, the potential created
filaments along the magnetic field. Thus we present spectra
of waves in potential fluctuations also for simulation B1 in
Fig. 4(B1). Note that the normalization factors for spectra A1
and B1 are different and each spectra are normalized to their
own maxima. While we cannot compare depicted amplitudes
between the two setups we can still assess the shape of the
spectra. Such a comparison shows that there are no significant
oscillations on the ion plasma frequency for B1, but we still
observe the wave activity around the upper hybrid frequency.

In simulations C1 and C2 we have a very good resolution
of the electron gyroradius. We do not observe any growth in
the electron temperature in Fig. 1 (cases C1 and C2) nor in the
fluctuations of potential in Fig. 2(c). The electron temperature
only slightly fluctuates around initial values and the RMS
values of the electric potential stay at a low level during
the whole simulation. We note that to maintain the scales
for potential evolution figures, the RMS values of potential
fluctuations are multiplied by 10 in Fig. 2(c). There is no
significant difference between the runs with the first-order and
the second-order weighting in setup C. In the wave spectra we
did not observe any significant wave or oscillation activity.

Simulations D1 and D2 are set to have the same box size
as simulations A1 and A2 and the resolution of gyroradius
slightly above vth/�ce�x = 1, thus they can be assumed
as a case with the minimal resolution of gyroradius. We
note that these simulations have warmer electrons from the
beginning. It is because in the DIP3D code the temperature
of particles is calculated from the Debye length and number
density which are defined as input parameters. To have a

larger thermal gyroradius we need to increase either the Debye
length or density or decrease the magnetic field. To keep
the same Debye length and magnetic field in all simulation
runs, we therefore increased the density up to the order
ni,e ∼ 1013, thus we get the required resolution of gyroradius.
The temporal evolution of the electron temperature in Fig. 1
(D1,D2) shows fluctuations and little growth of temperature
in the perpendicular direction in simulation D1. The results
of simulation D2 show stable temperature in the magnetically
aligned direction and oscillations in perpendicular directions.
The evolution of RMS in the potential distribution in Fig. 2(d)
shows only oscillations on the ion plasma frequency for both
weightings. The plasma oscillations also dominate the spectra.

Finally, we consider also the additional case with external
electric field. In Fig. 5 we show the temporal evolution of
electron temperature for both first-order and second-order
weightings. A significant difference in this case is that we
observe pronounced heating in both cases starting again around
after 80 plasma periods. For the first-order weighting, the
heating is observed even in the x̂ direction. The second-order
weighting does not cancel the heating but only reduces it.
However, in both cases, the numerical heating is significant.

In summary, we observe significant changes in the electron
temperature in all simulations where we used the first-order
weighting and the gyroradius was not well resolved. Thus,
except for C1 and C2 runs, we observed either growth of the
potential fluctuations or potential oscillations. The frequency
spectra show that in these cases the dominant waves are
around upper-hybrid and electron-cyclotron frequencies and
the dominant oscillations are on the ion plasma frequency. For
the simulations with the second-order (quadratic) weighting,
there was no heating nor growth in the potential fluctuations
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FIG. 3. Cuts in the y-z plane for the potential density showing
time evolution of electric potential in the plane perpendicular to the
magnetic field in the case A1. Panel (a) corresponds to the initial
state of potential, panel (b) shows the cut for the time t = 90/ωp,
and panel (c) shows potential for the time t = 270/ωp. The evolution
of filamentary structures along magnetic field is clearly visible. Both
axes are normalized to the Debye length λD.

for plasma with no external electric field. We observe only
the ion plasma oscillations in simulation D2. The spectra

from simulations with the second-order weighting are much
less pronounced than the spectra from simulations with the
linear weighting. For simulations with external electric field
we observe electron temperature increase in the perpendicular
direction for both weightings.

IV. LINEAR DISPERSION ANALYSIS

The numerical results show that the electrons are being
heated for the unresolved electron gyroradius. Therefore it can
be instructive to investigate the properties of such a gridded
system analytically. In the theoretical analysis we assume the
magnetic field in the ẑ direction and make linear analysis
corresponding to the set of simulations A, B, C, and D.
The linear study of plasma waves in PIC simulations under
our conditions leads to the linear dispersion relation (the full
derivation is given in the Appendix)

1 +
∑

α

∞∑
p=−∞

|S(kp)|2 ω2
pα

K2(kp)v2
thα

×
[

ω exp (−λα)√
2|κz|vthα

∞∑
m=−∞

Im(λα)Z
(
ζm
α

)] = 0, (4)

where

S(kp) =
[

dif

(
kpx�x

2

)
dif

(
kpy�y

2

)
dif

(
kpz�z

2

)]m+1

(5)

is the shape factor given by the order of weighting. The dif
function is the diffraction function defined by the authors of
Ref. [4] as

difθ = sin θ

θ
.

The definition of variables κ and K2 is in Eqs. (A2) and (A3)
(according to the authors of Ref. [4]) and their meaning is
the effect of the grid on the quantities calculated on the grid
(forces, potential, etc.).

The dispersion relation in Eq. (4) provides a solution for
the arbitrary direction of the wave vector. Since we observe
heating mainly in the direction perpendicular to the magnetic
field, we can simplify the dispersion relation to the form which
contains only the perpendicular wave vector.

To make this simplification we can use asymptotic expan-
sion of the plasma dispersion function, set the kz = 0 and get
the dispersion relation

1 +
∑

α

∞∑
p=−∞

|S(kp)|2 ω2
pα

K2(kp)v2
thα

×
[

1 − ω exp (−λα)
∞∑

m=−∞

Im(λα)

ω + m�α

]
= 0. (6)

As the first approximation we solved this equation in its
dimensionless form numerically for p = 0 using different
resolutions of Larmor radius and for the different orders of
the shape function. In all cases the obtained solution had no
imaginary part, thus there was no growth nor damping, and
it contained only real parts of frequency corresponding to
Bernstein modes. Thus, the linear analysis did not provide
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(a1) (a1)

(b1)(b1)

FIG. 4. ω-kz amplitude spectra of electric potential for simulations resulting in temperature and potential growth. Top panels depict spectra
for A1 electron gyro/upper hybrid frequency range (left), and A1 ion gyrofrequency range (right), while bottom panels depict spectra for
B1 electron gyro/upper hybrid frequency range (left), and B1 ion gyrofrequency range (right). The frequency axis is normalized to ion
gyrofrequency and wave number axis is normalized to the Debye length. We have �e = 500�i and ωuh ≈ 504.5�i and thus we can see activity
in the upper hybrid frequency range which is typical for perpendicular direction in magnetized plasmas.

an explanation for the electron heating in the perpendicular
direction due to the unresolved gyroradius.

V. DISCUSSION

The results from this study show that the resolution of
the electron gyroradius rL is a crucial aspect of simulating
strongly magnetized plasmas where the electron gyroradius
rL is the smallest characteristic scale. In simulations with the
highly unresolved electron gyroradius, we observe significant
numerical heating of electrons in the direction perpendicular

to the magnetic field. The heating starts after 60–80 electron
plasma periods and in the beginning the heating is exponen-
tial. After another 70–90 plasma periods, the perpendicular
electron temperature growth becomes almost linear. Finally,
at later stages the temperature increase goes asymptotically
to the temperature corresponding to the gyroradius resolution
rL/�x = 0.6–0.8. However, this asymptotic value is not well
settled. For example, in simulations for case D, we observe
fluctuations in temperature even for the marginally resolved
rL, when rL/�x ≈ 1.05. Since we use Maxwellian plasma
and calculate rL from the perpendicular thermal velocity, we
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FIG. 5. The electron temperature evolution for the addtional simulations with drifting plasma. The left panel shows temperature evolution
for the first-order weighting while the right panel shows temperature for the second-order weighting. The magnetic field is oriented in the
x̂ direction, and the electric field in ŷ direction. It is clear that in these simulations, the second-order weighting only reduces the growth of
temperature.

still have a part of particles with a smaller gyroradius than what
would correspond to the thermal velocity. The exact value of
this threshold likely depends on other simulation parameters
and can be a subject of further research.

The need for resolving the electron gyroradius, and the
problem of artificial heating of electrons for unresolved rL,
were not addressed before, and only a few comments on this
issue can be found in the literature, [17,19]. Melzani et al.
[19] briefly mentioned electron heating during simulations
with unresolved electron gyroradius using electromagnetic
PIC code. They also suggested that it may be because of
aliases on the grid and noted that such a parametric range
should be avoided, however, no analysis of the problem was
provided there. Note that in this study, we use the electrostatic
PIC code, which confirms that the problem is of a general
character. We also demonstrate that aliasing with the grid does
not lead to unstable solutions in the linear analysis.

In a more general context of the Debye length resolution,
Cormier-Michel et al. [13] discussed the artificial heating
related to the order of weighting function. Parker and Birdsall
[16] studied the resolution of gyromotion from the perspective
of temporal resolution of the gyrofrequency, and observed
that nonresolving of gyrofrequency does not affect simulation
stability and causes only errors in particle orbits. On the other
hand, in such systems where the electron Debye length is
smaller than the electron gyroradius, the need of gyroradius
resolution is automatically fulfilled due to numerical stability
requirement of resolving the Debye length. This criterion is
fulfilled in most weakly magnetized plasmas.

Our results show that the important aspect is the weighting
function used in simulations. In cases where we observe
heating due to the unresolved gyroradius, we observed it only
for cases with the first (linear) order weighting function. There
was no heating nor growth in potential fluctuations for the
simulations with the second-order weighting. However, we
verified this effect also for simulations of plasma in E × B
fields, observing that the artificial heating as well as the growth
in potential fluctuations were not fully eliminated but only
lowered. Thus it is clear that the order of weighting function
is important in diminishing the effect, but it is not the solution
to the problem. The importance of the choice of weighting
function was also discussed in Ref. [13] in the context of

the Debye length resolution, where the same conclusion was
reached: the higher-order weighting causes lower heating but
can not fully eliminate it.

The artificial electron heating can be related to the growth
in potential fluctuations and creating filament structures in the
potential distribution at very small scales of the order of the
grid spacing. These filaments are only present in simulations
with unresolved gyroradius. The origin of the filaments is
unclear, but it is likely that they are due to initial fluctuations
and the fact that for unresolved gyroradius, some gyrating
electrons will always be at a certain distance from the grid
point. In case A, where �x/rL ≈ 5, only a small fraction
of electrons will have a gyromotion that will allow them to
change a grid cell. Consequently, the electrons will move only
along the magnetic field lines, but in a periodic system this
will eventually lead to clumping and regions of enhanced
potential that will scatter particles across magnetic field lines.
The resulting filaments are indications of strong gradients in
density which also lead to strong gradients in perpendicular
components of the electric field.

Strong electric field gradients can lead to instablity and sub-
sequently to electron heating [26]. We checked our gradients
in perpendicular components of the electric field and found
that instability threshold ∇Eq/m�2 � 1 is not reached in our
simulation and we have ∇Eq/m�2 ≈ 0.007. We also do not
observe transition from the Maxwellian distribution to ring
distribution as it was described by the authors of Ref. [26].

With steep gradients in density, one can expect that the drift
waves would be present. The classical analysis of the kinetic
drift waves in a collisionless system leads to the following
criterion for the wave to be unstable [27,28]:

k2
⊥r2

Ls > (k||/k⊥)2C2
s /v

2
de, (7)

where Cs = √
kTe/mi is the sound speed, k⊥ and k|| are

the wave vectors perpendicular and parallel to the magnetic
field, rLs = mivth,e/qB is the effective Larmor radius for ions
at electron thermal temperature, and vde = C2

s /ωciL, where
L = n/∇n is the characteristic length scale. Under the usual
conditions, vde � Cs this condition is fulfilled only for k|| �
k⊥, i.e., for very long perpendicular wavelengths. However,
in our case the very short L leads, after some calculus, to an
estimate: 0.2k4

⊥ > 0.01k2
||. Hence, the instability would also
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be present for very short perpendicular wavelengths. High
frequency oscillations could couple to and excite the modes
near the electron gyrofrequency as observed in Fig. 4 and
lead to electron heating in the perpendicular direction, while
smoothing out the gradients. In fact, in the frequency spectra in
Fig. 4, we observe mostly two characteristic modes. First are
oscillations on ion plasma frequency. The second are waves
in the range of electron gyrofrequency and/or upper hybrid
frequency. The upper hybrid waves (Bernstein modes) are
typical for perpendicular propagation in magnetized plasmas
and also resulted from our linear theoretical analysis. Note that
these strong and short gradients on the order of Debye length
are unphysical and are the result of nonresolved gyroradius.

The linear dispersion analysis (in Sec. IV and in the
Appendix) shows no growth of waves in the directions
perpendicular to the external magnetic field. This result is
independent of the order of weighting function as well as of the
resolution of the gyroradius. The gridded dispersion relation
was derived assuming perturbations of the first order only,
thus the theoretical analysis was based on the linear approach,
which is the only treatable analytical approach. Because the
onset of temperature growth is after 60–80 plasma periods we
suggest that the temperature and potential growth is connected
with a nonlinear phenomenon, which cannot be, in principle,
reflected in the linear dispersion relation.

VI. CONCLUSION

We studied the importance of the electron gyroradius
resolution on the grid in electrostatic PIC simulations in cases
where the electron gyroradius is smaller than the Debye length.
We found that the simulations with unresolved gyroradius,
when �x > rL, show heating of electrons in directions
perpendicular to the magnetic field. This heating is likely
caused by nonlinear wave-particle interaction where the origin
of the waves is related to the characteristic scales of density
irregularities. The unphysical filamentation at scales of the
order of the Debye length leads to strong density gradients that
could trigger electron drift waves that could be unstable even at
high frequencies. We identified two characteristic frequencies
that are dominant in the spectra: (i) ion plasma frequency and
(ii) gyrofrequency and its harmonics. The numerical heating
of electrons can be avoided by resolving the gyroradius, or
under some conditions supressed by using the second-order
weighting.
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APPENDIX: DERIVATION OF THE DISPERSION
RELATION ON GRID

We start with the Vlasov equation for magnetized plasmas:

∂fα

∂t
+ (vα · ∇x)fα +

[
qα

mα

(E + vα × B) · ∂

∂v

]
fα = 0,

(A1)

where α is an index denoting plasma species, E =
(E1x,E1y,E1z), and B = (0,0,B0). Such an equation is an-
alytically solvable using the method of unperturbed orbits
described by the authors of Ref. [29]. To find dispersion
relation on the grid, we use the following grid quantities (due
to the gridded Fourier transform) described by the authors of
Ref. [4]:

κ = [kxdif(kx�x),kydif(ky�y),kzdif(kz�z)], (A2)

and

K2(k) = k2
xdif2

(
kx�x

2

)
+ k2

ydif2

(
ky�y

2

)

+ k2
z dif2

(
kz�z

2

)
, (A3)

which turn the Poisson equation into

ρ(k) = K2(k)φ(k), (A4)

and the equation for the electric field into

E(k) = −iκ(k)φ(k). (A5)

Using these grid quantities and combining the methods
described in Refs. [29] and [4] we can express the susceptibility
for the plasma component as follows:

χα = ω2
pα

K2(kp)v2
thα

[
1 + ω exp (−λα)√

2|κz|vthα

∞∑
m=−∞

Im(λα)Z
(
ζm
α

)]
,

(A6)

where

λα = (κyrLα)2, ζm
α = ω + m�α√

2|κz|vthα

, rLα = mαvthα

qαB
, (A7)

Im stands for the mth mode of the Bessel function I ,
Z(ζm

α ) stands for the plasma dispersion function with argu-
ment ζm

α , and kp = k − pkg, where kg = (kgx,kgy,kgz), and
kgx = 2π/�x, kgy = 2π/�y, and kgz = 2π/�z, and p is the
periodicity coefficient resulting from Fourier transformation
[4]. Note that in this linear analysis the temporal and spatial
derivatives within the Vlasov equation are calculated exactly,
while the electric field and potential are calculated using a
gridded Poisson equation. This is because the particles can
move freely within the simulation box, while the electric
field is calculated only at gridpoints. We can substitute the
susceptibility (A6) into the equation for charge density on
the grid

ρ(k) =
∑

α

qα

∞∑
p=−∞

S(kp)nα(kp), (A8)
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using the expression for particle density

nα(kp,ω) = −S(kp)
K2(kp)φ(kp,ω)

qα

χα(kp,ω) (A9)

to get

ρ(k) = −
∑

α

∞∑
p=−∞

|S(kp)|2 ω2
pα

v2
thα

[
ω exp (−λα)√

2|κz|vthα

∞∑
m=−∞

Im(λα)Z
(
ζm
α

)]
φ(k,ω). (A10)

Finally, using the Poisson equation (A4) we get the dispersion relation

1 +
∑

α

∞∑
p=−∞

|S(kp)|2 ω2
pα

K2(kp)v2
thα

[
ω exp (−λα)√

2|κz|vthα

∞∑
m=−∞

Im(λα)Z
(
ζm
α

)] = 0, (A11)

which can be written in the usual form

ε = 1 +
∑

α

χα = 0. (A12)
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