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The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized
classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective
and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic
expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear
fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and
relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective
nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor
in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal
plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented
by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion
penetration factor decreases with an increase of the kinetic energy.
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I. INTRODUCTION

The atomic and nuclear collisions in plasmas have been of
great interest since these processes are the most fundamental
processes in many areas of physics such as astrophysics,
atomic and molecular physics, chemical physics, nuclear
physics, and plasma physics, and also provide useful infor-
mation on the collision systems as well as their physical
environments [1–8]. This collision process in plasmas has
been extensively investigated due to its wide applications in
plasma diagnostics in order to obtain the physical information
on various plasma parameters [9–14]. The nuclear fusion
reaction process in plasmas has received considerable attention
in astrophysics, atomic physics, nuclear physics, and plasma
physics since the fusion reaction processes take place in
various astrophysical and laboratory plasmas usually using the
Debye-Hückel model of the plasma [15–21]. It has been also
shown that the Yukawa-type Debye-Hückel screening model
describes the properties of classical low-density plasmas and
corresponds to pair correlation approximation ideal plasmas
since the average interaction energy between particles is
smaller than the average kinetic energy of a particle [7].
However, it has been shown that the multiparticle correlation
effects caused by simultaneous interactions of many charged
particles should be taken into account with an increase of the
plasma density since it is necessary to contemplate not only
short-range collective effects but also long-range screening
effects in the case of a dense plasma [22–29]. Hence the
screened interaction in these nonideal plasmas would not be
described by the conventional Yukawa-type Debye-Hückel
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interaction model because of the strong collective effects of
nonideal particle interactions [22,29]. It has been shown that
high-density plasmas with nonideality effects can be found in
numerous astrophysical objects and modern technical devices
such as white dwarfs, the Sun, giant planets, liquid metals, and
semiconductor plasmas [29]. Hence it can be then expected
that the fusion reaction process in nonideal plasmas is quite
different from those in ideal plasmas due to the influence of
collective nonideal shielding on the fusion penetration factor.
Thus, in this paper, we investigate the collective nonideal
shielding effects on the fusion reaction process in partially
ionized classical nonideal plasmas. By using the Wentzel-
Kramers-Brillouin (WKB) method with the pseudopotential
model [22], the analytic expression of the tunneling radius
and the closed form of the Sommerfeld parameter and the
fusion penetration factor in nonideal plasmas are obtained
as functions of the nonideality parameter, Debye length, and
relative kinetic energy. In addition, the variation of the fusion
penetration factor due to the change of the collective nonideal
shielding is also discussed.

II. THEORY AND CALCULATIONS

In a recent paper by Baimbetov et al. [22], the inte-
grodifferential equation for the effective potential of particle
interactions taking into account the simultaneous collective
correlations of many charged particles has been obtained
on the basis of a sequential solution of the Bogoliubov
chain equations for the equilibrium distribution function in
nonideal plasmas. In addition, the analytic expression for
the pseudopotential of the particle interaction in classical
nonideal plasmas has been obtained by application of the spline
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approximation [22]. Using the pseudopotential model [22]
taking into account the collective nonideal shielding effects,
the interaction energy Veff(r) between two reacting nuclei in
nonideal plasmas is then represented by

Veff(r) = Z1Z2e
2

r
e− r/λD

1 + γf (r)/2

1 + c(γ )
, (1)

where r is the internuclear distance, Z1e and Z2e

are charges of two nuclei, λD is the Debye length,
f (r) = (e−√

γ r/λD − 1)(1 − e−2r/λD )/5, γ (≡ e2/λDkBTe) is
the nonideality plasma parameter, c(γ ) ∼= −0.008 617 +
0.455 861γ − 0.108 389γ 2 + 0.009 377γ 3 is the correlation
coefficient for different values of γ , kB is the Boltzmann
constant, and Te is the electron temperature. The validity
range of the nonideality plasma parameter γ is known as
0 < γ < 4 [22]. This nonideality parameter stands for the
ratio of the collective interaction energy in a Debye sphere
to the thermal energy. In ideal plasmas, i.e., when γ → 0,
the pseudopotential [Eq. (1)] goes over into the Yukawa-
type Debye-Hückel potential VDH(r) → (Z1Z2e

2/r)e− r/λD .
Since the WKB approximation [18,30,31] has been known
to be quite accurate to evaluate the screening corrections to
the fusion reaction cross section, the cross section σNF (E) for
the nuclear fusion reaction using the WKB analysis can be
written as

σNF (E) = Sαβ (E)

E
�FP(E), (2)

where Sαβ(E) is the nuclear cross section factor, E(=μαβv2/2)
is the energy of the reactive motion, μαβ[=mαmβ/(mα + mβ)]
is the reduced mass of the reacting two nuclei, v is
the relative collision velocity, and E− 1 factor represents
the geometrical factor associated with the wavelength of the
incoming nucleus since the WKB forms of the wave functions
uWKB(r � ϕT ) and uWKB(r � ϕT ) are represented in the
following expressions:

uWKB(r � ϕT ) ∝ [E − Veff(r)]− 1/4

× exp

{
i

√
2μαβ

h̄2

∫ r

ϕT

dr[E − Veff(r)]1/2

}
,

(3)

and

uWKB(r � ϕT ) ∝ eiπ/4[Veff(r) − E]− 1/4

× exp

{
i

√
2μαβ

h̄2

∫ ϕT

r

dr[Veff(r) − E]1/2

}
,

(4)

where ϕT is the classical turning point satisfying the re-
lation Veff(ϕT ) = E. For E > Veff(r), the validity of the
WKB method is given by |(d2k/dr2)/(dk/dr)| � k and

|(dk/dr)/k| � k, where k(r) =
√

2μαβ/h̄2[E − Veff(r)]1/2

[31]. For Veff(r) > E, the validity of the WKB method is
represented by |(d2κ/dr2)/(dκ/dr)| � κ and |(dκ/dr)/κ| �
κ , where κ(r) =

√
2μαβ/h̄2[Veff(r) − E]1/2 [31]. In Eq. (2),

�FP(E) is the transmission coefficient or known as the fusion
penetration factor [17,19] for the effective interaction potential

Veff(r) between two reacting nuclei:

�FP(E) = exp

{
−2

√
2μαβ

h̄2

∫ ϕT

0

dr[Veff(r) − E]1/2

}
, (5)

since the penetration probability is determined by the
ratio of the absolute square of the wave functions
|uWKB(∞)|2/|uWKB(0)|2. It would be expected that the WKB
wave functions and corresponding energy eigenvalues would
be different from those of a free atom because the nucleus is
shielded by the surrounding dense nonideal plasma electrons.
Using the effective interaction potential Veff(r), the classical
turning point ϕT for the fusion penetration in classical nonideal
plasmas is then obtained by

Z1Z2e
2

ϕT

e− ϕT /λD
1 + (γ /10)(e−√

γ ϕT /λD − 1)(1 − e−2ϕT /λD )

1 + c(γ )

= E. (6)

In a pure Debye plasma, i.e., without the influence of
collective nonideal plasma screening, the classical turning
point ϕ′

T (v, λD) would be determined by

Z1Z2e
2

ϕ′
T

e− ϕ′
T /λD = E. (7)

Hence the classical turning point ϕ′
T (v, λD) in classical

ideal plasmas is then given by

ϕ′
T (v, λD) = λDW

(
Z1Z2e

2

rDE

)
, (8)

where the special function W (z) is known as the Lambert
W function [32]. However, the nonlinear equation (6) can-
not be represented in terms of the Lambert W function.
Hence, after some mathematical manipulations using the
perturbation calculation [33] since the classical turning point
ϕT (v, γ, λD) is usually smaller than the Debye length λD , i.e.,
ϕT /λD � 1 and e− ϕT /λD ≈ 1 − ϕT /λD + (1/2)(ϕT /λD)2 −
(1/6)(ϕT /λD)3, the classical turning point ϕT (v, γ, λD) in
nonideal plasmas including the influence of collective nonideal
shielding is then found to be

ϕT (v, γ, λD) ∼= ϕ0(v)

1 + ϕ0(v)/λD + c(γ )

+ ϕ3
0(v)

λ2
D

(1/2 − γ 3/2/5)

[1 + ϕ0(v)/λD + c(γ )]3 , (9)

where ϕ0(v) ≡ 2Z1Z2e
2/μαβv2. After some mathematical

manipulations using Eqs. (5)–(7), the closed expression
of the fusion penetration factor �NP(Ē, γ, λ̄D){= exp[−ξNP

(Ē, γ, λ̄D)]} in classical nonideal plasmas is then given by

�NP(Ē, γ, λ̄D)

= exp

⎧⎨
⎩−2

(
μ

me

)1/2

Ē1/2
∫ ϕ̄T (Ē, γ, λ̄D)

0

dr̄

[
2Z1Z2

Ē

1

r̄
e− r̄/λ̄D

×1 + (γ /10)(e−√
γ r̄/λ̄D − 1)(1 − e−2r̄/λ̄D )

1 + c(γ )
− 1

]1/2
⎫⎬
⎭,

(10)

043211-2



INFLUENCE OF COLLECTIVE NONIDEAL SHIELDING ON . . . PHYSICAL REVIEW E 95, 043211 (2017)

where Ē(≡ μαβv2/2Ry) is the scaled energy of the reactive
motion, Ry(= mee

4/2h̄2 ≈ 13.6 eV) is the Rydberg constant,
me is the mass of the electron, e is the magnitude of electron
charge, h̄ is the rationalized Planck constant, λ̄D(≡ λD/a0) is
the scaled Debye length, a0(= h̄2/mee

2) is the Bohr radius
of the hydrogen atom, r̄(≡ r/a0) is the scaled internuclear
distance, and ϕ̄T (Ē, γ, λ̄D)(≡ ϕT /a0) is the scaled classical
turning point in units of a0:

ϕ̄T (Ē, γ, λ̄D) ∼= ϕ̄0(Ē)

1 + ϕ̄0(Ē)/λ̄D + c(γ )

+ ϕ̄3
0(Ē)

λ̄2
D

(1/2 − γ 3/2/5)

[1 + ϕ̄0(Ē)/λ̄D + c(γ )]3 , (11)

with ϕ̄0(Ē) = 2Z1Z2/Ē. Hence the Sommerfeld parame-
ter ξNP(Ē, γ, λ̄D) for nuclear reaction in classical nonideal

plasmas is then found to be

ξNP(Ē, γ, λ̄D)

= 2

(
μ

me

)1/2

Ē1/2
∫ ϕ̄T (Ē, γ, λ̄D)

0

dr̄

[
2Z1Z2

Ē

1

r̄
e− r̄/λ̄D

×1 + (γ /10)(e−√
γ r̄/λ̄D − 1)(1 − e−2r̄/λ̄D )

1 + c(γ )
− 1

]1/2

.

(12)

Hence the fusion penetration factor �C(Ē) in Coulomb
plasmas (γ → 0, λ̄D → ∞), i.e., VC(r) = Z1Z2e

2/r , is given
by

�C(Ē) = exp

[
−2π

(
μ

me

)1/2
Z1Z2

Ē1/2

]
, (13)

since the scaled classical turning point ϕ̄T (Ē) in a pure
Coulomb field becomes ϕ̄T (Ē) = 2Z1Z2/Ē.

III. RESULTS AND DISCUSSION

The physical characteristic function FNP(Ē, γ, λ̄D) of the collective nonideal shielding effect on the fusion penetration factor
in classical nonideal plasmas can be represented by

FNP(Ē, γ, λ̄D) = �NP(Ē, γ, λ̄D)

�C(Ē)
= exp

⎧⎨
⎩−2

(
μ

me

)1/2
⎡
⎣Ē1/2

∫ ϕ̄T (Ē, γ, λ̄D)

0
dr̄

[
2Z1Z2

Ē

1

r̄
e− r̄/λ̄D

×1 + (γ /10)(e−√
γ r̄/λ̄D − 1)(1 − e−2r̄/λ̄D )

1 + c(γ )
− 1

]1/2

− πZ1Z2

Ē1/2

⎤
⎦

⎫⎬
⎭. (14)

As shown in Eqs. (10)–(12) and (14), the influence of collec-
tive nonideal shielding on the nuclear fusion reaction process
in classical nonideal plasmas is explicitly included through the
nonideality plasma parameter γ and the correlation coefficient
c(γ ). In order to specifically investigate the influence of
collective nonideal shielding on the nuclear fusion reaction
process, we consider the proton-proton reaction case, i.e., Z1 =
Z2 = 1, in nonideal plasmas. Recently, the 12C + 12C fusion
reaction by γ ray originating from the α, p, and n evaporation
has been measured by using the stable-beam accelerator [34].
However, the fusion reaction process in dense plasmas has
not been measured in laboratory experiments. Hence it would
be expected that the current results of the fusion penetration
factor �NP(Ē, γ, λ̄D), the classical turning point ϕ̄T (Ē, γ, λ̄D),
and the Sommerfeld parameter ξNP(Ē, γ, λ̄D), including the
influence of plasma shielding in fusion reaction process in
nonideal plasmas, would provide useful input information
for future laboratory measurements of fusion reaction cross
sections. Actually, the screening effects would soften the
Coulomb potential or decrease the penetration barrier, which
should increase the probabilities of fusion penetration. Very
recently, an excellent work has provided the dynamical ion
structure factor and ion stopping power including the complex
nature of charge screening in quantum plasmas [35]. Hence the
investigation of the nuclear fusion reaction process in a dense
quantum plasma will be treated elsewhere since a linearized

viscoelastic quantum hydrodynamical model [35] is known to
be valid for a wide range of the ion coupling parameter and
plasma densities.

Figure 1 shows the surface plot of the Sommerfeld
parameter ξNP for the nuclear reaction in partially ionized
classical nonideal plasmas as a function of the scaled energy
of the reactive motion Ē and the nonideality parameter γ .
As it is seen, the Sommerfeld parameter ξNP decreases with
an increase of the nonideality parameter γ . It is then found
that the influence of collective nonideal shielding suppresses
the Sommerfeld parameter ξNP in partially ionized nonideal
plasmas. It is also found that the energy dependence on
the Sommerfeld parameter ξNP is more significant for small
values of the nonideality parameter γ . Figure 2 represents
the fusion penetration factor �NP in nonideal plasmas as a
function of the nonideality parameter γ for various values
of the scaled energy of the reactive motion Ē. Figure 3
represents the surface plot of the fusion penetration factor
�NP in nonideal plasmas as a function of the nonideality
parameter γ and the scaled energy of the reactive motion
Ē. As shown in these figures, the fusion penetration factor
�NP increases with an increase of the nonideality parameter
γ . Hence we have found that the fusion penetration factors
in nonideal plasmas represented by the pseudopotential model
are always greater than those in ideal plasmas represented
by the conventional Debye-Hückel model. As expected, the
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FIG. 1. The surface plot of the Sommerfeld parameter ξNP for
the proton-proton reaction in partially ionized nonideal plasmas as
a function of the scaled energy of the reactive motion Ē and the
nonideality parameter γ when λ̄D = 10.

fusion penetration factor �NP increases with an increase of the
scaled energy of the reactive motion Ē. It is then expected
that the fusion penetration reaction is more significant in
strongly nonideal plasmas with high reactive energies. Figure 4
shows the fusion characteristic function FNP of the collective
nonideal shielding effect on the fusion penetration factor in
partially ionized nonideal plasmas as a function of the scaled
energy of the reactive motion Ē for various values of the
nonideality parameter γ . From this figure, it is shown that the
collective nonideal shielding effect on the fusion penetration
factor decreases with an increase of the scaled energy of the
reactive motion Ē. Figure 5 represents the surface plot of
the fusion characteristic function FNP as a function of the
scaled energy of the reactive motion Ē and the nonideality
parameter γ . As it is seen, the collective nonideal shielding
effects enhance the fusion penetration factor about 40% when
γ = 1 and Ē = 500, and 20% when γ = 1 and Ē = 1600. In
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FIG. 2. The fusion penetration factor �NP in nonideal plasmas as
a function of the nonideality parameter γ when λ̄D = 10. The solid
line represents the case of Ē = 400. The dashed line represents the
case of Ē = 800. The dotted line represents the case of Ē = 1600.
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FIG. 3. The surface plot of the fusion penetration factor �NP in
nonideal plasmas as a function of the nonideality parameter γ and
the scaled energy of the reactive motion Ē when λ̄D = 10.

addition, the influence of collective nonideal shielding is found
to be more significant for low kinetic energies. It is known that
the energy generation rate by the fusion reaction is proportional
to the nuclear reaction cross section σNF(E) [36]. From our
results in this work, it would be expected that the nonideal
shielding effect of the surrounding plasma enhances the fusion
energy generation rate in stellar interiors. In stellar burning, the
deuterium 2H can be produced by the proton-proton reaction
(pp chain) such as 1H + 1H → 2H + e+ + ν, where e+ is the
positron and ν is the neutrino. Hence the reaction to form
a deuterium 2H would be faster due to the enhancement of
the fusion reaction cross section by the influence of collective
nonideal shielding. It can be also expected that the nuclear
reaction for the formation of a helium nucleus 3He by the
reaction 1H + 2H → 3He + γ would be increased due to the
nonideal shielding effect of the nonideal plasma, where γ is
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FIG. 4. The fusion characteristic function FNP of the collective
nonideal shielding effect on the fusion penetration factor in partially
ionized nonideal plasmas as a function of the scaled energy of the
reactive motion Ē. The solid line represents the case of γ = 0.1.
The dashed line represents the case of γ = 0.5. The dotted line
represents the case of γ = 1.
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FIG. 5. The surface plot of the fusion characteristic function FNP

as a function of the scaled energy of the reactive motion Ē and the
nonideality parameter γ when λ̄D = 10.

the photon radiation. Hence the nuclear fusion reaction rates
of the whole pp chain reactions can be increased by the
enhancement of the nuclear reaction cross sections in nonideal
astrophysical plasmas. Hence we see that the collective
nonideal shielding effects play significant roles in the fusion
reaction process in partially ionized nonideal plasmas. These
results would provide useful information on the fusion reaction
processes in nonideal plasmas.

ACKNOWLEDGMENTS

One of the authors (Y.-D.J.) gratefully acknowledges Pro-
fessor W. Roberge for useful discussions and warm hospitality
while visiting the Department of Physics, Applied Physics,
and Astronomy at Rensselaer Polytechnic Institute. This
research was initiated while one of the authors (Y.-D.J.) was
affiliated with Rensselaer as a visiting professor. The work
was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean Government (MISP) (Grant
No. NRF-2016R1A2B4011356).

[1] V. P. Shevelko and L. A. Vainshtein, Atomic Physics for Hot
Plasmas (Institute of Physics, Bristol, UK, 1993).

[2] Y.-D. Jung and I.-D. Cho, Phys. Rev. E 52, 5333 (1995).
[3] Y.-D. Jung and H.-D. Jeong, Phys. Rev. E 54, 1912 (1996).
[4] Y.-D. Jung, Phys. Rev. E 55, 3369 (1997).
[5] S. V. Khristenko, A. I. Maslov, and V. P. Shevelko, Molecules

and Their Spectroscopic Properties (Springer, Berlin, 1998).
[6] Y.-D. Jung and H. Tawara, Phys. Rev. E 64, 017401 (2001).
[7] V. P. Shevelko, Atoms and Their Spectroscoplic Properties

(Springer, Berlin, 1997).
[8] H. F. Beyer and V. P. Shevelko, Introduction to the Physics

of Highly Charged Ions (Institute of Physics, Bristol, UK,
2003).

[9] S. Kar and Y. K. Ho, Phys. Rev. E 70, 066411 (2004).
[10] S. Kar and Y. K. Ho, Phys. Rev. A 75, 062509 (2007).
[11] A. Ghoshal and Y. K. Ho, Phys. Rev. E 81, 016403 (2010).
[12] S. B. Zhang, J. G. Wang, and R. K. Janev, Phys. Rev. Lett. 104,

023203 (2010).
[13] J. Li, S. B. Zhang, B. J. Ye, J. G. Wang, and R. K. Janev, Phys.

Plasmas 23, 123511 (2016).
[14] R. K. Janev, S. Zhang and J. Wang, Matter Radiat. Extremes 1,

237 (2016).
[15] E. E. Salpeter, Aust. J. Phys. 7, 373 (1954).
[16] E. E. Salpeter and H. M. Van Horn, Astrophys. J. 155, 183

(1969).
[17] S. Ichimaru, Statistical Plasma Physics, Vol. II: Condensed

Plasmas (Addison-Wesley, Reading, MA, 1994).
[18] J. N. Bahcall, X. Chen, and M. Kamionkowski, Phys. Rev. C 57,

2756 (1998).
[19] I. J. Thompson and F. M. Nunes, Nuclear Reactions for

Astrophysics (Cambridge University Press, Cambridge, 2009).
[20] M.-J. Lee and Y.-D. Jung, Phys. Plasmas 24, 014502 (2017).
[21] D.-H. Ki and Y.-D. Jung, Publ. Astron. Soc. Jpn. 63, 209 (2011).

[22] F. B. Baimbetov, Kh. T. Nurekenov, and T. S. Ramazanov, Phys.
Lett. A 202, 211 (1995).

[23] Y. A. Omarbakiyeva, C. Fortmann, T. S. Ramazanov, and G.
Röpke, Phys. Rev. E 82, 026407 (2010).

[24] Yu. V. Arkhipov, F. B. Baimbetov, and A. E. Davletov, Eur.
Phys. J. D 8, 299 (2000).

[25] Yu. V. Arkhipov, F. B. Baimbetov, A. E. Davletov, and K. V.
Starikov, Plasma Phys. Controlled Fusion 42, 455 (2000).

[26] K. N. Dzhumagulova, R. U. Masheeva, T. S. Ramazanov, and
Z. Donkó, Phys. Rev. E 89, 033104 (2014).

[27] T. S. Ramazanov, Zh. A. Moldabekov, and M. T. Gabdullin,
Phys. Rev. E 92, 023104 (2015).

[28] K. N. Dzhumagulova, R. U. Masheyeva, T. Ott, P. Hartmann,
T. S. Ramazanov, M. Bonitz, and Z. Donkó, Phys. Rev. E 93,
063209 (2016).

[29] V. Fortov, I. Iakubov, and A. Khrapak, Physics of Strongly
Coupled Plasma (Oxford University Press, Oxford, 2006).

[30] C. J. Joachain, Quantum Collision Theory, 3rd ed. (North
Holland, Amsterdam, 1983).

[31] S. Weinberg, Lectures on Quantum Mechanics, 2nd ed.
(Cambridge University Press, Cambridge, 2015).

[32] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth, Adv. Comput. Math. 5, 329 (1996).

[33] Y.-D. Jung, Phys. Plasmas 7, 2685 (2000).
[34] E. F. Aguilera, P. Rosales, E. Martinez-Quiroz, G. Murillo, M.

Fernández, H. Berdejo, D. Lizcano, A. Gómez-Camacho, R.
Policroniades, A. Varela, E. Moreno, E. Chávez, M. E. Ortíz, A.
Huerta, T. Belyaeva, and M. Wiescher, Phys. Rev. C 73, 064601
(2006).

[35] P. K. Shukla and M. Akbari-Moghanjoughi, Phys. Rev. E 87,
043106 (2013).

[36] A. R. Choudhuri, Astrophysics for Physicists (Cambridge
University Press, Cambridge, 2010).

043211-5

https://doi.org/10.1103/PhysRevE.52.5333
https://doi.org/10.1103/PhysRevE.52.5333
https://doi.org/10.1103/PhysRevE.52.5333
https://doi.org/10.1103/PhysRevE.52.5333
https://doi.org/10.1103/PhysRevE.54.1912
https://doi.org/10.1103/PhysRevE.54.1912
https://doi.org/10.1103/PhysRevE.54.1912
https://doi.org/10.1103/PhysRevE.54.1912
https://doi.org/10.1103/PhysRevE.55.3369
https://doi.org/10.1103/PhysRevE.55.3369
https://doi.org/10.1103/PhysRevE.55.3369
https://doi.org/10.1103/PhysRevE.55.3369
https://doi.org/10.1103/PhysRevE.64.017401
https://doi.org/10.1103/PhysRevE.64.017401
https://doi.org/10.1103/PhysRevE.64.017401
https://doi.org/10.1103/PhysRevE.64.017401
https://doi.org/10.1103/PhysRevE.70.066411
https://doi.org/10.1103/PhysRevE.70.066411
https://doi.org/10.1103/PhysRevE.70.066411
https://doi.org/10.1103/PhysRevE.70.066411
https://doi.org/10.1103/PhysRevA.75.062509
https://doi.org/10.1103/PhysRevA.75.062509
https://doi.org/10.1103/PhysRevA.75.062509
https://doi.org/10.1103/PhysRevA.75.062509
https://doi.org/10.1103/PhysRevE.81.016403
https://doi.org/10.1103/PhysRevE.81.016403
https://doi.org/10.1103/PhysRevE.81.016403
https://doi.org/10.1103/PhysRevE.81.016403
https://doi.org/10.1103/PhysRevLett.104.023203
https://doi.org/10.1103/PhysRevLett.104.023203
https://doi.org/10.1103/PhysRevLett.104.023203
https://doi.org/10.1103/PhysRevLett.104.023203
https://doi.org/10.1063/1.4971451
https://doi.org/10.1063/1.4971451
https://doi.org/10.1063/1.4971451
https://doi.org/10.1063/1.4971451
https://doi.org/10.1016/j.mre.2016.10.002
https://doi.org/10.1016/j.mre.2016.10.002
https://doi.org/10.1016/j.mre.2016.10.002
https://doi.org/10.1016/j.mre.2016.10.002
https://doi.org/10.1071/PH540373
https://doi.org/10.1071/PH540373
https://doi.org/10.1071/PH540373
https://doi.org/10.1071/PH540373
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1086/149858
https://doi.org/10.1103/PhysRevC.57.2756
https://doi.org/10.1103/PhysRevC.57.2756
https://doi.org/10.1103/PhysRevC.57.2756
https://doi.org/10.1103/PhysRevC.57.2756
https://doi.org/10.1063/1.4973655
https://doi.org/10.1063/1.4973655
https://doi.org/10.1063/1.4973655
https://doi.org/10.1063/1.4973655
https://doi.org/10.1093/pasj/63.1.209
https://doi.org/10.1093/pasj/63.1.209
https://doi.org/10.1093/pasj/63.1.209
https://doi.org/10.1093/pasj/63.1.209
https://doi.org/10.1016/0375-9601(95)00304-L
https://doi.org/10.1016/0375-9601(95)00304-L
https://doi.org/10.1016/0375-9601(95)00304-L
https://doi.org/10.1016/0375-9601(95)00304-L
https://doi.org/10.1103/PhysRevE.82.026407
https://doi.org/10.1103/PhysRevE.82.026407
https://doi.org/10.1103/PhysRevE.82.026407
https://doi.org/10.1103/PhysRevE.82.026407
https://doi.org/10.1007/s10053-000-8809-x
https://doi.org/10.1007/s10053-000-8809-x
https://doi.org/10.1007/s10053-000-8809-x
https://doi.org/10.1007/s10053-000-8809-x
https://doi.org/10.1088/0741-3335/42/4/307
https://doi.org/10.1088/0741-3335/42/4/307
https://doi.org/10.1088/0741-3335/42/4/307
https://doi.org/10.1088/0741-3335/42/4/307
https://doi.org/10.1103/PhysRevE.89.033104
https://doi.org/10.1103/PhysRevE.89.033104
https://doi.org/10.1103/PhysRevE.89.033104
https://doi.org/10.1103/PhysRevE.89.033104
https://doi.org/10.1103/PhysRevE.92.023104
https://doi.org/10.1103/PhysRevE.92.023104
https://doi.org/10.1103/PhysRevE.92.023104
https://doi.org/10.1103/PhysRevE.92.023104
https://doi.org/10.1103/PhysRevE.93.063209
https://doi.org/10.1103/PhysRevE.93.063209
https://doi.org/10.1103/PhysRevE.93.063209
https://doi.org/10.1103/PhysRevE.93.063209
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1063/1.874111
https://doi.org/10.1063/1.874111
https://doi.org/10.1063/1.874111
https://doi.org/10.1063/1.874111
https://doi.org/10.1103/PhysRevC.73.064601
https://doi.org/10.1103/PhysRevC.73.064601
https://doi.org/10.1103/PhysRevC.73.064601
https://doi.org/10.1103/PhysRevC.73.064601
https://doi.org/10.1103/PhysRevE.87.043106
https://doi.org/10.1103/PhysRevE.87.043106
https://doi.org/10.1103/PhysRevE.87.043106
https://doi.org/10.1103/PhysRevE.87.043106



