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Moment fluid equations for ions in weakly ionized plasma
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A one-dimensional fluid model for ions in weakly ionized plasma is proposed. The model differs from the
existing ones in two aspects. First, a more accurate approximation of the collision terms in the fluid equations
is suggested. For this purpose, the results obtained using the Monte Carlo kinetic model of the ion swarm
experiments are considered. Second, the ion energy equation is taken into account. The fluid equations are closed
using a simple model of the ion velocity distribution function. The accuracy of the fluid model is examined by
comparing with the results of particle-in-cell Monte Carlo simulations. In particular, several test problems are
considered using a parallel plate model of the capacitively coupled radio-frequency discharge. It is shown that the
results obtained using the proposed fluid model are in good agreement with those obtained from the simulations
over a wide range of discharge conditions. An approximation of the ion velocity distribution function for the
problem under consideration is also discussed.
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I. INTRODUCTION

Mathematical and numerical modeling of transport pro-
cesses in weakly ionized plasma plays an important role
for better understanding the basic properties of low-pressure
discharges and further development of plasma assisted tech-
nologies. As it is known, there are two main types of models for
describing transport phenomena in partially ionized plasma:
kinetic and fluid (continuum) models. A general description
of these approaches can be found in many review papers and
textbooks [1–3].

For example, kinetic models are more preferable for
describing the electron component in low-pressure discharges
because nonequilibrium and nonlocal kinetic effects have
a substantial influence on the electron distribution function
[4–6]. Fluid equations for electrons can be reliably applied
only at sufficiently high pressures and low electric fields
provided that the transport coefficients are calculated using
the kinetic approach [5]. In contrast to the electrons the ion
component in low-pressure discharges is more often described
by means of the fluid equations [7–15]. Despite the fact that
these equations are not always based on an explicitly stated
kinetic model they have been shown to give reasonable results
under certain conditions. Moreover, such models are widely
used to analyze the presheath-sheath transition in weakly
ionized plasma [16–19]. Nevertheless, two points can be made
regarding the applicability and accuracy of the fluid equations
for ions.

At first, it should be noted that these equations are generally
formulated without considering the ion energy balance. In
order to close the model, the pressure term in the ion
momentum equation is neglected or assumed to be equal
to that of the local Maxwellian distribution with the gas
temperature. Since this assumption is not well justified in the
presheath-sheath region, it might affect the accuracy of the
model and must be examined carefully [20]. Furthermore, if
the fluid model does not reproduce the effects associated with
the ion energy transfer, it has a limited ability to describe, at
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least qualitatively, the ion velocity distribution. On the other
hand, this might be important for theoretical studies of ion
flows in weakly ionized plasma.

The second point to note is the approximation used for
the velocity moments of the ion-neutral collision integral.
A common approach in this case is to apply the well-
known exchange relations [1,2] with an effective collision
frequency. The latter is usually evaluated as a function of
the ion mean velocity using the data from the ion swarm
experiments [15,19]. It is worth noting that the experimental
data are available only in a limited range of the electric fields
[21,22] and cannot be used to calculate the effective collision
frequency in the entire range of the ion drift velocities. For this
reason, it is more appropriate to use theoretical or numerical
models of the ion swarm experiments in this case [23–25].

In the present work we propose a one-dimensional fluid
model for ions which partially overcomes the limitations
discussed above. To address these limitations the following
steps have been implemented. First, we consider the Monte
Carlo (MC) kinetic model of the ion swarm experiments
to define the approximations of the collision terms in the
fluid equations. Second, the ion energy equation is taken into
account. The fluid equations are closed by applying a simple
model of the ion distribution function (IDF). The accuracy
of the proposed fluid model is examined by comparing the
predicted results with those obtained using the particle-in-cell
simulation method combined with the Monte Carlo collision
model (PIC-MCC approach) [26–28]. In particular, a parallel
plate model of the capacitively coupled radio-frequency
(CCRF) discharge in argon and helium is considered. The
results are presented for several test problems including
the benchmarks [29] and experimental situations [30,31].
On the basis of the obtained results, a possible approxi-
mation of the IDF for the problem under consideration is
discussed.

The structure of the paper is as follows. In Sec. II the Monte
Carlo kinetic model of the ion swarm experiments is described
and the approximation for the moments of the ion-neutral
collision integral is discussed. In Sec. III the fluid equations
for ions are presented. The accuracy of the model is analyzed
and discussed in Sec. IV. The conclusions are drawn in Sec. V.
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II. KINETIC MODEL OF THE ION
SWARM EXPERIMENTS

Let us first discuss the Monte Carlo (MC) kinetic model
of the ion swarm experiments. Namely, we consider a flow
of ions in weakly ionized plasma under the influence of a
uniform and constant electric field. It is assumed that the ions
are singly charged and experience charge exchange and hard
sphere collisions (i.e., isotropic scattering in the center-of-
mass frame) with gas atoms. In order to find the steady-state
IDF for the problem under consideration, we have used the MC
simulation approach similar to that described in Ref. [25]. The
ion-neutral collisions have been treated using the MC model
presented in Ref. [26]. The simulations have been performed
for argon and helium plasma in a wide range of E/na , where E

is the absolute value of the electric field and na is the number
density of the gas atoms. The gas temperature Ta has been set
to 300 K.

In the case of helium, the cross sections for ion-neutral
collisions were defined using the dataset of Phelps available in
the database LXCat [32]. In the case of argon, the cross section
for hard sphere collisions was defined using the approximation
proposed by Phelps in Ref. [33]. The cross section for charge
exchange collisions in argon was evaluated using the formula
presented by Devoto in Ref. [34]. This approximation was
derived to fit the experimental data of Ziegler [35] and
Cramer [36]. It should be noted that the approximation of
Devoto differs from that proposed by Phelps in Ref. [33]. The
approximation of Phelps was found to be more accurate for
describing drift flows at low and moderate ion drift velocities
(see Sec. II B). However, one can show that the approximation
of Phelps, when used in PIC-MCC simulations of CCRF
discharges, causes noticeable deviations from the well-known
experimental data of Godyak [30]. On the other hand, the
PIC-MCC simulations employing the formula of Devoto give
reasonable agreement with the data of Godyak (see Sec. IV A).
Therefore, the approximation of Devoto seems to be more
appropriate for describing high-speed ion flows (e.g., flow in
the sheath). For this reason, the results presented in our work
for argon were obtained using the formula of Devoto.

A. Ion pressure

Let us now consider the results of numerical simulations
performed using the MC model of the ion swarm experiments.
The first quantity of interest is the ion gas-dynamic pressure

� =
∫

mυ2
x f d �υ,

where m is the ion mass, �υ is the ion velocity vector, υx is
the projection of �υ on the axis directed along the electric field
vector, and f is the IDF normalized as

∫
f d �υ = 1. The values

of � for argon and helium are plotted in Fig. 1(a) as a function
of the ion drift velocity u, normalized by the atom thermal
velocity υ0 = √

2kTa/m.
As can be seen in Fig. 1(a), the results obtained for both

gases lie approximately on the same curve which can be fitted
taking into account the following considerations. It is known
that the IDF for ion drift flows can be found analytically by
considering two simple models of the ion-neutral collision
integral [25]. Following the results of Ref. [25], one can

FIG. 1. (a) The gas-dynamic pressure as a function of the ion drift
velocity (a logarithmic scale is used for both axes). Circles show the
results obtained from the MC simulations for helium (blue) and argon
(green). The solid line shows the approximation given by Eq. (1). (b)
The effective collision frequency as a function of the ion drift velocity.
Circles show the results obtained from the MC simulations for helium
(blue) and argon (green). Solid lines show the approximations given
by Eq. (2). Squares and crosses show the results obtained using the
experimental data of Ref. [21] and data of Phelps [22], respectively.
Dotted lines show the approximations proposed in Refs. [19,37].

show that the analytical solution gives � = kTa + 2 mu2 for
u � υ0 and � = (π/2) mu2 for u � υ0. Keeping in mind
these estimates, the following approximation of the numerical
results has been proposed:

� = kTa + α(ξ )mu2,

α(ξ ) = 1.038(π/2)(1 − e−ξ ) + 2e−ξ , (1)

where ξ = u/υ0. Equation (1) interpolates between the lim-
iting values of � known from the analytical solution. In the
regime u � υ0 the coefficient before mu2 is corrected to obtain
better agreement with the numerical results. The function �(u)
given by Eq. (1) is plotted in Fig. 1(a). It can be seen that
this approximation agrees well with the results of numerical
simulations.

B. Effective collision frequency

The second parameter of interest is the effective collision
frequency ω mentioned before. According to the common
definition, we adopt ω = eE/mu. The values of ω obtained
from the numerical simulations are shown in Fig. 1(b) as a
function of u/υ0. Note that ω in Fig. 1(b) is normalized by
ω0 = naσ0υ0, where σ0 = 10−18 m2. As a result ω/ω0 depends
on E/na and, consequently, can be considered as a function
of the drift velocity. For comparison, we show in Fig. 1(b)
the results obtained using the experimental data of Ref. [21]
and those given by several models published previously. In
particular, we show the approximations proposed for argon
and helium in Ref. [37] by considering the experimental data
of Frost [38]. In the case of argon, we show in addition the
approximation presented in Ref. [19] [see also Eq. (166) in
Ref. [23]] and the results obtained using the data of Phelps
[22] which are based on the theoretical model of Ref. [39].
As can be seen from Fig. 1(b), accurate approximation of the
function ω(u) is of importance. For example, the expressions
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FIG. 2. The effective collision frequency for argon (left) and
helium (right) at low and moderate drift velocities. Squares show
the results obtained using the experimental data of Ref. [21]. Solid
lines show the approximations proposed in Refs. [19,37] and given
by Eq. (2). Circles show the results of our MC simulations. Triangles
show the results obtained for argon using the data of MC simulations
presented in Ref. [24]. The simulations of Ref. [24] were performed
using the approximation of Phelps [33] both for the hard sphere and
charge exchange cross sections.

presented in Refs. [19,37] lead to noticeable deviations from
the MC simulation results in the regime u � υ0.

Moreover, the numerical results obtained in the present
work can be easily fitted by the following expression:

ω/ω0 =
{
ν1 ew1ξ ξ � ξ∗
ν2 ξ w2 ξ > ξ∗

, (2)

where ξ = u/υ0, w1 = w2/ξ∗, and ξ∗ is the solution of the
equation w2 ln ξ∗ = w2 + ln ν1 − ln ν2. Equation (2) provides
a smooth fit to the numerical results in a wide range of the
ion drift velocities. The constants in Eq. (2) are ξ∗ ≈ 2.81,
ν1 = 2.00, ν2 = 1.96, w1 ≈ 0.23, w2 = 0.64 for argon and
ξ∗ ≈ 3.11, ν1 = 0.75, ν2 = 0.68, w1 ≈ 0.23, w2 = 0.72 for
helium. The fitting formula (2) has been found to agree well
with the results of the MC simulations [see Fig. 1(b)].

In addition to the results presented in Fig. 1(b), few
comments should be made regarding the effective collision
frequency at low and moderate ion drift velocities. As
demonstrated in Fig. 2, the approximations of Refs. [19,37]
and the results of our MC simulations for helium are in good
agreement with the experimental data in the range u � 4υ0.
On the other hand, the results of our MC simulations for
argon overestimate the experimental values in this range. The
observed discrepancies result from the choice of the charge
exchange cross section. In particular, the MC simulations
employing the cross section proposed by Phelps [24] give
better agreement with the experimental data than our MC sim-
ulations employing the approximation of Devoto. Therefore,
it is more preferable to use the cross sections of Phelps [33],
when an accurate estimate of the ion drift velocity at relatively
low electric fields is needed. Nevertheless, as mentioned
earlier, the approximation of Devoto seems to be more
suitable for modeling high-speed (u � υ0) ion flows, which
occur in the presheath and sheath regions of low-pressure
discharges.

FIG. 3. The parallel IDF (f‖) for drift flows. Circles show the
IDF obtained from the MC simulations. Solid lines show the IDF
calculated using the model of Ref. [25] (red line) and model (3) (green
line). For simplicity, all results are normalized by the maximum value
of the IDF obtained from the MC simulations.

C. Ion velocity distribution function

The third point of interest is the approximation of the
IDF for the problem under consideration. As demonstrated
in Ref. [25], the IDF for drift flows can be approximated with
good accuracy using a simple model based on the assumption
of constant cross section for ion-neutral collisions. Follow-
ing Ref. [25], the IDF is written as f (�υ) = f‖(υx)f⊥(υ⊥),
where υ⊥ = √�υ 2 − υ2

x , f⊥ = (πυ2
0 )−1 exp(−υ2

⊥/υ2
0 ), and f‖

is found by solving a simple ordinary differential equation
described in Appendix A. Note that this model neglects
the effect of the hard sphere collisions on the transverse
distribution f⊥. Strictly speaking, this assumption is justified
only for the case when the charge exchange collisions are
dominant (e.g., for noble gases). The comparison between the
model of Ref. [25] and the results of our MC simulations
is shown in Fig. 3 (for brevity, only the case of argon is
presented). It can be seen that the model of Ref. [25] agrees
well with the results of the MC simulations in a wide range of
the ion drift velocities. In addition, we show in Fig. 3 the most
simple and general model of the IDF formulated as

f‖ =
{

1/(2υc) u − υc < υx < u + υc

0 otherwise , (3)

where υc is defined by the value of the gas-dynamic pressure.
In the present case we have used Eq. (1) to evaluate υc for the
IDF shown in Fig. 3. As one can see, despite its simplicity,
model (3) is able to give a reasonable estimate of the velocity
range where the IDF is essentially nonzero.

D. Moment equations

Finally, let us discuss an approximation for the velocity
moments of the ion-neutral collision integral. In fact, using
Eqs. (1) and (2), one can easily formulate simple moment
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equations which reproduce the kinetic solution for u and �.
These equations are

eE − ω mu = 0,

2euE + ω δ(kTa − �) = 0, (4)

where δ = 2/α(u). Equations (4) approximate the velocity
moments of the Boltzmann equation corresponding to the
weights mυx and mυ2

x , respectively. It should be noted that
similar moment equations can be obtained by considering
the Bhatnagar-Gross-Krook model of the collision integral
[25] with the collision frequency ω. The only difference in
Eqs. (4) is that we have introduced the correction coefficient δ

to reproduce the kinetic solution for the gas-dynamic pressure.
In conclusion, we suggest to use moment equations (4) as a
basis for developing more detailed fluid models.

III. FLUID EQUATIONS FOR IONS

Using the results of Sec. II, we propose a fluid model
for ions in weakly ionized plasma. For simplicity a one-
dimensional flow along the x axis is considered. Let us
introduce the variables p and q using the following relations:

� = mu2 + p,

∫
mυ3

x f d �υ = mu3 + qu.

Then, the governing equations of the model are written as
follows:

∂U
∂t

+ ∂F
∂x

= H, (5)

where U = [n,mnu,n�]T and

F =
⎡
⎣ nu

n�

(1 − γ )mnu3 + γ n�u

⎤
⎦,

H =
⎡
⎣ G

neE − ωmnu

2nueE + ω δn(kTa − �) + GkTa

⎤
⎦.

Here n is the ion number density, G is the ionization source, and
the notation γ = q/p is introduced. Equations (5) are obtained
by considering the velocity moments of the Boltzmann
equation with the weights 1, mυx , and mυ2

x , respectively.
The collision terms in Eqs. (5) are approximated using the
expressions employed in Eqs. (4) of Sec. II. In order to close
Eqs. (5), a certain approximation for γ has to be applied. In
the present work we evaluate γ using the IDF considered in
Sec. II with f‖(υx) given by Eq. (3). In this case we get

p = mυ2
c /3, q = mυ2

c , γ = 3. (6)

Although the model (3) is very rough, it can provide
qualitative description of different ion velocity distributions
expected in low-pressure discharges. For example, at υc � υ0

and |u| � υ0 the model (3) represents a high-energy ion
beam. Such distributions can be expected to occur when
the convective terms play a dominant role in the momentum
and energy balance. For instance, the model (3) was used in
Refs. [40,41] for studying the sheath region.

In the opposite limit, when the collision terms are dominant,
the steady-state solution of Eqs. (5) for u and � tends to that

given by Eqs. (4). In this case, the IDF is expected to be
close to the IDF for drift flows evaluated at the local mean
velocity. Under such conditions, the model (3) predicts at least
the velocity range where the IDF is essentially nonzero (see
Sec. II C). The value of γ evaluated using the IDF for drift
flows is higher than that given by the model (3). For example,
using the well-known analytical result [25], one can show that
the IDF for drift flows gives γ = (π − 1)/(π/2 − 1) ≈ 3.75
in the regime u � υ0. On the other hand, the variations of γ do
not affect significantly the accuracy of the fluid model when
the ion flow is collision dominated.

When γ is constant, Eqs. (5) are of hyperbolic type.
Therefore, these equations can be solved using the well de-
veloped numerical methods for hyperbolic problems [42,43].
In particular, in the present work we have applied an explicit
flux-vector splitting scheme described in Ref. [44]. The details
of the numerical method are given in Appendix B. It is
worth noting that the ion flows in low-pressure discharges
are expected to be described by smooth solutions of Eqs. (5)
(i.e., without shock waves and contact discontinuities). From
this point of view, the flux-vector splitting scheme seems to
be a reasonable choice, because it is easy to implement and
provides sufficient accuracy for smooth solutions.

IV. RESULTS AND DISCUSSION

In this section, the accuracy of the fluid equations proposed
in Sec. III is analyzed by comparing with the simulations based
on the PIC-MCC approach. In particular, we consider a parallel
plate model of the CCRF discharge used previously in many
works, e.g., in Refs. [29,45–47]. Our PIC-MCC code is based
on the conventional technique described in Refs. [26–28]. The
code was tested to reproduce the benchmark of Ref. [29] for
helium and the results of Refs. [46,47] for argon.

The collision model employed in our PIC-MCC simulations
was defined as follows. For ion-neutral collisions we used
the same model as in Sec II. The model of electron-neutral
collisions included elastic scattering, ionization, and excitation
processes. In the case of argon, the cross section of elastic
electron-neutral collisions was defined using the dataset of
Hayashi available in the database LXCat [32]. The ionization
cross section was defined using the data of Smith [48]. The
excitation process was modeled using an effective level with
the threshold 11.55 eV. The excitation cross section was
defined by summing the combined cross sections for S, P , and
D levels taken from Biagi-v7.1 database [32]. The differential
cross section for electron-neutral collisions was defined using
the model proposed in Ref. [49]. In the case of helium, we used
the same data for electron-neutral collisions as those described
in Ref. [29]

To examine the accuracy of the fluid equations (5), we
compared the results of the kinetic PIC-MCC simulations with
those obtained using a hybrid fluid-kinetic model. The fluid-
kinetic model combined the fluid equations for ions and the
PIC-MCC model for electrons. The fluid equations for ions
were solved numerically by means of the flux-vector splitting
scheme described in Appendix B. The ionization source in
Eqs. (5) was evaluated using the electron velocity distribution
function obtained from the PIC-MCC model. The comparison
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was performed for three test problems. For simplicity, the
voltage boundary condition was used in all cases.

The discharge parameters for the first test problem were
chosen to represent the experimental conditions for argon used
by Godyak and Piejak in Ref. [30]. Namely, the discharge
length L was set to 2 cm and the discharge frequency was set
to 13.56 MHz. The amplitude of the voltage was taken from
the simulations performed with the current boundary condition

at the current density of 2.65 mA cm−2. The gas pressure was
varied in the range from 13 to 65 Pa. Numerical parameters
were chosen to reproduce the results of Ref. [47]. In particular,
the number of cells was set to 400, the number of time steps
within one rf period was set to 2000, and the final number of
simulation particles for each component was of the order of
2 × 105. The second test problem was chosen to represent the
experiments of Godyak et al. presented in Ref. [31] for argon at

FIG. 4. Distributions of the ion number density (n), mean velocity (u), and internal energy (p) for different discharge conditions (here
n0 = 1015 m−3 and a logarithmic scale is used for n and p). Solid lines show the results obtained using the fluid model described in Sec. III.
Circles show the results obtained from the PIC-MCC simulations. Panel (a) shows the results for the first test problem (argon, L = 2 cm). The
corresponding gas pressures and voltage amplitudes are 13 Pa, 260 V (red); 27 Pa, 212 V (blue); 39 Pa, 195 V (green); 65 Pa, 160 V(black).
Panel (b) shows the results for the second test problem (argon, L = 6.7 cm). The corresponding gas pressures and voltage amplitudes are
0.3 Pa, 200 V (red); 1 Pa, 160 V (blue); 6 Pa, 130 V (green), 13 Pa, 100 V (black). Panel (c) shows the results for the third test problem (helium,
L = 6.7 cm). The corresponding gas pressures and voltage amplitudes are 4 Pa, 450 V (red); 7 Pa, 300 V (blue); 13 Pa, 200 V (green); 40 Pa,
150 V (black).
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L = 6.7 cm. The discharge frequency was left unchanged and
the amplitude of the voltage was taken from the simulations
performed with the current boundary condition at the current
density of 1 mA cm−2. The gas pressure was varied in the range
from 0.3 to 13 Pa. The numerical parameters were chosen to
be the same as for the first test problem. The third test problem
was based on the benchmark for helium published in Ref. [29].
Namely, we performed simulations for the test cases 1–3 of
Ref. [29] and a number of simulations with similar discharge
conditions.

A. Ion moments

Let us now discuss the obtained results. In Fig. 4 we present
the distributions of the period averaged ion number density
(n), mean velocity (u), and internal energy (p) obtained using
the kinetic PIC-MCC simulations and the fluid model for the
test problems described above. The distributions are presented
for the left half part of the discharge, because the ion flow
is symmetric with respect to the discharge center plane. The
corresponding discharge parameters are given in the caption
of Fig. 4. As can be seen from Fig. 4, the results obtained using
the fluid model are in good agreement with the results of PIC-
MCC simulations in a wide range of discharge conditions. The
maximum relative difference between the number density and
mean velocity obtained from the fluid and kinetic simulations
is less than 5% in all cases. The maximum relative difference
for p is less than 10% in most cases and reaches ∼ 30% only
at very low gas pressures (e.g., at gas pressures below 1 Pa for
the second test problem).

To elucidate further the role of different physical processes
we show in Fig. 5 the distributions of different terms in
the momentum and energy equations for the second test
problem at the gas pressures 0.3, 1, 6 Pa and for benchmark

case 1 of Ref. [29]. The results are presented for the
period averaged quantities. As can be seen from Fig. 5, one
can distinguish between convection- and collision-dominated
flows, depending on which terms (convective or collision)
compensate the field terms in the momentum and energy
equations. Nevertheless, our results demonstrate that it is
important to keep the convective, pressure, and collision terms
together in a wide range of discharge conditions. This allows
the model to describe the transition from high to low pressures
in a unified way without making assumptions about the level of
plasma collisionality. Moreover, good quantitative agreement
between fluid and PIC-MCC simulations is guaranteed by
keeping all terms in the fluid equations. It is also worth noting
that the collision-dominated flows in low-pressure discharges
can occur in the regime |u| � υ0. One good example is the
results shown in Figs. 4 and 5 for helium at the gas pressure
of 4 Pa. It is obvious that an accurate approximation of ω

discussed in Sec. II B is of importance in such cases.

B. Ion velocity distribution function at different positions
in the discharge

For completeness, let us also discuss the IDF for the
problem under consideration. In Fig. 6 we present the period
averaged IDF obtained from the PIC-MCC simulations at
different positions in the discharge for the second and third
test problems. The results of our PIC-MCC simulations
agree qualitatively with those presented in Refs. [50,51].
For comparison we also show in Fig. 6 the IDF given by
the model (3) and the IDF for drift flows calculated using
the model of Ref. [25] at the local mean velocity. Keeping
in mind the results shown in Fig. 5, one can see that the
model (3) provides a reasonable qualitative description of
the IDF both for the collision- and convection-dominated

FIG. 5. Distributions of different terms in the ion momentum and energy equations (upper and lower rows, respectively). Here n0 =
1015 m−3. The results are presented for the second test problem (argon, L = 6.7 cm) at the gas pressures 0.3, 1, 6 Pa and third test problem
(helium, L = 6.7 cm) at the gas pressure of 4 Pa.

043208-6



MOMENT FLUID EQUATIONS FOR IONS IN WEAKLY . . . PHYSICAL REVIEW E 95, 043208 (2017)

FIG. 6. The parallel IDF (f‖) at different positions in the discharge. The results are presented for the second test problem (argon, L = 6.7 cm)
at the gas pressures 0.3, 1, 6 Pa and the third test problem (helium, L = 6.7 cm) at the gas pressures 4 and 13 Pa. Blue lines show the IDF
obtained from the PIC-MCC simulations. Red lines show the IDF for drift flows calculated using the model of Ref. [25]. Green lines show
the IDF given by the model (3). For simplicity, all results are normalized by the maximum value of the IDF obtained from the PIC-MCC
simulations.
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flows. Furthermore, in the case of collision-dominated flows,
a more accurate approximation of the IDF can be obtained by
employing the model of Ref. [25].

Considering the results shown in Fig. 6, we propose to
characterize the ion flow by a simple parameter θ = p/pd ,
where pd is the internal energy calculated using the IDF
for drift flows. According to the discussion of Sec. II A, we
get pd = kTa + (α − 1)mu2, where α is defined in Eq. (1).
Our computations showed that the parameter θ is generally
below unity. For θ � 0.6 the IDF obtained from the PIC-MCC
simulations can be approximated using the model of Ref. [25].
In this case, the IDF for drift flows deviates noticeably from the
simulation results only in the range |υx | � υ0 (this explains
the difference between p and pd ). At θ � 0.5, the ion flow
is generally convection dominated and the IDF for drift flows
cannot be used to approximate the IDF for the problem under
consideration. As an example, we show in Fig. 6 the values of
θ calculated for the selected cases.

C. Application of the fluid model to the discharge
with microparticles

A reasonable approximation of the IDF is important
when a more detailed description of the ion component is
needed. One example is modeling of low-pressure discharges
containing microparticles (dust). Such modeling requires
accurate estimate of the ion drag force and rate of ion
absorption by the particles. These quantities cannot be reliably
calculated without considering the specific form of the IDF. In
order to demonstrate this statement, we performed additional
computations for the discharge parameters used in the micro-
gravity experiments with complex plasmas [52] (L = 3 cm,
the voltage amplitude is 50 V, the gas is argon). In particular,
attention was paid to the calculation of the surface potential and
the ion drag force for a single dust particle placed at different
positions in the discharge.

The surface potential was calculated by solving the charg-
ing equation described in detail in Ref. [53] (see pp. 12
and 13). The collection cross section for ion-dust collisions
was evaluated using the results of the orbital-motion-limited
(OML) theory [53]. The OML theory does not take into
account the effect of the ion-neutral collisions on the collection
cross section. This represents a serious limitation, since the
ion-neutral collisions are known to have a substantial influence
on the dust charging process even at moderate gas pressures
[54]. On the other hand, the OML expression for the ion flux
to the dust particle can be easily corrected to account for the
collisional effects [55]. A detailed discussion of this topic goes
beyond the scope of the present work. For this reason, we used
the OML cross section as an illustrative example, in order to
compare different models of the IDF.

The ion drag force was calculated using the general
expression presented in Ref. [56]. The momentum transfer
cross section for the ion-dust scattering was evaluated using the
results of Ref. [57]. The velocity distribution functions for ions
and electrons were defined as follows. The electron distribution
function was taken from the PIC-MCC simulations. The IDF
was evaluated by considering, respectively, the results obtained
from the PIC-MCC simulations, the model of Ref. [25]

FIG. 7. Distributions of the surface potential (ϕp) and the ion drag
force (Fd ) calculated for a single dust particle of radius 3.4 μm at
different positions in the discharge. The gas is argon, the discharge
length is 3 cm, the voltage amplitude is 50 V, and the gas pressures
are 20, 10, and 5 Pa (from up to down, respectively). Note that the
dust potential is negative (ϕp < 0) for the considered conditions.
The results were obtained using different models of the IDF. Circles
correspond to the IDF taken from the PIC-MCC simulations, red lines
correspond to the IDF for drift flows, and green lines correspond to
the IDF approximated as a shifted Maxwell distribution with the gas
temperature.

and the shifted Maxwell distribution function with the gas
temperature.

In Fig. 7 we show the distributions of the particle surface
potential and the ion drag force obtained for the dust particle
of radius 3.4 μm at different gas pressures. The parameter θ

for the problem under consideration was found to be higher
than 0.7. Thus, the ion flow can be considered as collision
dominated and the IDF for drift flows (model of Ref. [25]) is
expected to be reasonable approximation in this case. As can be
seen from Fig. 7, the specific form of the IDF is of importance.
For example, the values of the ion drag force calculated using
the shifted Maxwellian distribution deviate substantially from
those obtained using the results of PIC-MCC simulations. On
the other hand, the model of Ref. [25] gives good agreement
with the results of kinetic simulations both for the surface
potential and the ion drag force.

In the general case, when both collision- and convection-
dominated ion flows can occur in the discharge, the dust
particle potential and the ion drag force can be estimated
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with certain accuracy using the IDF given by Eq. (3). Our
preliminary calculations showed that, despite its simplicity,
the model (3) gives surprisingly good agreement (within 5%)
with the model of Ref. [25] when used in calculations of the
ion flux to the dust particle for drift flows. A relatively good
agreement was also observed between the values of the ion
drag force calculated using these models at low drift velocities
(u � 2υ0). Taking into account the results shown in Fig. 6,
one can also expect that the model (3) provides a reasonable
approximation of the IDF for the convection-dominated flows
(the case of small θ ). Moreover, the simplicity of the model (3)
opens the possibility to use it for deriving analytical estimates
of the ion flux to the particle and the ion drag force (at least
when a simple analytical model of the corresponding cross
section is used). A more detailed discussion of this topic is left
for future work.

V. CONCLUSIONS

In conclusion, we have proposed a one-dimensional fluid
model for ions in weakly ionized plasma. Our fluid model
differs from previous ones in two aspects. First, we suggest a
more accurate approximation of the collision terms in the fluid
equations. For this purpose, we use the results obtained from
the MC kinetic simulations of the ion swarm experiments.
The proposed approximation, in contrast to the existing ones,
can be applied in a wide range of ion velocities. Second,
we consider the ion energy equation which is closed using
a simple model of the IDF. The accuracy of the fluid equations
is examined by comparing with the results of PIC-MCC
simulations. In particular, a number of test problems are
considered for a parallel plate model of the CCRF discharge. It
is shown that our fluid model gives good agreement with the
results of PIC-MCC simulations over a wide range of discharge
conditions. In addition, it is shown that the model of the IDF
employed in our work can be used to estimate the velocity
range where the IDF obtained from the kinetic simulations is
essentially nonzero. It is also demonstrated that under certain
conditions the IDF obtained from the simulations can be well
approximated using the IDF for drift flows evaluated at the
local ion mean velocity.
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APPENDIX A: MODEL KINETIC EQUATION FOR IONS

Following Ref. [25], the model kinetic equation for the
parallel IDF is written as

df‖
dξx

+ U (ξx)

ε
f‖ = C exp

(
− ξ 2

x

2

)
,

where

U (ξx) =
√

2

π
exp

(
− ξ 2

x

2

)
+ ξx erf

(
ξx√

2

)

+
√

π

2
exp

(
ξ 2
x

2

)[
1 − erf2

(
ξx√

2

)]
,

ε is a dimensionless measure of the electric field, C is a
normalization constant, and ξx = υx

√
m/kTa . The dimension-

less electric field is given by ε = eE/naσkTa , where σ is a
characteristic value of the ion-neutral collision cross section.

The IDF is assumed to satisfy the boundary condition f‖ →
0 as ξx → −∞. In this case, the analytical solution of the
model kinetic equation is given by

f‖ = C

∫ ξx

−∞
dξ

′′
x exp

[
− ξ

′′2
x

2
−

∫ ξx

ξ
′′
x

dξ
′
x

U (ξ
′
x)

ε

]
.

Using this solution, the normalization constant C can be
chosen to satisfy the condition

∫ ∞
−∞ f‖ dξx = 1.

APPENDIX B: NUMERICAL METHOD FOR
FLUID EQUATIONS

Let us describe the numerical scheme used for solving the
governing equations (5). First, it can be demonstrated that the
flux vector satisfies the homogeneity property F = AU, where
A = ∂F/∂U is the Jacobian matrix. At γ = 3 the Jacobian
matrix has three real eigenvalues: λ1 = u, λ2,3 = u ± vc.
Moreover, A can be expressed as A = K�K−1 where

�ij = δijλj , Kij = λi−1
j , i,j = 1,2,3.

The flux vector is then expressed as F = F+ + F−, where
F± = A±U, A± = K�±K−1 and �±

ij = δij (λj ± |λj |)/2. Fi-
nally we rewrite the governing equations as

∂U
∂t

+ ∂F+

∂x
+ ∂F−

∂x
= H.

These equations can be approximated numerically using
various finite-difference schemes [44]. The simplest one is
the explicit scheme of the first order (both in time and space).
If a uniform grid along the x axis is used, this scheme is written
as

Uk+1
l − Uk

l + (τ/h) δl(F+)k + (τ/h) δl(F−)k = τ Hk
l ,

where l denotes the grid points, k denotes the time moments,
τ is the time step, h is the grid step, and the finite differences
are

δl(F+)k = (F+)kl − (F+)kl−1,

δl(F−)k = (F−)kl+1 − (F−)kl .

In the interior points of the computational domain more
accurate approximations to the derivatives can be used. For
example, in the present work we have employed the following
second-order approximations:

δl(F+)k = [
3(F+)kl − 4(F+)kl−1 + (F+)kl−2

]
/2,

δl(F−)k = [ − (F−)kl+2 + 4(F−)kl+1 − 3(F−)kl
]
/2.

The flux-vector splitting scheme described above takes into
account the local characteristic solution of the hyperbolic
system (5). The same analysis has to be done for the boundary
conditions. For example, a fully absorbing boundary condition
can be simply modeled by neglecting the derivative of the
flux for the incoming waves. That is, we assume δl(F+)k = 0,
when the ions flow to the absorbing surface with u < 0, and
δl(F−)k = 0 in the opposite case.
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