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Thermodynamic state variables in quasiequilibrium ultracold neutral plasma
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The pressure and internal energy of an ultracold plasma in a state of quasiequilibrium are evaluated using
classical molecular dynamics simulations. Coulomb collapse is avoided by modeling electron-ion interactions
using an attractive Coulomb potential with a repulsive core. We present a method to separate the contribution of
classical bound states, which form due to recombination, from the contribution of free charges when evaluating
these thermodynamic state variables. It is found that the contribution from free charges is independent of the
choice of repulsive core length scale when it is sufficiently short-ranged. The partial pressure associated with
the free charges is found to closely follow that of the one-component plasma model, reaching negative values at
strong coupling, while the total system pressure remains positive. This pseudopotential model is also applied to
Debye-Hückel theory to describe the weakly coupled regime.
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I. INTRODUCTION

Accurate models for the thermodynamic and transport
properties of strongly coupled plasmas are essential for
describing their evolution as a continuous fluid [1]. Ultracold
neutral plasma (UCP) experiments provide an excellent test
bed for validating such models because it is possible to
precisely probe them using optical diagnostics in table-top
experimental setups [2]. Verifying models using UCPs can
also advance the understanding of other strongly coupled
systems, such as high-energy-density plasmas [3–5], which
arise in extreme environments and can be difficult to diagnose
precisely. One of the most intriguing features is that UCPs
are electron-ion systems in which each component can be in,
or near, the strong-coupling regime. Thus, they can provide
insights into two-component physics beyond the reach of the
common one-component plasma (OCP) approximation [6,7].
In this paper, we develop a method to simulate an electron-ion
plasma in a state of quasiequilibrium using classical molecular
dynamics (MD) simulations. This is applied to evaluate the
pressure and internal energy of the system, as well as to
distinguish the contributions from free charges and bound
states [8]. These show that the free-charge thermodynamics
closely resemble predictions from the OCP model but that
classical bound states (analogous to the Rydberg atoms in
a UCP) must also be accounted for to preserve physical
limitations such as a positive total pressure.

UCPs are typically created by the photoionization of
laser-cooled atoms confined in a magneto-optical trap [9–11]
and can have densities up to 1011cm−3. Ion temperatures
at formation range from microkelvins to millikelvins, and
the initial electron temperature typically ranges from 0.1 to
1 K. After formation, the plasma components are no longer
confined, and the expansion has a cooling effect [12,13].
However, this is overwhelmed by other heating mechanisms.
Both ions and electrons are rapidly heated by disorder-induced
heating [14], and electrons are additionally heated by three-
body recombination throughout the plasma lifetime [15]. As
a result, these are rapidly evolving, partially ionized plasmas
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with electrons in a weakly to moderately coupled state and ions
in a moderately to strongly coupled state. Previous simulation
and modeling efforts have largely focused on describing
the system evolution, including expansion, disorder-induced
heating, and eventual recombination to a collapsed neutral-like
state [15–17].

Here, we instead focus on developing a method to study
the properties of a UCP under fixed conditions, i.e., density
and temperature. The motivation is to connect theories for
thermodynamic and transport properties, which make predic-
tions under fixed conditions, with experiments, which measure
these properties over short enough time intervals that the
conditions can be considered fixed. Experiments typically
focus on measuring the free charges [2]. It is interesting from
a theoretical viewpoint—and necessary for comparison with
experiment—that one separates the bound-state contributions
from the free-charge contributions when describing transport
or thermodynamic properties. The primary challenge is that
the equilibrium state of the system is a recombined neutral
gas [15,18,19]. A successful model must somehow limit the
recombination so that a free-charge population remains but do
so in a way where one can connect that simulated equilibrium
state with an interval of time during the evolution of the plasma
in an experiment.

To accomplish this, we model electron-electron and ion-
ion interactions with the Coulomb potential and electron-
ion interactions with a pseudo-Coulomb potential that also
includes a repulsive core,

vee = vii = e2

r
, (1a)

vei = −e2

r

[
1 − exp

(
− r2

(αa)2

)]
. (1b)

Here, r is the separation between two particles, e is
the electron charge, a = (3/4πni)1/3 is the average spacing
between two ions or two electrons, ni is the number density of
ions with ne = ni , and α is an adjustable parameter that sets
the e-i repulsion length scale. Simulations were conducted
in a periodic box with both electrons and ions held to the
same fixed temperature using a Nosé-Hoover thermostat [20].
Due to computing constraints, the ion mass was set to be 10
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times the electron mass. Since the mass does not influence the
equilibrium properties of the system, which are the focus of
this work, this reduced mass is inconsequential. Electrons are
hotter than ions in real UCP experiments (ion coupling strength
�i up to 5 and electron coupling strength �e up to 0.1), but we
concentrate on equilibrium here because our interpretation of
data will utilize aspects of equilibrium statistical mechanics.
Future work will extend the model to treat unequal electron
and ion temperatures.

The electron-ion potential in Eq. (1b) is similar to the Kelbg
potential used to model dense, degenerate plasmas [21,22].
However, an important difference arises here. In dense plas-
mas, the length scale αa is associated with the de Broglie
wavelength characterizing quantum mechanical diffraction.
Under dense plasma conditions, the de Broglie wavelength
is of the same order as the interparticle spacing, so α is of
order unity. As a result, α significantly influences the predicted
thermodynamic properties and transport rates. In contrast, in a
UCP the de Broglie wavelength is orders of magnitude smaller
than a. In our model, α is a model parameter that does not
represent a physical scale.

The main idea behind this model is that as α decreases,
the properties of the free charge components of the system
asymptote to values that are independent of α. Hence, these
asymptotic values represent the state of the charged compo-
nents under fixed conditions. The main result in this paper
is the demonstration of this asymptotic plateau in the partial
pressure and internal energy associated with the free charges
as the parameter α is reduced. What does change as α shrinks
is the fraction of the plasma in a bound state. Decreasing α

increases the depth of the potential well in the electron-ion
interaction, resulting in more classically bound pairs, or
clusters. We observe that the bound-state population has a
lower temperature than the free population. This, along with
a decreasing fraction of free charged states, leads to a slight
slope in the thermodynamic variable profiles as α decreases.
Nevertheless, the model provides a means to access properties
of the charged particles (plasma) under fixed conditions via the
asymptotic values obtained at small α, while also providing
a means of controlling the bound-state fraction. In essence,
because it determines the bound-state concentration(fraction),
the value of the model parameter α provides a connection with
a certain time interval of an ultracold plasma experiment.

Interpretation of the data requires a means to separate
bound states from free charges. Here, we calculate the
electron-electron, ion-ion, and electron-ion radial distribution
functions, gij (r), and apply a simple model based on an energy
argument to separate free and bound states. The pressure and
internal energy are then computed directly from the radial
distribution functions. The results provide a proof of principle
of this technique. Future developments may address methods
to directly separate free and bound states in the simulations,
as well as to treat nonequilibrium systems that more closely
represent experimental conditions.

This paper is organized as follows. Section II applies the
model to Deybe-Hückel theory, which treats weakly coupled
plasmas. This serves to demonstrate key aspects of the model
using a familiar analytic formalism. Section III provides details
of the MD simulations. Section IV presents the results of
applying the model using MD simulations under strongly
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FIG. 1. Trajectories of an electron (blue lines) and ion (red
circles) interacting through the Coulomb potential under conditions
representing (a) free scattering and (b) a bound state. Arrows show
the direction of electron motion from its starting point (blue dot). The
ion-to-electron mass ratio is chosen to be 105 for this case. Distances
are in units of aN = 10−5 m.

coupled conditions. Finally, we conclude and provide some
future prospects in Sec. V.

II. WEAKLY COUPLED PLASMA

At equilibrium, the coupling strength can be quantified by
the Coulomb coupling parameter

� = e2/a

kBT
, (2)

which is the ratio of the Coulomb potential energy at the
average interparticle spacing to the average kinetic energy.
Here the coupling strength � is defined based on each
individual species’ density and temperature and � = �e = �i

(e and i represent electron and ion species). Properties of
weakly coupled plasmas, � � 1, are well described by models
based on a series of binary interactions between particles. In
this section, we first revisit aspects of two- and three-body
interactions that will be useful for interpreting the more
complex N-body simulations in Sec. IV. We also apply the
model potentials to Debye-Hückel theory, demonstrating their
essential features: the separation of bound and free states and
the asymptotic values of the free-charge thermodynamic state
variables as α is reduced.

A. Classical bound states

Binary encounters between electrons and ions can be
classified as either free or bound. Since the effective potential,
Ueff(r) = vei(r) + l2/(2meir

2), has a global minimum, the sign
of the total energy, E = meiu

2/2 + vei(r), of the e-i pair
determines whether the orbit is bound or free [23]. Here,
mei = memi/(me + mi) is the reduced mass, u = |ve − vi |
is the relative initial particle speed, and l is the angular
momentum. Figure 1 shows an example of each type of
interaction for an electron-ion pair interacting via the Coulomb
potential. In Figs. 1(a) and 1(b), the initial conditions are such
that E > 0 and E < 0, respectively, resulting in free and bound
orbits.

B. Three-body interactions

Binary collisions alone do not allow for the formation
of bound states from free states, since the total energy of
the binary pair is fixed. However, this can change if a third
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FIG. 2. Trajectories demonstrating various outcomes of three-
body interactions between two electrons (red and black lines) and one
ion (blue lines): (a) A classical electron-ion bound state interacts with
an energetic electron, which frees the previously bound electron and
forms a loosely bound state with the ion. (b) A classical electron-ion
bound state interacts with an energetic electron, resulting in all free
states. (c) An external electron interacts with a loosely bound state,
gaining kinetic energy from the interaction and causing the bound
pair to become more tightly bound. (d) An ion and two electrons
all begin in a free state but form a bound pair via the three-body
recombination. The ion-to-electron mass ratio is chosen to be 100 for
this case. Distances are normalized by aN = 1.3366 × 10−5 m.

particle is present. Four types of three-body interactions are
pictured in Fig. 2. Figure 2(d) illustrates the interaction of
two electrons and an ion—all initially free—to form a bound
electron-ion pair. The reduced potential energy of the newly
bound pair is transferred to the second electron as additional
kinetic energy. This is a classical realization of three-body
recombination, which is an important heating mechanism
in ultracold plasmas [13,16,24]. At thermal equilibrium, the
formation of bound states is balanced by the reciprocal process,
classical impact ionization, which is shown in Fig. 2(b). The
net result of these three-body interactions is that the bound
pairs are less energetic than the free particles, leading to overall
heating of the free charges in the plasma, especially electrons.
At equilibrium, the bound subset may have a lower temperature
than the free population. This is discussed further in Sec. IV B.

C. Radial distribution functions

The radial distribution function represents the density
profile surrounding individual charged particles. It is also
related to the potential of mean force, which is the potential
obtained when taking two particles at fixed positions and
averaging over the positions of all other particles [25]:

F12 =
∫ [−∇r1U (r1, . . . ,rN )

]e−U/kBT

Z dr3 . . . drN

= −kBT ∇r1 ln g(|r1 − r2|) ≡ −∇r1φ(r1 − r2). (3)

Here, g(r) is the radial distribution function, φ is the potential
of mean force, Z = ∫

exp(−U/kBT )dr1 . . . drN is the con-
figurational integral, and U ≡ ∑

i,j v(|ri − rj |).

In weakly coupled plasmas, the potential of mean force is
the Debye-Hückel potential with a screening length equal to
the total Debye length. This can be obtained using a standard
fluid approach with a Boltzmann distribution of electrons
and ions [26] or from the potential of mean force computed
from the weakly coupled limit of the hypernetted-chain
approximation (φ/kBT � 1) [27]. For the bare potentials in
Eq. (1), the associated weakly coupled limits of the potentials
of mean force are

φii(r)

kBT
= φee(r)

kBT
= �

r/a
exp (−

√
3�r/a), (4a)

φei(r)

kBT
� −φii(r)

kBT
{1 − exp[−(r/αa)2]}. (4b)

The expression for φei(r) relies on a scale separation
between the repulsive core and the screening length (αa �
λD). The RDFs can be obtained directly from Eq. (4) via
their association with the potential of mean force gij (r) =
exp(−φij /kBT ). Note that since both species are assumed to
have the same temperature, gee = gii and gei = gie. Figure 3
shows the RDFs for electron-electron (or ion-ion) pairs with
coupling strength � = 0.02 and � = 0.5 (red and blue lines
respectively) [Fig. 3(a)], electron-ion pairs with � = 0.02
[Fig. 3(b)], and electron-ion pairs with � = 0.5 [Fig. 3(c)].
The electron-ion RDFs (gei) clearly show a peak at location
αa, with the amplitude of this peak increasing sharply either as
α decreases or as the coupling strength increases. These peaks
represent the classical bound states that form in the potential
well at separation αa.

Next, we discuss a method to distinguish contributions
due to free and bound charges in the RDFs, which is used
later to distinguish the contributions of each population to
the thermodynamic state variables. As discussed in Secs. II A
and II B, the condition for an e-i pair to be bound is E < 0,
which can occur as the result of interaction with a third particle.
In a many-body picture, the potential of mean force models
the average interaction energy of an e-i pair in the presence
of the surrounding plasma. Applying this to the condition for
bound states in Sec. II B suggests that particle interactions for
which |φei(r12)| > kBT are expected to be bound and those
with |φei(r12)| < kBT to be free on average. We use this as a
criterion to separate gei(r) into free and bound contributions
according to

max
{
gfree

ei

} = exp (1). (5)

In other words, a critical distance rc defined by |φei(rc)| = kBT

delineates a separation between bound and free populations:
Particles in the region r > rc are considered free and those
in the region r < rc bound. Figure 4 provides an example for
� = 0.5 and α = 0.1, showing the separation between bound
and free contributions to the radial density profile.

Equation (5) provides a phenomenological ansatz which
makes a sharp division between free and bound contributions
and does not include any statistical variation. A more realistic
model would include a transition region of a certain width. For
example, there might be several pairs of opposite charges not
bound even when their kinetic energy is less than their average
potential energy, and vice versa. Such a statistical width would
be expected to lead to a variation in thermodynamics quantities
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FIG. 3. Radial distribution functions under weakly coupled conditions obtained from Eq. (4). (a) Electron-electron/ion-ion RDFs for
� = 0.02,0.5. (b) Electron-ion RDFs for � = 0.02 and various α. (c) Electron-ion RDFs for � = 0.5 and various α values. Like-species RDFs
(gee/ii) have no α dependence, as they interact through the bare Coulomb potential.

estimated based on the criterion in Eq. (5). This is discussed
further in Secs. IV D and IV E.

The bound-state fraction can be estimated directly from the
e-i RDFs by taking the ratio of the number of bound particles
to the total number of particles,

Xb =
∫ rc

0 [gei(r) − 1]dr∫ ∞
0 [gei(r) − 1]dr

, (6)

where Xb is the bound-state fraction of the total system of
particles. Figure 5 illustrates how the fraction of bound states
varies with the repulsive core parameter α. At a given coupling
strength, there is a transition regime where the bound-state
fraction increases sharply. The upper edge of this region
indicates a nearly recombined plasma (i.e., classical neutral
gas), while the lower edge indicates a fully ionized plasma.
The transition is observed to occur when α � 0.05� based on
these data in the range � = 0.01-1.
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contributions to gei(r) with � = 0.5 and α = 0.1. Horizontal and
vertical lines represent gei = 1 and rc, respectively.

D. Excess pressure

At equilibrium, the pressure can be computed directly from
the RDFs. It consists of an ideal component and an excess
component, P = Pideal + Pex, where Pideal = nkBT , and the
excess pressure is [25,28]

Pex = −2

3
π

∑
i,j

ninj

∫ ∞

0
v′

ij (r)gij (r)r3dr, (7)

where v′
ij denotes the radial derivative of the bare potentials.

Figure 6(a) shows how the excess pressure Pex varies with α

for three values of �. Based on these curves, we identify three
parametric regions. In the rightmost region, III, the repulsive
core scale length is larger than the average particle separation
(α � 1). Here, the long-range nature of the repulsive cores
generates a significant positive excess pressure. A physical
example of this regime is dense degenerate plasmas where

10-4 10-3 10-2 10-1 100

Repulsive core, α

0

0.25

0.5

0.75

1

B
ou

nd
 s

ta
te

 fr
ac

tio
n,

 X
b

Γ=0.01 Γ=0.1 Γ=1

FIG. 5. Fraction of bound states with respect to the repulsive
core parameter α obtained from Eqs. (5) and (6). Lines use gie from
Debye-Hückel theory, Eq. (4), and filled blue circles use gie from MD
simulations for � = 1.
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FIG. 6. (a) Excess pressure under weakly coupled conditions
calculated from Eqs. (1), (4), and (7). (b) Excess internal energy
variation with α and � using Eq. (4). In both panels, dashed lines
represent the combined free-plus-bound system, and solid lines
represent just the free-charge contribution.

the de Broglie wavelength exceeds the average interparticle
spacing. In the leftmost region, I, the repulsive core length scale
is much smaller than the average particle spacing (α � 1).
Here, the electron-ion potential well is very deep, leading
to significant recombination and a corresponding negative
excess pressure. This is the region of interest for modeling
ultracold neutral plasmas. In the intermediate region, II, the
excess pressure takes a constant value that is slightly negative
but larger than −1, indicating that the total pressure remains
positive in this regime.

The solid lines in Fig. 6(a) show the contribution to the
excess pressure associated with free charges, which was
obtained using the energy criterion in Eq. (5). Although the
excess pressure diverges toward large negative values when the
bound states are maintained (dashed lines), it is found to be
independent of the repulsive core scale parameter α when they
are removed (solid lines). The asymptotic value associated

with the free-charge population corresponds to that of the
intermediate region, II. This asymptotic value is the partial
excess pressure associated with the free-charge population.
The α value separating this intermediate region from region I is
associated with the spatial location where the potential energy
of the attractive Coulomb interaction significantly exceeds the
average kinetic energy.

In a typical electron-ion radial distribution function, the
peak associated with bound-state contributions increases
several orders of magnitude as α varies from higher values
of α ∼ 1 to short-ranged values α � 1 [see Fig. 11(c)]. If we
consider the influence of a statistical variation in the value used
to define the bound population in the exponent of Eq. (5), we
find that the result for the partial excess pressure associated
with each contribution (free or bound) is insensitive to the
particular value chosen. For example, considering the range
from eφ/kBT = 0.5 to eφ/kBT = 2, the corresponding g(rc)
value at the cutoff will vary from 1.6 to 7.4. A change in
cutoff over this range of values has a negligible influence on
the asymptotic value of the partial excess pressure of the free
charges shown in Fig. 6. This aspect is discussed and quantified
further in Secs. IV D and IV E.

In our model, α is a set parameter that is not associated with
a physical scale. However, consider for a moment associating
the thermal de Broglie wavelength with the repulsive core
scale length. The ratio of the thermal de Broglie wavelength
and the interparticle spacing λdb/a = [2πh̄2/(miekBT )]1/2/a

is a measure of the influence of quantum mechanical wave
effects of the ion fluid. Here, mie = memi/(me + mi) � me

is the reduced mass. Applying αa = λdb provides �a/λdb �
2/

√
T [eV]. Thus, the boundary α = λdb/a � 0.05� is simply

associated with the temperature T � 0.01 eV. If T � 0.01
eV, the plasma is in region I and the excess pressure is
highly negative, indicating that the system will collapse (i.e.,
recombine). If T � 0.01 eV, the plasma is in the plateau region,
II, with a small negative excess pressure but a positive total
pressure. Ultracold plasmas fall deep in region I. The additional
challenge at strong coupling (� � 1) is that the intermediate
region becomes narrow, and the Debye-Hückel approximation
breaks down. In this region, we separate the contributions
from free charges (plasma) and classical bound states using
the same methods outlined in this section but apply them to
RDFs calculated with MD simulations.

Figure 7(a) shows the excess pressure dependence on � at
a fixed value of α = 0.1. Data in the shaded regions were
obtained using the Debye-Hückel model and data in the
unshaded regions were obtained using molecular dynamics
simulations. The black line with stars shows the total excess
pressure including free and bound states. The blue line with
circles denotes the excess partial pressure of the free charges.
The magenta line with squares represents the bound-state
contribution. At weak coupling, the excess pressure is low but
increases significantly as strong coupling is approached. The
role of free and bound contributions to the excess pressure in
the strongly coupled regime is discussed further in Sec. IV D.

E. Internal energy

The same arguments used to describe the excess pressure in
the previous section can be carried over to describe the excess
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FIG. 7. Dependence on � of (a) the excess pressure and (b) the
excess internal energy at α = 0.1. Black lines with stars represent the
total (bound-plus-free) system; blue lines with circles, free-charge
contributions; and magenta line with squares, bound-state contribu-
tions only. Dashed red lines show the OCP values. Shaded regions
indicate where the thermodynamic state variables are calculated using
RDFs obtained from the Debye-Hückel description, while unshaded
regions show the molecular dynamics results. Dotted lines represent
an extension of Debye-Hückel theory into the strongly coupled
regime. Blue-shaded regions show how the excess pressure and
internal energy of the free charges vary when the right-hand side
of Eq. (5) is varied from exp (0.5) to exp (2).

internal energy. The excess internal energy for an electron-ion
plasma can be written in terms of the RDFs as [28]

Uex

N
= 2π

n

∑
i,j

ninj

∫ ∞

0
gij (r)

(
vij (r) − T

∂

∂T
vij (r)

)
r2dr.

(8)
Here N is the total number of particles in thea system of volume
V such that n = N/V . Note that in the present context α is
constant, so the interaction potentials vij are independent of
temperature and the second term in Eq. (8) is 0. However, in

a dense plasma context αa � λdb, so the interaction potentials
depend on the temperature and this term will be nonzero.

Figure 6(b) shows the variation of the internal energy with
the repulsive core parameter α for different values of coupling
strength �. As was the case with the excess pressure, the
internal energy of the full system (free plus bound) diverges
sharply as α decreases, but it asymptotes to a constant when
the bound-state contribution is removed.

We emphasize that a well-defined thermodynamic pressure
and energy for weakly coupled plasmas traditionally rely
on being able to neglect the interparticle interactions in
comparison with their kinetic energy. The analysis in this
section illustrates that the inherent difficulties of a point-
particle description of a plasma are still formally present
at weak coupling, as evidenced by the negative divergence
of the pressure and energy as α → 0. In practice, quantum
mechanical effects preventing Coulomb collapse at close
distances are responsible for the stability of matter [29].

III. SIMULATION METHOD

Three-dimensional classical MD simulations were carried
out using the open source code LAMMPS [30]. LAMMPS is
massively parallel (both CPU and GPU based) and is efficient
for large-scale particle simulations. The simulation geometry
was a three-dimensional cubic box with periodic boundary
conditions. Each simulation used 104 electrons and 104 ions,
and the typical time step was 0.005ω−1

pe . These parameters
were chosen to ensure energy conservation as well as to fully
resolve the dynamics of the lightest species (i.e., electron)
during the simulation [31]. Simulations were conducted by
first equilibrating the system using a Nosé-Hoover thermostat
to achieve a desired temperature corresponding to a particular
� value [20]. The temperature of each species s at each
time step was calculated from 3

2NskBTs = 1
2ms

∑Ns

i v2
si , where

vsi is the instantaneous particle velocity. After equilibrium
was achieved, the thermostat was turned off and the RDF
was computed. The PPPM (particle-particle, particle-mesh)
method [32] was used to calculate the long-range interactions.
Interaction potentials used were those from Eq. (1), with α an
input parameter. The ion mass was taken to be 10 times the
electron mass. However, here we present results at equilibrium,
in which case we found that the mass ratio did not influence
the RDFs, as expected from classical equilibrium statistical
mechanics.

These simulations were limited to values of α no less than
0.1 due to energy conservation requirements. We found that at
smaller values of α it became prohibitive to resolve the time
scales of tightly bound pairs to the degree required for energy
conservation. Nevertheless, this value was small enough to
reach the desired plateau regime.

IV. STRONGLY COUPLED PLASMA

We now apply the concepts and techniques discussed in
Sec. II to moderately and strongly coupled plasmas using
classical MD simulations.

043204-6



THERMODYNAMIC STATE VARIABLES IN . . . PHYSICAL REVIEW E 95, 043204 (2017)

10-2 10-1 100

Radial distance, r/a

10

20

30

40

50

60

70

R
ad

ia
l d

is
tr

ib
ut

io
n,

 g
(r

) e-e
i-i
e-i

(b)

(a)

FIG. 8. (a) Bound-state trajectories of electron-ion pairs during a
simulation with � = 1 and α = 0.1 over a time interval of 3ω−1

pe . Free
particle trajectories have been removed. (b) RDFs under the same
conditions, showing the peak in gei(r) at r = αa.

A. Classical bound states

Compared to a weakly coupled plasma, a strongly coupled
plasma whose particles interact through the pair potentials of
Eq. (1) is expected to form more bound states. This is because
the depth of the electron-ion potential well scales linearly with
�. Indeed, comparing Fig. 8(b) to Fig. 4, doubling � yields
an increase of nearly a factor of 4 in the peak value of gei(r)
for the same value of α, indicating that a larger fraction of
the plasma is confined to tight orbits like those pictured in
Fig. 8(a). In addition to the many binary bound pairs, we
observed that clusters of bound pairs can form stable structures
under strong-coupling conditions. These can take the form of
long chains, or rings. These structures will be discussed in
more detail in a later work.

In the present studies we limit our results up to moderate
coupling strengths only. The reason is that as we move towards
higher coupling strengths, the system’s increased affinity for
forming bound states results in a “plasma” that is primarily
composed of clumped bound pairs. Removal of the bound
states would then effectively take the majority of charged
particles out of the evaluation of thermodynamic properties,
reducing the effective coupling strength of the free charges
below their nominal � value. Thus our simulation results
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FIG. 9. Electron temperature for free (dashed red line) and bound
(blue line) species in a simulation with � = 1 and α = 0.1. The black
line shows the total electron temperature in the system.

will not remain practical for higher � values. Physically,
this is related to the rapid rate of recombination under these
conditions.

B. Three-body interactions

MD simulations permit us to investigate the cumulative
effect of the three-body interactions studied in isolation in
Sec. II B. To do so, we used a microscopic criterion [instead
of Eq. (5)] to classify individual electron-ion pairs as either
free or bound. This method was only used for the purpose of
getting the data for Fig. 9. For a selected pair of particles,
we computed Ueff(r) and E as though the two particles’
motion was unaffected by the surrounding plasma. Repeating
this for many such pairs, we calculated the kinetic energy
for the population of free electrons and bound electrons. The
results for � = 1 and α = 0.1 are plotted in Fig. 9. This shows
that free electrons carry approximately twice as much kinetic
energy as those bound to an ion for this set of parameters. This
is in agreement with our expectations from the three-body
dynamics described in Sec. II B, where electrons that end up
in a bound state were observed to give up kinetic energy to
other nearby electrons via scattering. Figure 9 also shows that
the two electron populations’ temperatures remain fixed (aside
from fluctuations). This indicates that not only is the system
as a whole in equilibrium, but also the free and bound electron
subsystems have each attained their own thermal equilibrium.

We also find that if the thermostat is lifted, the plasma
will heat, as evidenced by the temperature evolution plots in
Fig. 10. It can be seen that when the thermostat is switched
off at time t ≈ 250ω−1

pe , the electron temperature increases
rapidly if α is sufficiently small. Only the electron temperature
is shown because the ion temperature curves are identical.
The heating rate increases as α decreases, implying that the
heating of the system arises from the liberation of Coulomb
potential energy via classical three-body recombination. At
sufficiently large values of α, the heating effect is insignificant
even after removing the thermostat, as in the α = 0.2 line in
Fig. 10, as well as for the parameters in Fig. 9. However,
for smaller values of α, the heating effects become more
and more significant because the deeper potential well in
the electron-ion interaction provides a larger potential energy
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source that is converted to kinetic energy via heating. This
figure demonstrates that ultracold plasmas evolve rapidly and
that the concept of quasiequilibrium relates to a narrow time
window. In contrast, the same concept is much more clearly
defined in dense degenerate plasmas with slow recombination
rates [28,33].

We note that the use of particle trajectories to separate free
and bound charges is used only in the temperature calculations
in this subsection. There are three reasons for this: (i) It is

computationally expensive; (ii) bound pairs tend to be difficult
to track because they survive only a few plasma periods before
being broken up; and (iii) at higher coupling, the binary
encounter picture is inappropriate, since bound pairs tend
to clump and form complex structures. For these reasons,
the remainder of the thermodynamics results in this section
are based on the bound-free separation criterion, Eq. (5), as
discussed further below.

C. Radial distribution functions

Figure 11 shows the RDFs for electron-electron and
electron-ion pairs obtained from classical MD simulation of
an ultracold plasma. Figures 11(a) and 11(b) show the RDFs
for electron-electron pairs, while Figs. 11(c) and 11(d) show
the RDFs for electron-ion pairs. Figures 11(a) and 11(c) show
the effect of varying α at fixed �, and vice versa for Figs. 11(b)
and 11(d).

In addition to the peak in gei(r) near r = αa, the figures
show an additional peak in gee/ii(r). This feature of the like-
charge RDFs is a consequence of the system’s tendency to
cluster. Tightly bound e-i pairs are essentially dipoles, which
attract other dipoles and cause clumping to occur. This permits,
for example, two bound electrons to lie near each other in spite
of their mutual repulsion.

Though interesting, this secondary peak in gee/ii(r) compli-
cates the procedure for separating bound and free populations
at the RDF level. In order to use Eq. (5) to remove bound
states from gei(r), we must also remove them from gee/ii(r)
in an internally consistent way. To do so, we first enforce
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Eq. (5) as before, yielding a cutoff distance rc,ei . Next,
we determine a second cutoff distance rc,ii(= rc,ee) that
maintains quasineutrality within the individual bound and free
subpopulations. That is, we determine rc,ii/ee such that

4πni

∫ ∞

rc,ii

gii(r)r2dr − 4πne

∫ ∞

rc,ei

gei(r)r2dr = −1, (9a)

4πni

∫ ∞

rc,ei

gei(r)r2dr − 4πne

∫ ∞

rc,ee

gee(r)r2dr = 1. (9b)

Again, the hypothesis here is that approximately all con-
tributions to gii(r) below rc,ii are due to clustering of bound
pairs.

D. Excess pressure

The excess pressure for moderately coupled ultracold
plasmas was evaluated using Eq. (7). The input RDFs for these
moderately coupled media were obtained from equilibrium
MD simulations. In Fig. 12(a), the total excess pressure
(including both free and bound charges) is plotted as a
function of α for � = 1, 2, and 5. The line plots with
symbols show the excess pressure calculated after removal
of bound states from the RDFs. The bound- and free-state
RDFs have been separated using Eqs. (5) and (9). Like the
weakly coupled regime in Fig. 6, the excess pressure for the
free-charge population is found to plateau to an α-independent
value for small α. Molecular dynamics simulations become
computationally challenging due to energy conservation issues
for small values of the parameter α (less than α = 0.1). This
limits the accessible range of α and is the reason the pressure
shown in Fig. 12(a) does not reach the divergent regime at
smaller α as seen in the weakly coupled study [Fig. 6(a)].

Figure 7(a) shows the excess pressure dependence on �

with α fixed at a value of 0.1. The pressure of the total
plasma remains positive (Pex > −1) at all values of � shown.
The blue line with circles and magenta line with squares
represent the partial excess pressures due to free and bound
charges, respectively. This figure shows that the partial excess
pressure due to the free-charge contribution closely follows the
OCP results, i.e., Pex < 0, and that the total partial pressure
associated with the free charges becomes negative around
� ≈ 4. The collapsing nature of free electron-ion gas is
responsible for this negative excess pressure. The partial excess
pressure due to bound states is always found to be positive,
much like what one would expect for a gas of neutral atoms. As
the coupling strength increases, a large fraction of the plasma
forms bound states and hence they contribute more to keeping
the total excess pressure positive. The figure also shows that
the MD results show a consistent trend that merges with the
Debye-Hückel results at weak coupling.

We have also tested the robustness of the criterion in Eq. (5)
by varying the value in the exponent representing eφ/kBT ,
from 0.5 to 2. This window represents statistical uncertainty
in the boundary separating free and bound populations. In
other words, this variation in eφ/kBT provides an approximate
statistical width to the critical cutoff distance rc which is used
to separate free and bound states from an electron-ion radial
distribution function. The shaded region in Fig. 7(a) shows
the variation in excess pressure for free charges as we vary the
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FIG. 12. Dependence of (a) the excess pressure and (b) the excess
internal energy on the repulsive core parameter α at various coupling
strengths. Dashed lines indicate results for the combined free-plus-
bound system and solid lines with symbols indicate results isolating
the free-charge components of the system.

value of exponent eφ/kBT of the criterion in Eq. (5). The small
width of this shaded region suggests that the results do not
change significantly. Thus we conclude that the physics-based
argument for the criterion eφ/kBT ∼ 1 and the insensitivity
of results to the particular value chosen provides additional
confidence in the robustness of this method.

E. Internal energy

The excess internal energy was also evaluated using the
RDFs obtained from MD along with Eq. (8). Figure 12(b)
shows how the excess internal energy of the total (free plus
bound) plasma depends on α at � = 1,2,5. Lines with symbols
represent the excess internal energy of free charges found by
removing the contribution of bound states to gij (r). Similarly
to previous results for excess pressure, the removal of bound
states again leads to values of Uex that are independent of α in
the α → 0 limit.
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Figure 7(b) shows the excess internal energy at different
values of coupling strength � with α = 0.1. Similarly to the
excess pressure, the excess internal energy of the free states
(blue line with stars) is close to the OCP value (dashed red line).
At an increased coupling strength, an increase in the bound-
state fraction causes the internal energy to become increasingly
negative. Similarly to Sec. IV D, the partial excess internal
energy for free charges includes a shaded region representing
the results obtained as the value of the exponent eφ/kBT in
Eq. (5) ranges from 0.5 to 2. Again, the small width in the
variation of the excess pressure due to free charges suggests
that the criterion used in Eq. (5) is insensitive to statistical
variations in deciding the critical cutoff distance rc in electron-
ion radial distribution functions.

V. CONCLUSIONS

Using Debye-Hückel theory for the weakly coupled regime
and equilibrium MD simulations for the strongly coupled
regime, we observed that the Coulomb collapse of a classical
electron-ion plasma can be prevented by applying a repulsive
core force at close distance (αa) in the electron-ion interaction.
Furthermore, the removal of the bound-state contribution to the
radial distribution functions was shown to provide predictions
for the thermodynamic state variables that are independent of
the model repulsive core length scale.

These results provide a method to separate the contribution
of free charges from classical bound states in the evaluation

of the pressure and internal energy of a classical electron-ion
plasma. This enables quasiequilibrium analysis of classical
electron-ion plasmas, as are found in ultracold neutral plasma
experiments (�i up to 5 and �e up to 0.1). Such an analysis is
useful for connecting theoretical predictions, which are made
under fixed conditions, with experimental measurements,
which are made over short enough time intervals that the
conditions may be considered fixed. The work lays important
groundwork for the further development of two-component
models for ultracold plasmas based on a classical point-
particle picture of the microscopic dynamics. Future work
will extend our studies to a two-temperature electron-ion
system, which is closer to the conditions of an ultracold
neutral plasma experiment. This study was also limited to
moderate coupling strengths due to the formation of complex
bound-state structures at higher coupling strengths. Future
studies will investigate these structures in further detail.
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