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We use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component
plasmas in regimes for which the presence of coupled collective modes has been predicted to substantively
reduce the equilibration rate. Guided by previous kinetic theory work, we examine hydrogen plasmas at a density
of n = 1026 cm−3, Ti = 105 K, and 107 K < Te < 109 K. The nonequilibrium classical MD simulations are
performed with interparticle interactions modeled by quantum statistical potentials (QSPs). Our MD results
indicate (i) a large effect from time-varying potential energy, which we quantify by appealing to an adiabatic
two-temperature equation of state, and (ii) a notable deviation in the energy equilibration rate when compared to
calculations from classical Lenard-Balescu theory including the QSPs. In particular, it is shown that the energy
equilibration rates from MD are more similar to those of the theory when coupled modes are neglected. We
suggest possible reasons for this surprising result and propose directions of further research along these lines.
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I. INTRODUCTION

The phenomenon of electron-ion temperature equilibration
is important for the study of inertial confinement fusion
(ICF), since the asymmetric manner in which α-particle fusion
products deposit energy naturally creates such a temperature
(T ) split at certain key regions and times within an imploding
capsule [1,2]. While much of the ICF capsule material is a 50-
50 mixture of deuterium and tritium, the presence of an outer
so-called ablator layer in such capsules creates the possibility
of admixture of higher-Z (ionic charge) elements (C, Be,
and/or dopants like Ge and W) into the deuterium-tritium
(DT) fuel. This in turn introduces significant complexities
for the theoretical description of the T -equilibration process,
because such ions serve to make the plasma more strongly
coupled. Since modeling of electron-ion T equilibration is a
necessary part of integrated simulations of ICF, the problems
of T equilibration in both low-Z and high-Z–low-Z mixtures
are therefore of concern [3].

Recent work on T equilibration has involved both kinetic
theory of various types [4–8] and MD simulations with like
charges and the pure Coulomb interaction [8,9] as well as
opposite-charge simulations with quantum statistical poten-
tials (QSPs) to mock up the effects of quantum diffraction [10–
14]. All but a few of these studies [7,11,14] confined them-
selves to pure hydrogen (or the proton-positron system [8,9]).
Even for H, the demonstration of agreement between molec-
ular dynamics (MD) results and kinetic theory took some
time [10–13], in part because the effect of using the QSPs
changes the result slightly even in weak coupling [11]. For the
classical like-charge proton-positron system, demonstration
of agreement was somewhat more straightforward, motivating
a clear connection between the classic Landau-Spitzer equi-

libration rate [15] derived from the Fokker-Planck equation
and a generalized Lenard-Balescu [16] scheme in which both
dynamical screening and two-body static correlations (in the
form of local-field corrections) are included [8]. Furthermore,
it was shown that for many regimes of interest to ICF, the
complex dynamical screening of the two-component (electron-
proton) plasma could be replaced by the static response
of the electrons alone, yielding identical results [8,9,12,13].
This is hardly surprising, since in a given electron-proton
collision, the spectator electrons are expected to move much
faster than the much heavier spectator protons. It is in this
sense that a description of the collision rate in terms of a
Coulomb logarithm ln λei = ln(bmax/bmin) is sensible, where
the maximum impact parameter bmax is identified with the
static electron-only Debye length. Such simplifications in turn
form the basis for analytic in-line models of electron-ion T

equilibration widely used in ICF simulation codes [1,2].
However, as was pointed out early on by Dharma-wardana

and Perrot [4,17], this failure of the ions to participate in the
screening may not hold in general. Indeed, coupled modes
of the electron-ion system are known to exist in the form
of ion acoustic waves (analogous to phonons in a solid)
and their presence is expected to alter the equilibration rate
relative to that predicted by a theory in which independent
electron and ion plasma waves are solely responsible for
the exchange of energy in a two-temperature (2T) plasma.
A regime in which coupled modes were argued to be
important is that accessed in the intense laser irradiation of
condensed matter [18]: solid density and Te � Ti . Roughly a
decade after this work, Gericke and co-workers [19–21] used
the Lenard-Balescu kinetic equation to study both the nature
of the effect of coupled modes on T equilibration and the
precise regime where they are expected to be important for
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weakly coupled systems. By analyzing the detailed structure of
the two-component dynamical dielectric function, the authors
of Ref. [20] presented this condition for the importance of
coupled modes for a plasma with electrons and a single species
of ions [22]:

Ti � 0.27(ZiTe) (1)

for nondegenerate electrons; here Zi is the charge of the ion.
For hydrogen (Zi = 1), Te must be at least 4 times larger than
Ti for coupled modes to have an effect. This is not the typical
scenario in ICF, at least within the region of undoped DT fuel.
However, if Zi is greater than 4, the above condition suggests
that theoretical treatments that neglect coupled modes, such as
the Landau-Spitzer theory, may be suspect even for Te ∼ Ti .

In the work of Ref. [20], comparisons were made between
the so-called coupled-mode theory (perturbative treatment of
the Lenard-Balescu theory including dynamical screening) and
the Fermi golden rule (FGR) theory [4] (analogous treatment,
but where the ion f -sum rule is used to reduce the screening to
that of the static response of the electrons [8,20]). The systems
considered were hydrogen at a particle density n = 1026 cm−3

and species temperatures Ti = 105 K and 105 K < Te <

1010 K. It was predicted that the presence of coupled modes
reduces the energy equilibration rate by up to ∼50% relative
to that predicted by the FGR theory and other approaches akin
to the Landau-Spitzer theory. The fact that it is a reduction is
easy to understand: Ion-acoustic waves are modes in which a
significant fraction of the electrons form screening clouds that
move with the ions. Such concerted motion is not conducive
to resistive heating of ions by electrons (or vice versa), for
precisely the same reason that energy transfer is not permitted
in a simulation in which the Born-Oppenheimer approximation
is invoked (electrons slaved to the ion dynamics). The work of
Ref. [20] is the first we know of to attempt to fully quantify
this effect for hydrogen plasmas.

As we have already implied, the presence of coupled modes
renders the theoretical description sufficiently complex so
that a simple analytic representation of the T -equilibration
rate is no longer possible. The potential importance for ICF
simulations, however, has prompted researchers to search for
approximate expressions that capture the salient features of
the reduction in the rate due to ion-acoustic waves [19,23].
The work of Chapman et al. in Ref. [23] is particularly
notable for its accuracy in this regard, but its application in
ICF simulations [24] incurs significant computational expense
relative to the simpler theories that neglect coupled modes such
as the Landau-Spitzer theory and its many variants [12,13,15].

Because the aforementioned predictions of the coupled-
mode (CM) effect in T equilibration used a variant of
kinetic theory that is expected to be exact only in the limit
of weak coupling [16], it is reasonable to ask if these
predictions are accurate in practical realizations of out-of-
equilibrium hydrogen plasmas. To this end, Vorberger and
Gericke searched through the existing MD results [8,9,11–
14,25] to assess if simulations within the regime of interest
for coupled modes had been performed [26]. Their conclusion
was that only one simulation might have exhibited the CM
effect [25]. This observation, together with the fact that
experimental measurements of T equilibration in plasmas are
practically nonexistent, emphasizes the need for dedicated

MD simulations specifically tailored to measure the effect of
coupled modes on the relaxation rates. This would in turn aid
in the development of more accurate in-line models for use
in ICF codes, by buttressing our confidence in the theories
used to construct such models [19,23], and/or critiquing their
assumptions if their predictions are shown to be inaccurate.

In this work we study temperature equilibration with
nonequilibrium classical MD simulations for plasmas that are
chosen to lie squarely within the regime indicated by Eq. (1):
hydrogen at a density of n = 1026 cm−3 and Te � Ti . These
are chosen to coincide with the plasmas studied in Ref. [20].
We model the interparticle interactions in these plasmas by
Dunn-Broyles diffractive [27] and Minoo et al. exchange [28]
QSPs [29]. For each plasma studied, we compare our MD
results to both the coupled-mode Lenard-Balescu (LB) theory
of T equilibration and the FGR (neglecting coupled modes)
theory. Since we invoke an approximate description of these
hydrogen plasmas in which the electrons are classical particles
that interact via effective T -dependent interactions, we take
care to apply the CM LB and FGR theories to the classical QSP
system rather than to the quantum Coulomb system as done
in Ref. [20], to ensure that effects arising from the assumption
of classical electrons and altered effective interactions are
included appropriately [11].

We present and discuss several prominent MD results here,
for these specific hydrogen cases:

(i) The temperature relaxation is asymmetric, dTe/dt �=
−dTi/dt , indicating sizable contributions to dTe/dt and
dTi/dt from time-varying potential energy V . This effect
is beyond the weak-coupling treatment of standard Lenard-
Balescu theory (which only conserves kinetic energy), but
it has been discussed and studied before in numerous
theoretical contributions [3,7,21] and has been noted in at
least one previous classical MD study [14]. We define and
extract an effective two-temperature thermodynamic potential
E(Ti,Te) (with associated heat capacities Ce = ∂E/∂Te|Ti

and Ci = ∂E/∂Ti |Te
), from the MD, and show (for one

of these hydrogen cases) that it can be understood from
straightforward modeling. Additional predictions made with
a quantum screened Coulomb model and with orbital-free
density-functional theory indicate that these effects from
time-varying potential energy should be noticeable for true
quantum Coulomb hydrogen plasmas in these conditions as
well.

(ii) Despite this success, we see that the kinetic ion
temperature [30] and the configurational ion temperature [31]
disagree, in that the instantaneous static structure of the ions
is not that as expected for plasmas with Ti as defined by the
ion velocity distribution function. Rather, it is reminiscent of a
plasma with a somewhat lower Ti . Nevertheless, the analysis
in (i) succeeds because the derivatives Ce and Ci are relatively
insensitive to the differences in temperatures, i.e., E is linear
over wide ranges of Te and Ti .

(iii) We determine the instantaneous ion velocity distri-
bution in the MD during temperature relaxation and quan-
tify its departure from the equilibrium Maxwell-Boltzmann
distribution. While this deviation does slightly affect the
Lenard-Balescu prediction for temperature relaxation, explicit
calculations using a polynomial expansion show that it should
not significantly alter the equilibration rates (at least within the

043202-2



MOLECULAR DYNAMICS STUDIES OF ELECTRON-ION . . . PHYSICAL REVIEW E 95, 043202 (2017)

weak-coupling approximation inherent in the Lenard-Balescu
theory).

(iv) Most importantly, we quantify the energy relaxation
rate in MD by decomposing the total energy into species-
dependent pieces E = Ei + Ee in which the electron-ion
potential energy Vei is shared equally between the species [21].
It is shown that dEi/dt (=−dEe/dt) is far closer to the FGR
predictions than to the CM predictions, in stark contrast to
expectations.

The remainder of this paper is organized as follows. Sec-
tion II presents our MD methodology, including a discussion
of the multiple methods we use to initialize our 2T simulations.
Section III contains a discussion of the perturbative treatment
of the Lenard-Balescu equation used to predict the instanta-
neous time rates of change of electron and ion temperatures;
here we focus on computational issues specific to predictions
in the CM regime. A presentation of the results of our MD
simulations and the comparison to the theoretical predictions
(FGR and CM LB theory) appears in Sec. IV; this includes a
discussion of the sizable effects of time-dependent potential
energy, a study of the (negligible) effects of non-Maxwellian
velocity distributions, and a discussion of possible reasons for
the greatly reduced effect of coupled modes as compared to
predictions [20]. We summarize in Sec. V.

II. MOLECULAR DYNAMICS SIMULATIONS

Coupled-mode temperature equilibration includes the pos-
sibility of nondegenerate electrons, making classical MD
simulations a useful comparator. We employ the ddcMD
code [32] with the particle-particle–particle-mesh method [33]
for large-scale charged-particle simulations [34]. We mostly
consider a subset of hydrogen cases studied by Vorberger and
Gericke [20], ρ = 1026 cm−3, Ti = 105 K, and Te = 107 to
5 × 108 K. The associated MD time steps range from 5 × 10−6

to 1 × 10−6 fs. Most simulations include 5.12 × 105 hydrogen
atoms, but the first case is studied using 4.096 × 106 hydrogen
atoms. This improves statistical sampling and reduces noise in
the final results.

Even for nondegenerate electrons, the attractive electron-
ion interaction requires some accommodation of quantum
effects. Accordingly, we use the Dunn-Broyles diffractive
QSP [27]. We include the two-body repulsive exchange piece
introduced by Minoo et al. [28]. This prescription is used
in the early temperature equilibration work of Hansen and
McDonald [10] and much of our work on this subject [11,13].
It is an extension of the potentials (designed to reproduce quan-
tum equilibrium pair correlations using classical particles) to
a nonequilibrium situation. The potentials are parametrized
for some desired target ion and electron temperatures T

targ
i �=

T
targ
e . The results for species α and β are then

Vαβ(r,T ) = ZαZβe2

r

[
1 − exp

(−2πr

�αβ

)]

+ kBT ln(2) exp

(
−4π ln(2)r2

�2
αβ

)
δαeδβe, (2)

where μαβ = mαmβ/(mα + mβ) and kB is Boltzmann’s con-
stant. The QSP is dependent on temperatures through the de

Broglie wavelength �αβ =
√

2πh̄2/μαβkBT QSP. (The temper-
ature T QSP is taken to be T

targ
i when α and β are both ions

and simply T
targ
e if either is an electron.) In practice, these

potential parameters are held constant at target values during a
simulation even as the instantaneous temperatures vary widely
with time. The time-independent Hamiltonian then ensures
energy conservation for microcanonical simulations. Although
this prescription is not in keeping with the behavior of true
quantum electron wave packets as the electrons are cooled or
heated, our aim in this work is simply to evaluate and critique
the use of various theories in predicting T equilibration for
systems with a fixed set of interaction potentials [35]. This
was exactly the approach adopted in Ref. [11] as well.

Despite the well-defined Hamiltonian, a unique definition
or preparation of a nonequilibrium two-temperature system
may not always be feasible; specification of the effective
temperatures leaves many degrees of freedom unconstrained.
Practically, when constant particle number, volume, and
energy (NVE) microcanonical simulations are allowed to
evolve freely for a sufficient time, systems of a particular
total energy E can often be found that pass through a
desired target state T

targ
e �= T

targ
i . This state can be considered

unique as long as other out-of-equilibrium degrees of freedom
set by the initial conditions have relaxed much faster than
the global temperature difference. For example, intraspecies
velocity equilibration can be much faster than electron-ion
interspecies. This gives an effectively unique two-temperature
state in weakly coupled cases. However, when the potential
energy is substantial, differences between the configurational
temperature [31] and the kinetic values [30] may exist and
be relevant. In particular, the CM regime includes, by design,
long-wavelength, underdamped, quasiharmonic ion acoustic
waves (IAWs). Being underdamped, these modes would
also be only weakly coupled to anything that might serve
as a thermal bath. Hence, it is reasonable to suspect that
different wavelength IAWs might evince different effective
temperatures during equilibration and that structure factors
and radial distribution functions will not correspond to those
of a unique temperature. Normally, this might be ignored on
phase space arguments (for small |k|, the number of modes
is proportional to |k|3 and the associated heat capacity is
small), but the CM regime relies on having a sufficient number
of slowly equilibrating degrees of freedom that the overall
interspecies equilibration is affected.

Signatures of the potential energy are broadly visible in
our CM temperature relaxation simulations. If a system is
not carefully prepared, there is a prominent underdamped
oscillation in the ion kinetic temperature at the start of the
NVE evolution. Similar effects are seen when the electron
temperature is abruptly altered [36]; the resulting change in
the screened ion-ion potential switches the asymptotic pair
distribution to some new gii(r). Transient evolution away
from the old stationary ion distribution towards the new
one includes underdamped oscillations from IAWs. Such
oscillations in our CM simulations are precisely compensated
by variations in the ion potential energy Vi ≡ Vii + Vie/2,
clearly showing the role of IAW collective modes. (Similar
transients are not seen in the electron subsystem, which has
much weaker coupling.) Yet another signature of the potential
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energy is that the temperature relaxation rates are not equal
and opposite Ni

dTi

dt
�= −Ne

dTe

dt
, even after transient oscillations

are mitigated. This will be discussed in more detail in
Sec. IV.

Because of these complications, we consider three distinct
approaches to MD sample preparation. In a few test cases, we
start from near-stationary states subject to separate species-
dependent thermostats, similar to past analyses. However, in
our hydrogen CM cases, the ions require exceptionally strong
thermostats to keep them cold. A Langevin thermostat [37]
has the advantage of driving each species towards a Maxwell-
Boltzmann velocity distribution. Unfortunately, the strong
Langevin drag term has a time constant much less than a typical
IAW period and so the IAWs are severely overdamped. In
equilibrium, a quasiharmonic mode of wave number k should
have an rms expected thermal amplitude given by equipartition
of energy. However, given the overdamped ion dynamics,
transient density perturbations will persist for times that scale
as 1/k2, meaning that long-wavelength density fluctuations
do not fully equilibrate during a simulation. In contrast,
the Berendsen thermostat [38] simply scales all particle
velocities of a given species so that their total kinetic energy is
instantaneously related to the thermostat, K ≡ 3

2kBT . In this
case, quasiharmonic oscillations are largely undamped by the
thermostat and long-wavelength density fluctuations are left
to equilibrate by means of weak intrinsic anharmonicities.
This will give rise to different transient IAW behavior as
the system relaxes. In addition, we prepare the most extreme
two-temperature state possible so as to maximize the time for
transient artifacts to decay. Systems are started with the ions in
a simple cubic lattice, frozen in place at Ti = 0, i.e., all long-
wavelength IAWs are initialized with exactly zero amplitude.
The electrons are then equilibrated in a microcanonical MD
simulation. Each initial state is characterized by its total
energy E and is rigorously defined as part of a constrained
equilibrium ensemble. Once the ions are released, we expect
monotonic and continuous temperature relaxation with time.
In particular, the family of instantaneous equilibrating states
can be completely characterized by any two of the variables E,
Te, and Ti . This is akin to having an effective two-temperature
thermodynamic potential E(Te,Ti), which can then be used
to compute derivatives by finite differencing across different
microcanonical simulations. This last preparation method is
used for the majority of the simulations because of this
advantage.

For example, a hydrogen case with n = 1026 cm−3, Tp =
105 K, and Te = 107 K has been tested with all three
preparation methods; all three give similar results. The
total energy is tuned for each system until their electron
temperatures are the same to within 0.1% when the target
Ti is reached. The residual oscillations in Ti(t) differ slightly
in their magnitudes at the target conditions, but dTi/dt can
be measured across approximately one oscillation period
to minimize any dependence on that amplitude. With that
approach, the total potential energies at target are equal among
the different preparation methods to within 0.1 eV/hydrogen
atom (per hydrogen, per proton, or, equivalently, per electron)
and the measured dTi/dt are 5.45, 5.45, and 5.48 eV/fs
for lattice, Langevin, and Berendsen initial configurations,
respectively. Thus any possible long-lived differences in IAW

� �

�
�

�

�

�

�

FIG. 1. Effective proton temperature Ti = 2
3 〈Ekin

i 〉 versus time for
a single NVE run of 8.192 × 105 particles (protons plus electrons).
Oscillations in Ti correspond to underdamped transient relaxations
in the ion-ion radial distribution function. Insets show the pair
distribution function gii(r,t), showing signs of crystalline order at
early times. Long-range correlations are lost within 1.5 fs. The last
inset shows the target conditions for this case, Tp = 105 K and
Te = 107 K, which occur at t = 1.74 fs.

amplitudes in the CM regime seem to have no effect on the
potential energy of the system or the overall equilibration rates.

A typical result for the lattice preparation procedure is
shown in Fig. 1 for the ion temperature and for a series
of ion-ion pair correlation functions gii(r). At t = 0, the
constraint on the ions is released and the ion temperature
quickly begins to rise. Simultaneously, there are long-period
transient oscillations initially visible in Ti . The initial lattice
structure is lost well before the target condition of Ti = 8.6 eV
(∼105 K) is reached in Fig. 1. By that time, the remnants of
the long-period oscillations are also only of order ±5 meV. In
practice, Ti(t) at this time is closely linear plus a sinusoidal
component; the slope at the target is thus rendered insensitive
to any long-period transient by making a linear fit over at least
a complete cycle. Additionally, we note that the detailed shape
of gii(r) for times after the transient behavior has subsided
is almost completely independent of the sample preparation
scheme. In this sense, the nonadiabatic effects manifest in
gii(r) that we discuss later (in Sec. IV B) are also not the result
of transient effects and are therefore representative of uniquely
defined states.

For nonequilibrium plasmas, temperature relaxation is
directly related to the underlying heat flow only in the
weak-coupling limit. In the CM cases we study, 
ii = 12.5
(= Z2e2

kBTiR
, where R = [ 3n

4π
]1/3 is the average nearest-neighbor

distance between ions) and the evolving potential energy
is comparatively large. This evolution is associated with
observed asymmetric temperature changes NikBdTi/dt �=
−NekBdTe/dt . To better quantify this, we will expand the MD
analysis to include estimates of ( ∂V

∂Ti
)Te

and ( ∂V
∂Te

)Ti
, analogous

to a two-temperature excess heat capacity.
A single NVE simulation can only be used to compute

dV/dt [or the gradient along the prescribed temperature
trajectory �∇V · (dTi/dt,dTe/dt)ᵀ]. Other derivatives in Te and
Ti space require cross comparison of different microcanonical
ensembles. Figure 2 shows the temperature histories of three
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FIG. 2. Temperature histories are shown in light gray for three
separate microcanonical MD simulations differing in total energy by
a few eV per electron-ion pair. The temperature curves appear noisy
because of intrinsic short-time fluctuations that are easily averaged
over. Linear least-squares fits to portions of the time series are shown
as black lines; dT /dt is computed analytically from these fits. The
fitted curves each reach the target ion temperature (Tp = 105 K)
at times marked by ×. They reach the target electron temperature
(Te = 107 K) at times marked with +. By design, these times coincide
for the middle microcanonical system.

separate microcanonical simulations, spanning a range in E

of about 4 eV/hydrogen atom. Each system is prepared with
a lattice of ions at zero temperature; given the different total
energies, the initial electron temperatures are well separated
among the three systems. The middle Te curve corresponds
to the unique system total energy for which Te and Ti

both reach their respective target values at essentially equal
times. The adjacent curves approximately cover some range
Te(t = 0) − � to Te(t = 0) + �. Since the change to each
system is small � 
 Te − Ti , the relaxation rates dTe/dt

are nearly equal for the three runs and the curves are nearly
parallel. Similarly, because the Ti(t = 0) initially coincide, all
three ion temperature curves are nearly indistinguishable.

As discussed above, a linear least-squares fit is made to each
temperature series T (t) to suppress any transient oscillations;
this is shown in Fig. 2 with short segments in black. We
analytically obtain dT /dt at the target conditions from these
fits. The symbols × and + in Fig. 2 also mark the times
along each fitted curve when the target temperature value is
reached for ions or electrons, respectively. The instantaneous
states at the marked points can then be used to compute
temperature-dependent derivatives. Using the × points, we
would obtain E(Ti = 105 K,Te) at three distinct Te, while
the + points give E(Ti,Te = 107 K) at three values of Ti .
In practice, E(Ti,Te) is linear in Te and Ti (and vice versa) for
a family of instantaneous states over a small range of energies
[E − �;E + �], for � of order 1 eV per hydrogen atom.
Thus, we apply another linear least-squares fit to E(Ti)|Te=107

or E(Te)|Ti=105 for multiple microcanonical systems within
±1 eV/hydrogen atom. We then compute ∂E/∂T analytically.
Since the kinetic energy component satisfies K ≡ 3

2kBT , the
resulting derivatives also give estimates for ( ∂V

∂Ti
)Te

and ( ∂V
∂Te

)Ti
.

III. LENARD-BALESCU THEORY

To analyze our MD results, as well as to exercise and
test existing theories of the CM effect in T equilibration, we
employ the generalized Lenard-Balescu (GLB) theory [16]
outlined in detail in Ref. [8]. In this approach, the time rate of
change of the ion temperature dTi/dt in a 2T plasma is related
via the fluctuation-dissipation theorem to the density response
functions of the individual species. For the case of two species,
electrons and ions, the result is [8]

dTi

dt
= − h̄

3π3nα

∫ ∞

0
k2dk

∫ ∞

0
ω dω

[
vei(k)

D(k,ω)

]2

×[1 − Gei(k,ω)]

[
N

(
h̄ω

2kBTi

)
− N

(
h̄ω

2kBTe

)]

×Imχ0
e (k,ω)Imχ0

i (k,ω), (3)

where D(k,ω) is the two-species dielectric function

D = [
1 − vee(1 − Gee)χ0

e

][
1 − vii(1 − Gii)χ

0
i

]
−v2

ei(1 − Gei)(1 − Gie)χ0
e χ0

i , (4)

involving the interparticle interactions v, free-particle density
response functions χ0, and local-field corrections (LFCs) G.
Here N (x) is a statistical factor arising from the fluctuation-
dissipation theorem and is equal to coth(x) for fermions and
1/x for classical particles [39]. The response functions and
LFCs are defined by the equation

δnα = δn0
α + χ0

α

∑
β

vαβ[1 − Gαβ]δnβ, (5)

where the argument of each quantity is (k,ω). Here δn0
α

are the density fluctuations in the absence of interactions,
while δnα are the density fluctuations in the presence of
interactions [8,39], with species indexed by α and β.

Equation (5) expresses the self-consistent rearrangement
of charge resulting from screening in the multicomponent
plasma; if the LFCs (Gαβ) are set to zero, this is the random-
phase approximation (RPA). The treatment of Eq. (3) with
LFCs set to zero is equivalent to the Lenard-Balescu theory of
T equilibration used in Refs. [7,20,21,23]. This is the theory we
use to compare to MD for our hydrogen cases where QSPs have
been used. For the like-charge Coulomb cases, it is essential
for us to use nonzero LFCs (particularly Gei) in order for the
integral over k in Eq. (3) to be finite for large k [8]. These
implementations of the GLB theory are identical to those we
made in an earlier work [11].

The free-particle response functions χ0 appearing in
Eqs. (3)–(5) are the usual ones [39],

χ0
α(k,ω) = lim

η→0+

⎡
⎣2

∑
k′

fα(k′ + k) − fα(k′)
h̄2(k′+k)2

2mα
− h̄2k′2

2mα
− h̄ω − iη

⎤
⎦, (6)

where fα(k) is the occupation number for particles of energy
h̄2k2/2mα at the temperature Tα . For our practical implemen-
tation for quantum particles, we use the Padé approximant fits
for χ0 appearing in Ref. [40]; for classical particles, we use the
analytic expressions found in Ref. [41]. Since we have shown
in the past [11] that the inclusion of (static, in that case) LFCs
does not improve agreement with MD for T -equilibration rates
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for hydrogen plasmas as modeled with QSPs, we set Gαβ = 0
in the remainder of this work.

As discussed in numerous works (e.g., Refs. [7,8,11]), the
expression (3) reduces to that of far simpler expressions in
many situations of interest. First, if the ions are taken to be
much more massive than the electrons, as is physically the case,
and the conditions are not those described by Eq. (1) [20], the
f -sum rule for ions can be used to perform the ω integral
analytically by evaluating the electron quantities at ω ≈ 0.
This is strictly correct when coupled modes are neglected and
arises from the fact that the plasma frequency of electrons far
exceeds that of the ions, leading to the FGR result [4,20]. This
FGR expression, now a single integral over k [see, for instance,
Eq. (12) in Ref. [8]], can then be massaged into the familiar
Landau-Spitzer equilibration rate in the limit of weak plasma
coupling [8]:

dTi

dt
= Te − Ti

τei

, (7)

where

1

τei

= 8
√

2πniZ
2
i e

4

3memi

[
kBTe

me

+ kBTi

mi

]−3/2

lnλei, (8)

and lnλei = ln(bmax/bmin), as described above. Here the
screening length bmax arises from the small-k part of the
dielectric function D in Eq. (3). The bmin comes from either
the large-k part of Imχ0

e (the de Broglie wavelength in the
quantum Coulomb case) or the large-k part of 1 − Gei (the
classical turning point in the classical Coulomb case) [8]. For
the classical QSP case, bmin arises from the large-k behavior
of vei(k) (the de Broglie wavelength) [11]. The expressions (7)
and (8), as well as the full GLB expression (3), respect kinetic
energy conservation, consistent with the assumption of weak
plasma coupling.

If coupled modes are important, as is predicted to be the case
for two-component plasmas satisfying Eq. (1), a reduction of
Eq. (3) to a Landau-Spitzer-like expression is not possible [23].
However, as long as the plasma is not too strongly coupled, it
is expected that the full double-integral expression (3) should
still produce reliable predictions and indeed it is essentially
this theory that was used by Vorberger and Gericke to derive
the regime indicated by Eq. (1). In Ref. [20] these authors
emphasized that the correct inclusion of coupled modes (in
the form of ion acoustic waves) in T equilibration within
the Lenard-Balescu theory is quite numerically challenging,
because the structure of the ω integrand possesses peaks that
are infinitesimally sharp at small k, where the effect is most
important. This can be seen most easily by examining the struc-
ture of the energy loss function L(k,ω) ≡ Im[1/D(k,ω)] =
−Im[D]/([ImD]2 + [ReD]2). If vei is set to zero, this function
has separate electron and ion plasmon peaks at the respective
plasma frequencies, when ReD = 0 and ImD is very small.
However, when vei �= 0, the low-k portion of the ion plasmon
sharpens while losing its intensity and moves to much lower
frequency, ceasing to contribute substantively to the dTi/dt

integral.

FIG. 3. The k integrands F (k) of various Lenard-Balescu expres-
sions for the equilibration rate for the quantum hydrogen plasma with
n = 1.0 × 1026 cm−3, Ti = 105 K, and Te = 107 K. The red curve
shows F (k) computed by Eq. (3), using the naive evaluation scheme
outlined in Ref. [11]; the green curve shows F (k) from Eq. (3), but
computed with the pole-correction scheme outlined here; the blue
curve shows F (k) from the FGR expression of Eq. (10). The integrals
under the two CM Lenard-Balescu F (k) curves shown here (red and
green) are equal to within 1% for this case.

We illustrate the contributions to this integral by examining
the k integrand F (k), defined such that

dTi

dt
=

∫ ∞

0
F (k)dk, (9)

i.e., the k-dependent function that results from performing
the ω integral in Eq. (3). Figure 3 shows F (k) computed for
the (quantum Coulomb) hydrogen plasma (here, taking all
Gαβ = 0) with n = 1.0 × 1026 cm−3, Ti = 105 K, and Te =
107 K. The blue curve is the result of the FGR theory, which
assumes no coupled modes and arises from Eq. (12) in Ref. [8],
reproduced here as

dTi

dt
= (Ti − Te)

3π2mi

∫ ∞

0
dk k4

[
vei(k)

εe(k,0)

]2(
∂ Imχ0

e

∂ω

)
ω=0

, (10)

where εe is the one-component RPA plasma dielectric function
of the electrons (εe = 1 − veeχ

0
e ). The red curve shows F (k)

computed with Eq. (3) using the numerical prescription
outlined in Ref. [11], in which a logarithmic ω mesh is used
to compute the ω integral, but no special attention is paid to
ensuring that the ω poles for small k are resolved properly [42].
The sharp peaks and valleys in F (k) at the smaller k values
arise from the improper treatment of the pole for which D

is very close to zero; as k is changed, the pole alternately
moves close to and farther from the nearest ω-mesh point,
resulting in inaccurate integration. This can be corrected by
treating the pole explicitly [20]. In our simple treatment here,
we approximate this feature as a Lorentzian peak in the loss
function L(x) = 1

π


/2
(x−x0)2+(
/2)2 . WhileL(k,ω) does not appear

directly in Eq. (3), multiplying and dividing by ImD allows us
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to rewrite Eq. (3) in the following way:

dTi

dt
∝

∫ ∞

0
v2

ei(k)k2dk

×
∫ ∞

0

ωdω

|D(k,ω)|2 �N (ω)Imχ0
e (k,ω)Imχ0

i (k,ω)

≡
∫ ∞

0
v2

ei(k)k2dk I (k),

where

I (k) =
∫ ∞

0

ω dω �N(ω)ImεeImεi

|D(k,ω)|2

=
∫ ∞

0

ω dω �N(ω)ImεeImεi

ImD

[
ImD

|D(k,ω)|2
]

≡
∫ ∞

0
dω R(k,ω)L(k,ω).

Here �N is the difference of statistical factors appearing
in Eq. (3) and the individual species dielectric functions are
defined by

εe = 1 − veeχ
0
e , εi = 1 − viiχ

0
i .

In addition, R(k,ω) is the ω integrand of Eq. (3), but with the
loss function factored out. Further, L(k,ω) → L(ω − ω0) ∼
δ(ω − ω0) when Re[D] goes through 0 and Im[D] → 0. Thus,

I (k) → π

A
R(k,ω0),

when Re[D] ∼ A(ω − ω0). The width of the Lorentzian is
ImD(ω0)/A and can be compared to the quadrature mesh size
�ω. We then take the corrected integral to be (uncorrected in-
tegral on the ω mesh) − (integral of the approximated form on
the ω mesh) + (analytically derived correction). This strategy
produces the green curve in Fig. 3. Note that this curve still
possesses peaks and valleys at locations identical to those of the
red curve, but their magnitudes are greatly suppressed. The re-
maining bumps are an artifact of the approximation,L(k,ω) →
L(ω − ω0); a better representation of the true asymmetrically
broadened ion acoustic wave peak yields still smoother
results [20,23]. However, we note that the final integral∫ ∞

0 F (k)dk is equal to within 0.1% for red and green curves.
Thus, the main feature of coupled modes, the extinguishing of
the small-k contributions to dTi/dt (relative to that of the FGR
theory; see Fig. 3) [20], is captured even for a naive evaluation
of Eq. (3). This is less true as Te is raised and the ratio Te/Ti is
increased; we have noted up to 10% deviations in some cases,
when using the naive evaluation. Therefore, all of the results
we present here make use of the pole-correction strategy above;
we will see below that they agree quantitatively with the pre-
dictions of Ref. [20] for quantum Coulomb hydrogen plasmas.

Since we are (a) reinvestigating prior predictions for
quantum plasmas and (b) comparing to the results of our
classical MD studies with QSPs, we carry forth the above
GLB prescription in two modes: (i) with quantum statistics and
quantum response functions together with the bare Coulomb
interaction and (ii) with classical statistics and classical
response functions together with the QSPs. This is in the spirit
of our earlier MD and theory work on T equilibration not in

FIG. 4. Instantaneous energy transfer rate per e− for hydrogen
plasmas with n = 1026 cm−3 and Ti = 105 K, as a function of Te. The
solid red curve shows the quantum Coulomb prediction using the CM
Lenard-Balescu approach; the solid blue curve shows the quantum
Coulomb prediction with the FGR prescription; the dot-dashed red
curve shows the classical QSP prediction using the CM Lenard-
Balescu approach; the dot-dashed blue curve shows the classical QSP
prediction with the FGR prescription.

the CM regime [11], where we found that the use of Dunn-
Broyles QSPs and classical statistics substantively reduced
the equilibration rates relative to the quantum Coulomb
predictions [43]. Because our aim in this work is to use MD
to validate theories that have predicted the CM effect in T

equilibration, it is crucial for us to separate possible reductions
in rates resulting from the use of classical MD and QSPs from
the actual coupled-mode effect itself. In this sense, the classical
QSP system is to be thought of as a theoretical surrogate
in which the CM effect is studied. If agreement between
classical QSP MD and classical QSP Lenard-Balescu theory is
demonstrated, our confidence in the quantum Lenard-Balescu
predictions of the CM effect for real plasmas is strengthened.

IV. RESULTS AND DISCUSSION

A. Molecular dynamics results for the Vorberger-Gericke
hydrogen plasmas (n = 1026 cm−3, Ti = 105 K, and

107 K < Te < 109 K)

We report T equilibration for the family of hydrogen
plasmas with density n = 1026 cm−3, Ti = 105 K, and Te

between 106 and 5 × 108 K. These plasmas were considered in
Ref. [20] using the LB theory and were predicted to equilibrate
at rates substantially slower than those as predicted by the FGR
approach and a variant of the Landau-Spitzer theory.

First we discuss our version of the LB predictions for
these cases. The solid curves of Fig. 4 display the energy
transfer rate per electron, as a function of Te, computed in
two ways: (i) a solid red line shows the CM Lenard-Balescu
theory [Eq. (3) with zero LFCs], and (ii) a solid blue line
shows the FGR theory [Eq. (10)]. Both curves result from
the quantum Coulomb evaluation of these equations. These
curves compare very favorably with the corresponding curves
in Fig. 4 of Ref. [20]. The only notable discrepancy is at low
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FIG. 5. Instantaneous dT /dt calculated from the classical QSP
Lenard-Balescu approach and extracted from MD using the identical
QSPs for hydrogen plasmas with n = 1026 cm−3, Ti = 105 K, and Te

as shown on the x axis. The uppermost, thick, dashed black curve
is for LB FGR theory and the lowest, thick, solid black curve is
for the LB CM theory. The disconnected black point corresponds
to a local-field-corrected LB CM calculation using two-temperature
HNC. Only the ion-ion local-field correction is included. Red symbols
with error bars and thin solid lines correspond to MD for dTi/dt and
blue symbols with error bars and thin dashed lines correspond to MD
for −dTe/dt . The green symbols with error bars and thin dotted lines
show the MD results for the time rate of change of total energy, scaled
by 2/3 from Table I to correspond to a temperature, i.e., 2

3 dEe/dt

(see also Table II). (the relation dEi/dt = −dEe/dt holds exactly).

Te and is due to the fact that our FGR evaluation neglects
electron degeneracy, unlike that of Ref. [20]. As indicated
in the preceding section, our numerical treatment of the
sharp low-k poles in the dielectric function of Eq. (3) is
sufficiently accurate to agree with the more carefully resolved
results of Ref. [20]. The dot-dashed curves of Fig. 4 show
our calculations for the same plasmas, but for the classical
QSP cases, assuming Dunn-Broyles diffractive terms [27] and
Minoo et al. exchange contributions [28] evaluated at the
electron temperatures Te. These are the QSPs used for our
classical MD studies for these plasmas, to be discussed directly
below. The red dot-dashed curve is the CM LB result, while
the blue dot-dashed curve is the FGR prediction. Note that for
both curves, the energy transfer rates are substantially lower
than those of the quantum Coulomb results plotted in Fig. 4.
This reduction is very similar to that noted for the hydrogen
cases studied in Ref. [11] when comparing quantum Coulomb
to classical QSP Lenard-Balescu predictions (for the same
choices of QSPs).

Figure 5 shows the predictions of Fig. 4 once again, but
now expressed as |dT /dt | for the species rather than as
an energy transfer rate. Also displayed are our MD results
obtained using the ion-lattice preparation method discussed
in Sec. II. We extract these rates as in Fig. 2, by fitting
the MD time series around the target conditions; they are
therefore some effective time average of noisy MD dTi/dt ,
−dTe/dt , and dE/dt , respectively. We note that dTi/dt from
the MD is slightly higher than the prediction from the Lenard-

TABLE I. Temperature relaxation rates |dT /dt |. All units
are eV/fs. Here Ei = 3/2kTi + Vi , with Vi = Vei/2 + Vii , and
|dEi/dt | = |dEe/dt |. When the energy rate of change is plotted
in Fig. 5, it is expressed as 2

3 |dE/dt | to compare to temperature
derivatives.

Te (K) MD ion MD electron MD E LB CM LB FGR

1 × 107 5.63 ± 0.05 7.78 ± 0.06 12.46 ± 0.04 4.839 9.840
2 × 107 6.65 ± 0.03 9.72 ± 0.08 15.43 ± 0.05 6.027 11.475
3 × 107 6.92 ± 0.06 10.30 ± 0.08 16.25 ± 0.03 6.321 11.732
5 × 107 6.77 ± 0.02 10.37 ± 0.05 16.28 ± 0.04 6.305 11.474
1 × 108 6.09 ± 0.04 9.63 ± 0.11 14.83 ± 0.11 5.818 10.451
2 × 108 5.42 ± 0.02 8.49 ± 0.09 13.10 ± 0.07
5 × 108 4.32 6.75 10.45 ± 0.08

Balescu theory including coupled modes, while −dTe/dt is
far higher still. The two MD temperature derivatives approach
equality for more weakly coupled plasmas; indeed, essentially
symmetric relaxations (dTe/dt = −dTi/dt) were noted in
earlier work on hydrogen plasmas [8,9,11–13]. In our cases
here, however, the ions are sufficiently cold that such an
asymmetric temperature relaxation is expected [7,21,23]. This
results from the sizable potential energy in the (somewhat
strongly correlated) screened ions, which diminishes as the
ions are heated. The effect on dTe/dt and dTi/dt is simple to
analyze using conservation of energy, within the rubric of the
2T hypothesis we have invoked.

Since, after initial preparation, our MD simulations rep-
resent closed systems that evolve microcanonically, the total
system energy E is conserved and we have

E(Te,Ti) = Ke(Te) + Ki(Ti) + V (Te,Ti), (11)

dE

dt
= 0 =

[
3

2
Ne +

(
∂V

∂Te

)
Ti

]
dTe

dt

+
[

3

2
Ni +

(
∂V

∂Ti

)
Te

]
dTi

dt
, (12)

where Ke and Ki are electron and ion kinetic energies and are
functions only of their respective temperatures and V is the
total system potential energy, which we assume to be a unique

TABLE II. Excess heat capacity in eV/fs. Species temperature is
defined by 3/2kT , which is equivalent to the kinetic energy; the ideal
heat capacity is 3/2.

Te (K) dV/dTp|Te
dV/dTe|Tp

1 × 107 0.629 ± 0.03 0.027 ± 0.02
2 × 107 0.698 ± 0.03 −0.027 ± 0.02
3 × 107 0.765 ± 0.05 0.00 ± 0.03
5 × 107 0.810 ± 0.04 0.00 ± 0.03
1 × 108 0.895 ± 0.04 0.016 ± 0.02
2 × 108 0.915 ± 0.04 0.12 ± 0.08
5 × 108 0.832 ± 0.06 −0.026 ± 0.03
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function of Te and Ti [44]. Equating the two summands gives[
3

2
Ne +

(
∂V

∂Te

)
Ti

]
dTe

dt
= −

[
3

2
Ni +

(
∂V

∂Ti

)
Te

]
dTi

dt
, (13)

which leads to a prediction for the asymmetry in the T

derivatives: ∣∣ dTe

dt

∣∣∣∣ dTi

dt

∣∣ =
[

3
2Ni + (

∂V
∂Ti

)
Te

]
[

3
2Ne + (

∂V
∂Te

)
Ti

] . (14)

For our hydrogen cases, Ne = Ni , and since the Lenard-
Balescu theory conserves only kinetic energy, our LB pre-
diction (black curve in Fig. 5) is consistent with the V = 0
version of Eq. (14), ∣∣ dTe

dt

∣∣
LB∣∣ dTi

dt

∣∣
LB

= Ni

Ne

= 1. (15)

The asymmetry in the T relaxation is due to the nonzero V

and in particular to the specific derivatives of V that appear in
Eq. (14).

Before we discuss these potential energy derivatives further,
we note that our MD results for energy relaxation dEi/dt =
−dEe/dt are far closer to the FGR predictions than to those of
the Lenard-Balescu theory when coupled modes are included.
This can be seen in Fig. 5, in which the dotted green line
and circles display the MD values for 2

3dEi/dt (with kB = 1),
where the species-specific internal energies are defined by
Eq. (16) exactly as in Ref. [21]:

Ei = Ki + Vii + 1
2Vei, Ee = Ke + Vee + 1

2Vei . (16)

While the LB predictions (either CM or FGR) are only
consistent with Ei = Ki and Ee = Ke, it is reasonable to
expect that the energy transfer rates might be well predicted
by the LB theory, since the primary drivers for the energy
exchange, Coulomb collisions, are included therein. Indeed,
it is for this reason that the LB predictions of Ref. [20]
were represented as energy transfer (rather than temperature
equilibration) rates; those authors left open the possibility
that nonideal specific heats would have to be included to
relate the dEe,i/dt from the LB theory to the dTe,i/dt , as
they did subsequently in their work of Ref. [21]. However,
our MD results for these cases clearly show the dEe,i/dt

themselves to be in disagreement with the coupled-mode
LB predictions. This is discussed further in Sec. IV C. We
emphasize that these conclusions can only be drawn by making
the proper comparisons: classical QSP LB theory vs classical
QSP MD [11].

B. Elucidation of 2T equation of state for the Te = 107 K case

In this section we explore one of the particular cases
studied above: n = 1026 cm−3, Ti = 105 K, and Te = 107 K;
this system has intraspecies plasma coupling constants 
ee ∼
0.125 and 
ii ∼ 12.5. To establish that the large discrepancies
between dTi/dt and −dTe/dt in the MD results, as shown in
Fig. 5, can be accounted for by considering the ( ∂V

∂Ti
)Te

and

( ∂V
∂Te

)Ti
in Eq. (14), we extract these quantities independently

using two approaches: (i) from additional molecular dynamics
simulations and (ii) from (adiabatic and quasistatic) theoretical

estimates. Regarding (i), potential energy derivatives at fixed
Te or Ti can be inferred from families of T -equilibration MD
simulations performed at closely spaced initial conditions,
as described in Sec. II. This produces the values ( ∂V

∂Ti
)Te

=
0.586kB/e− and ( ∂V

∂Te
)Ti

= 0.0328kB/e− for this case. Our
values for |dTe/dt | and dTi/dt are 7.92 and 5.59 eV/fs,
respectively, giving a left-hand side of Eq. (14) of 1.42;
plugging our values for ( ∂V

∂Ti
)Te

and ( ∂V
∂Te

)Ti
into the right-hand

side gives 1.36.
Regarding the second (theoretical) approach, V can be

computed from the three radial distribution functions gee(r),
gii(r), and gei(r), since the interparticle QSPs are two body in
nature [45]:

V = ntot

2

∑
α,β

xαxβ

∫
d3r gαβ(r)vαβ(r), (17)

where α and β indicate species (e,i), ntot = ∑
α nα , and

xα = nα/ntot. We use a two-temperature variant [46] of the
hypernetted-chain (HNC) approximation [47] to determine the
gαβ(r) to be input into this expression. Here the equations
have been generalized to include mass-weighted temperatures
Tij = (mjTi + miTj )/(mi + mj ), which is roughly equal to
Te for this case. This approximation is valid for systems in
which each species can be described by distinct Maxwellian
distributions [48] and both the mass discrepancies (me 
 mi)
and temperature discrepancies (Te � Ti) of the systems of
interest in our work reinforce this assumption. With these
HNC-derived gαβ(r) and Eq. (17) [49], V is determined at
the nominal Ti = 105 K and Te = 107 K. Repeating the whole
calculation at Ti + δTi and Te + δTe then produces ( ∂V

∂Ti
)Te

=
0.5352kB/e− and ( ∂V

∂Te
)Ti

= 0.009 728kB/e−. While ( ∂V
∂Te

)Ti
is

rather different from that of the direct MD determination
outlined above, ( ∂V

∂Ti
)Te

is quite similar; the smallness of ( ∂V
∂Te

)Ti

relative to 3/2 then results in the prediction | dTe

dt
|/| dTi

dt
| = 1.33,

once again slightly below the MD value of 1.42.
While the aforementioned theory-MD agreement is reason-

able for ( ∂V
∂Ti

)Te
and ( ∂V

∂Te
)Ti

, it is interesting to look directly at
the gαβ(r) from the MD, since our HNC calculations of these
quantities are necessarily somewhat approximate. Figure 6
shows gee, gei , and gii for the n = 1026 cm−3, Ti = 105 K,
and Te = 107 K case. Solid lines show the results of our QSP
MD, where the average over snapshots was performed over
a duration small enough to render Te and Ti determinations
essentially instantaneous. The dashed lines show our HNC
calculations for this case using the identical QSPs; these are
the functions that we input into Eq. (17) to obtain our estimates
of V for these conditions. Note that while gee and gei are in
excellent agreement, gii is considerably more structured in
our MD. At first blush, one might expect such a result, since
the bare ion-ion plasma coupling is quite large here (∼12.5),
while Te is possibly high enough to render the electrons nearly
equivalent to a negative uniform compensating background
that is incapable of affecting much in the way of screening.
This last statement is borne out in Fig. 7, showing the evolution
of the first peak in gii(r) from MD; as Te is raised from
107 K to 108 K, the behavior seems to asymptote to what
we must assume is the Te → ∞ ion one-component plasma
(OCP) result. However, since the Te = 107 K gii (MD) is
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� �

�
�

FIG. 6. Plots of g(r) from MD and the HNC approximation for
the Te = 107 K case.

already much closer to the Te = 5 × 108 K gii (MD) than it is
to the gii (HNC) shown in Fig. 6, it is possible that our HNC
predictions of gii(r) might be rather inaccurate. Two points are
worth noting here. (i) The near independence of gii (from the
MD) on Te in this regime suggests that the ion OCP model is in
fact a good one for gii ; this in turn means that the consequences
of the detailed assumptions inherent in the nonequilibrium 2T
variant of HNC we employ (see Appendix A and the work of
Ref. [46]) are minimized. (ii) The HNC approximation of the
1T (here equal to Tion) variety is known to work exceedingly
well for the OCP when the plasma coupling is ∼12.5 and far
greater. Thus, we can trust that the discrepancy between gii

(MD) and gii (HNC) is likely not due to a failure of HNC for
the chosen values of n and Ti .

We therefore explore the possibility that the actual ion-ion
correlations in the MD for this case are not those of an ion OCP
with Ti = 105 K. Figure 8 shows gii (MD) once again (solid
blue curve), together with an ion OCP gii(r) as computed with
the HNC approximation, but at a lower Ti = 6.777 × 104 K
(solid green curve). They are nearly identical, suggesting that

×

×

×

×

×

×

� �

�
�

FIG. 7. Close-up of the ion-ion pair distribution functions for
Ti = 105 K and a series of electron temperatures.

FIG. 8. Instantaneous MD ion-ion pair distribution function gii(r)
for the hydrogen plasma with n = 1026 cm−3, Ti = 105 K, and Te =
107 K (solid blue curve, essentially obscured by the green curve),
compared with the ion OCP gii(r) for the identical n, but with Ti =
6.777 × 104 K (solid green curve). Also shown is the MD result for
the same plasma, but with the mass of the protons artificially increased
by a factor of 8 (dashed black curve).

the ions in the nonequilibrium MD calculation are spatially
correlated in a manner notably different from that expected
from a system in thermal equilibrium at Ti = 105 K. Indeed,
our nominal value of Ti = 105 K is computed from the ion
kinetic energies. We thus find the kinetic temperature to be
different from the configurational temperature here. While we
have seen that this has only a modest affect on the analysis
of time-varying potential energy in this regime (with regard
to the various T derivatives of V ) [50], we are open to the
possibility that such a difference could alter an estimation
of the energy exchange rate. As of this writing, we do not
have a theoretical tool to assess this, nor do we have a detailed
understanding of how, in practice, a sizable difference between
kinetic and configurational temperatures could come about. To
at least establish that this difference arises from nonadiabatic
effects, we have conducted MD studies for this same plasma,
but with the proton mass increased by a factor of 8 relative to
its physical value. The results for gii(r) are shown as the black
dashed curve in Fig. 8. Note that this mi = 8mp plasma is less
structured than the mi = mp plasma; HNC calculations for the
ion OCP (not shown) at this density match the black dashed
curve well when Tconfig ∼ 7.5 × 104 K, intermediate between
Tkinetic and Tconfig for the associated plasma with the physical
ion mass. It is therefore clear that the fundamental source
of Tconfig �= Tkinetic is the dynamics of the energy exchange
process itself. This interesting subject awaits further study.

We have demonstrated that the asymmetric initial relax-
ations indicated in Figs. 2 and 5 result from the Ti dependence
of the potential energy in our classical QSP MD simulations
for hydrogen. This is not surprising, since Ti (105 K) is quite
low for all of these cases, particularly for such a high density
(1026 cm−3). However, since these conclusions are based on a
classical QSP model of hydrogen, it is natural to ask whether
such an asymmetry would be present in a real hydrogen plasma
in these conditions. We address this by adapting the above
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theoretical estimate, pertaining to Eq. (17), to the quantum
electron case by mapping onto an effective one-component
(ion-only) Yukawa system as in the work of Ref. [45]. The
HNC approximation is used once again to compute gii(r),
this time interacting via screened interactions determined from
linear response. The electronic part of the free energy is taken
from the fit of Tanaka and Ichimaru [51]. Details of our
procedure are left to the Appendix. This produces potential
energy derivatives that are broadly similar to those quoted
above, ( ∂V

∂Ti
)Te

= 0.4351kB/e− and ( ∂V
∂Te

)Ti
= 0.028 68kB/e−,

and derivatives of the total energy (including the quantum
electron kinetic energy terms) of ( ∂E

∂Ti
)Te

= 1.7176kB/e− and

( ∂E
∂Te

)Ti
= 1.4347kB/e−, indicating a ∼20% asymmetry be-

tween −dTe/dt and dTi/dt [52].
Orbital-free (OF) density-functional theory (DFT) [53–55]

provides another way for us estimate the energetics of 2T quan-
tum hydrogen plasmas. We employ a treatment that invokes
the Born-Oppenheimer approximation, which decouples the
electronic and nuclear motions. The nuclei evolve classically
and the electronic contribution derives from a minimization
of a quantum free-energy functional in terms of the full
electron probability density. We employ a modified Thomas-
Fermi-Dirac form that includes the Perrot finite-temperature
kinetic-entropic contribution and a local-density exchange-
correlation component. The Born-Oppenheimer dichotomy
does not permit the direct examination of nonadiabatic
processes such as electron-ion equilibration. However, since
the OF DFT MD allows setting Te and Ti independently for
a given simulation, we can elicit the temperature dependence
of the total internal energy within this adiabatic scheme. For
these comparisons, we consider 432 H atoms (Ni) in a periodic
box for trajectories of 104 time steps of length 0.012 fs.
We have also tested convergence in atom number (128 to
1024), time step, and trajectory length and found variations
in the total internal energy E and pressure of less than 1%.
By using a range of closely spaced Ti for a fixed Te, we
find ( ∂E

∂Ti
)
Te

= 2.07 ± 0.2kB/e− [56]. As in the above HNC
estimates, the variation of E with Ti at fixed Te is sizable.
We therefore expect that a real hydrogen plasma under these
conditions will also exhibit an initial asymmetric T relaxation.

As we mentioned in the Introduction, our main reason
for studying out-of-equilibrium plasmas in this manner is to
assess and improve upon models currently used in continuum
simulations of, e.g., ICF [1,2]. In such simulations, equation of
state (EOS) models are invoked that typically arise from single-
temperature constructs that assume that all thermodynamic
functions are derived from Helmholtz free energies of the
form [57]

F (ρ,T ) = E0(ρ) + Fi(ρ,T ) + Fe(ρ,T ). (18)

Here E0 is the “cold” piece representing the density depen-
dence of the energy of ions fixed in position (equal to zero
for a low-density gas), Fi represents the free energy due
to ionic motion (phonons in a solid and more general ionic
excitations in a liquid), and Fe represents the free energy of
electronic excitations. Implicit is the assumption that ionic and
electronic excitations are decoupled; this neglects, for instance,
any change in interionic forces that may occur when electrons
are strongly excited. When electron-ion T splits are invoked

in most ICF simulations [1], the following approximation is
often made to construct a 2T free energy from the 1T free
energy above [57]:

F2T(ρ,Ti,Te) ≡ E0(ρ) + Fi(ρ,Ti) + Fe(ρ,Te), (19)

leading immediately to

E2T(ρ,Ti,Te) = E0(ρ) + Ei(ρ,Ti) + Ee(ρ,Te). (20)

This assumption of Eq. (19) is only reasonable when the EOS
itself is practically ideal gaslike. When Te and Ti are very
different and the material is somewhat strongly coupled, it is
highly suspect.

Applying this to T equilibration, the analysis leading to
Eq. (14), together with the assumption of Eq. (20), gives∣∣ dTe

dt

∣∣∣∣ dTi

dt

∣∣ =
(

∂Ei

∂Ti

)
ρ(

∂Ee

∂Te

)
ρ

≡ Ci
ρ

Ce
ρ

, (21)

the ratio of ionic to electronic specific heats, each evaluated
at their respective (e,i) temperatures. For the hydrogen case
studied in detail above, we have verified that this prescription
produces Ci

ρ(Ti = 105 K) ∼ Ce
ρ(Te = 107 K) ∼ 3

2kB/e−, and

therefore
Ci

ρ

Ce
ρ

≈ 1, when standard EOS models for hydrogen

are used [58]. Thus, such an implementation would fail to
predict an initial asymmetric T equilibration in this case. The
essential missing element is the reduced electron screening
(and hence increased effective ion-ion interaction) resulting
from Te � Ti , which is not captured in a treatment assum-
ing Fi(ρ,Ti,Te) = Fi(ρ,Ti), for which the screened ion-ion
interaction is assumed to be derived from a Te = Ti or Te = 0
theory. This highlights the importance of improving both the
in-line models of the equilibration rate and the EOS model to
include more sensible 2T effects at least at the adiabatic level
treated, e.g., in our HNC and OF DFT calculations.

C. Energy relaxation versus temperature relaxation

As we mentioned when discussing Fig. 5, the energy relax-
ation rate (here multiplied by 2

3 to compare it to temperature
relaxation) is quite a bit higher than that as predicted by the
Lenard-Balescu theory using the full coupled-mode treatment.
In fact, it is rather closer to the predictions of the FGR, in which
coupled modes are neglected, in contrast to the conclusions of
Ref. [20] for these same plasmas. We now discuss this further.

The definitions we use for the internal energies of electrons
and ions, respectively, are those of Eq. (16). Since Ee + Ei =
Etotal, it follows from energy conservation that dEi/dt =
−dEe/dt . It is worth noting that this is true for any definition
in which Vei is split between electrons and ions, not just the
50%-50% split. As we have seen from the previous discussion,
this perfect asymmetry is not enjoyed by dTi/dt and dTe/dt ,
due to the time dependence of the total V . We have picked
this particular split of Vei in the internal energies because the
authors of Ref. [21] argue that this choice alone makes their
general expression for the energy equilibration rate [Eq. (27),
and the more approximate Eq. (37) in Ref. [21]] look most like
the one derived for weakly coupled plasmas [59] [Eq. (3) in
this work or Eq. (7) in Ref. [20]]; if the response functions of
the more general expressions are replaced by the RPA response
functions, the weakly coupled result is obtained.
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The lack of agreement between this expression and the
dEe,i/dt from MD for these cases indicates that the response
functions at the RPA level are not sufficient. This too was
anticipated in the work of Ref. [21], wherein (for hydrogen
plasmas with equal densities, but 10 times lower Ti) the
inclusion of static ion-ion LFCs derived from HNC was shown
to increase the predicted equilibration rate above that of the
RPA CM prediction (see black and red curves in Fig. 1 of
Ref. [21]). Our analogous predictions appear as the isolated
black diamond in Fig. 5; only a very slight increase above
the RPA CM LB result (solid black curve and circles) can be
seen and the agreement with the energy equilibration rate from
MD is therefore still quite poor. Inclusion of all the pairs of
static LFCs, Gee, Gei , and Gii , within the dielectric function
of Eq. (4) produces almost identical results. We are left to
conclude that the standard theories for energy equilibration in
2T plasmas do not apply to at least the semiclassical model of
the hydrogen plasmas considered in Ref. [20]. This is troubling
for researchers bent on constructing and validating models for
energy and temperature equilibration in plasmas with strongly
coupled ions [23,24]. In the next section we suggest a possible
reason for the inability of the CM Lenard-Balescu theory
(with RPA screening and/or with static LFCs) to correctly
describe the cases of our study; we propose that a variant of
dynamic local-field corrections may be needed here instead. It
is worth noting that even in more weakly coupled regimes,
our earlier T -equilibration MD vs LB theory comparisons
also showed the inclusion of static LFCs to be inadequate (in
that case, worse than the RPA result) for oppositely charged
two-component plasmas [11].

As shown in Fig. 5, there are two conditions that are
approximately satisfied for all the plasmas studied here (if
we use the CM LB results, specifically): (i) dTi/dt (MD)
≈ dTi/dt (LB) [= 2

3dEe,i/dt (LB)] and (ii) −dTe/dt (MD)
≈ 2

3dEe,i/dt (MD). We currently have no understanding as
to why these relations are roughly satisfied; however, it is
interesting to note that the simultaneous satisfaction of these
conditions puts constraints on the 2T EOS, as expressed in the
internal energies of Eq. (16). If we assume that

Ee = Ee(Te,Ti)

and

Ei = Ei(Te,Ti)

[as in our above assumption, V = V (Te,Ti)], application of the
chain rule, together with total energy conservation, produces
the equations [21]

dEe

dt
≡ −ZMD =

(
∂Ee

∂Te

)
Ti

dTe

dt
+

(
∂Ee

∂Ti

)
Te

dTi

dt
,

dEi

dt
≡ ZMD =

(
∂Ei

∂Te

)
Ti

dTe

dt
+

(
∂Ei

∂Ti

)
Te

dTi

dt
. (22)

Conditions (i) and (ii) above can be expressed as (a)
dTi/dt (MD) ≈ dTi/dt (LB)= 2

3ZLB and (b) dTe/dt (MD)≈
− 2

3dEi/dt (MD)= − 2
3ZMD. Plugging these conditions into

Eqs. (22) and eliminating the ratio ZMD/ZLB yields(
∂Ee

∂Ti

)
Te

[
3

2
+

(
∂Ei

∂Te

)
Ti

]
≈ −

(
∂Ei

∂Ti

)
Te

[(
∂Ee

∂Te

)
Ti

− 3

2

]
.

(23)

As a concrete example, our HNC estimations, in the manner
of Eq. (17), for the Ti = 105 K and Te = 107 K case give for
this relation (all numbers expressed in units of kB)

−0.043
[

3
2 + 0.0011

] ≈ −2.08
[
1.53 − 3

2

]
or

−0.0645 ≈ −0.0624,

demonstrating once again that our HNC-based theoretical
modeling of the nonideal 2T EOS is on solid ground [60].
More fundamentally, the relative magnitudes of the various
derivatives in Eqs. (22) and (23) suggest that the much simpler
diagonal form of Eq. (22) is quite accurate for these plasmas,

dEe

dt
≡ −ZMD ≈

(
∂Ee

∂Te

)
Ti

dTe

dt
≈ 3

2

dTe

dt
,

dEi

dt
≡ ZMD ≈

(
∂Ei

∂Ti

)
Te

dTi

dt
≈ 2

dTi

dt
. (24)

While these observations are clearly borne out in our MD
results, we do not claim to understand their origin in a deep
sense, beyond the trivial fact that derivatives with respect to Te

are much smaller than derivatives with respect to Ti , due to the
small ratio of electronic to ionic coupling. Furthermore, their
satisfaction does not explain the surprisingly large ZMD/ZLB

that we have found.
The bare ion-ion plasma coupling for the cases studied

heretofore is 
ii ∼ 12.5. While we have argued that this is low
enough for an accurate treatment of static correlations within
the rubric of HNC, it is possibly too high for a treatment
of the equilibration rates using Eq. (3) to be accurate. With
this in mind, we also consider the semiclassical hydrogen
plasma with n = 1026 cm−3, Ti = 106 K, and Te = 108 K.
This possesses a bare 
ii ∼ 1.25, but with a ratio Te/Ti equal
to that of the Ti = 105 K and Te = 107 K case. Table III
shows our results. Once again, the energy equilibration rate
from MD (expressed as an equivalent temperature derivative:
9.97 eV/fs per kB) is closer to the FGR rate (10.36 eV/fs)
than to the CM LB rate (8.81 eV/fs). Yet again, the two
approximate conditions discussed directly above are roughly
satisfied. Though the difference between dTi/dt and −dTe/dt

is far smaller in absolute magnitude due to the smaller ion
coupling here, the treatment of Ref. [20] and our Eq. (3) is still
sorely incomplete. It remains to be seen if any plasma studied
with nonequilibrium classical MD exhibits the coupled-mode
effect in the manner predicted by classical Lenard-Balescu
theory with RPA screening.

D. Effects of collisional broadening

As discussed in Ref. [20] and in Sec. III of this work, the
low-energy, long-wavelength ion-acoustic wave feature in the
CM LB treatment is responsible for the marked reduction in
equilibration rates relative to the FGR prediction. Furthermore,
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TABLE III. Instantaneous dT /dt (in eV/fs) calculated from classical QSP Lenard-Balescu theory and extracted from MD using the identical
QSPs for a hydrogen plasma with n = 1026 cm−3, Ti = 106 K, and Te = 108 K. Also shown in the rightmost column is the instantaneous
rate of change of the internal energy of the ions, expressed as 2

3 dEi/dt , to compare it to the temperature derivatives (note that the relation
dEe/dt = −dEi/dt holds exactly, so we only display dEi/dt).

LB dTi/dt (no LFCs) FGR dTi/dt (no LFCs) dTi/dt from MD −dTe/dt from MD 2
3 dEi/dt from MD

8.81 10.36 8.73 9.81 9.97

this excitation is predicted to be exceedingly sharp in ω

(i.e., long-lived in time), within the standard RPA treatment
for the two-component dielectric function that forms the
denominator of Eq. (3). It is important to note, however, that
MD studies of one- and two-component plasmas in equilibrium
have shown that lifetimes of collective modes are greatly
reduced relative to those of RPA when the plasma is strongly
coupled. For example, the works of Refs. [61–64] demonstrate
large deviations of dynamic structure factors S(k,ω) from
their RPA predictions in the neighborhood of plasmon peaks.
Specifically, these peaks are substantially broadened and
reduced in height when the plasma coupling 
 is of order
a few [see, e.g., Figs. 2(c) and 2(d) in Ref. [62]]. Though
the static LFCs we have employed in our LB calculations do
modify the RPA peak structure in S(k,ω), they do so primarily
by moving the pole positions, rather than by broadening these
peaks in frequency. It is therefore of interest to know what
effect such a broadening might have on our predictions of T

equilibration.
To wit, we employ a simple scheme for affecting such

a broadening, that of replacing ω → ω + iγi in χ0
i , the

density response function of the ions. Here γi represents

FIG. 9. The k integrands F (k) of Eq. (3) for the quantum
Coulomb hydrogen plasma with n = 1026 cm−3, Ti = 105 K, and
Te = 107 K. Here the Lindhard χ 0

i (k,ω) is replaced by the correspond-
ing function χ̃ 0

i (k,ω + iγi) of Refs. [66,67]. Each curve represents
a different choice of γi , expressed in atomic units (hartrees; see
the legend). Note that the F (k) for γi = 10−12 hartree (solid black
curve, not shown) and the F (k) for γi = 10−6 hartree (red curve) are
essentially identical.

a phenomenological inverse collisional lifetime. Since this
replacement in the Lindhard response of Eq. (6) is known
to violate local charge conservation, we use instead the
modified expression for this function [65], which appears in
Refs. [66,67]. This new function χ̃0

i (k,ω + iγi) is then input
into both the numerator [Imχ0

i (k,ω)] and the denominator
[D(k,ω)] of Eq. (3), the CM LB expression for dTi/dt . The
electron response function χ0

e (k,ω) is left unchanged in this
expression, because the electrons are far more weakly coupled
in the cases we consider here (Te � Ti and 
ee � 0.125).

Figure 9 shows a series of F (k) k integrands for the n =
1026 cm−3, Ti = 105 K, and Te = 107 K quantum Coulomb
hydrogen case, to be compared to those of Fig. 3 above. All
have been generated with the aforementioned prescription
in which χ̃0

i (k,ω + iγi) is used in the context of Eq. (3).
Thirteen orders of magnitude in γi (in hartree atomic units)
are represented. There is a clutch of curves with 10−3 <

γi < 10 located close to the FGR F (k) (black dot-dashed
curve) and a collection of curves with γi 
 10−3 that are
essentially indistinguishable from each other and from the
RPA CM LB prediction. Figure 10 shows the integrals under
these curves

∫ ∞
0 dk F (k) (which are equal to the effective

Coulomb logarithm for this case) as a function of γi/ωp,
where ωp is the ion plasma frequency. The y-axis value of

FIG. 10. Effective Coulomb logarithms lnλei for the quantum
Coulomb hydrogen plasma with n = 1026 cm−3, Ti = 105 K, and
Te = 107 K. Here the Lindhard χ 0

i (k,ω) in Eq. (3) is replaced by the
corresponding function χ̃ 0

i (k,ω + iγi) of Refs. [66,67]. Each point
on the curve represents a different choice of γi . The CM LB RPA
result is represented by the nearly flat line on the bottom left of the
plot; the FGR result is at lnλei ∼ 0.95.
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∼0.65 denotes the effective lnλei corresponding to the CM
LB prediction, while the FGR value is in the neighborhood
of lnλei = 0.95. Thus, it appears that the phenomenological
collisional broadening applied solely to the strongly coupled
ions can indeed extinguish the CM effect, if the collision
frequency is in the appropriate range.

As an independent estimate of this ion collision frequency,
we turn to MD simulations of ion OCPs with plasma conditions
similar to ours in this case (
 ∼ 12.5). The work of Ref. [61]
displays MD data for S(k,ω) for a plasma with 
 = 9.7 (see
Fig. 5 therein). We are concerned primarily with k values of the
order of ∼1/rS , given our discussion surrounding our Fig. 3.
Both k = 0.6187/rS and k = 1.3837/rS were considered in
Ref. [61]. To affect a comparison, we evaluate χ̃0

i (k,ω + iγi)
for the 
 = 9.7 OCP at these specific k and for a range of γi .
From these, we compute the interacting χ̃i functions (which
would correspond to the RPA χ in the limit of γi → 0), using
the usual relation

χ̃i(k,ω) = χ̃0
i (k,ω)

1 − v(k)χ̃0
i (k,ω)

. (25)

The dynamic structure factors are then computed from these
polarizabilities using the fluctuation-dissipation theorem [39].
Good agreement with the MD results of Ref. [61] are found
when γi is chosen to be roughly 0.1ωp–0.2ωp. The plot of
Fig. 10 shows this to be in the range where the FGR result
is expected. Yet another estimate for γi can be obtained by
appealing to the relationship between this quantity and the
self-diffusion constant D outlined in Ref. [68] (see Chap. 9
therein) and alluded to in Ref. [69]:

γ = kBT

mD
, (26)

where m is the ion mass. Using the diffusion constant for
the 
 = 9.7 plasma quoted in Table II of Ref. [61], we obtain
γi = 0.26ωp, once again in the range clearly favoring the FGR
result. Finally, our own MD computation of S(k = 0.3/rS,ω)
for the 
 = 12.5 OCP shows a plasmon peak with a full width
at half maximum of ∼0.1ωp, again indicating a γi in this same
range.

We therefore deem it highly likely that collisional broad-
ening among the strongly coupled ions is responsible for
extinguishing the coupled-mode effect. It may prove fruitful in
future studies to explore more complex k-dependent models
for γi [63,64] as well as more sophisticated (beyond-RPA)
treatments of the plasma dispersion relation to refine these
predictions of Sii(k,ω) further, as they apply to the equilibra-
tion problem. More fundamentally, however, it is unknown
at present if the GLB prescription, as exhibited in Eq. (3), is
truly up to the task of handling such problems; our lifetime-
broadened Sii(k,ω) is essentially equivalent to some specific
dynamical local-field correction [Gii(k,ω)] as appearing in
Eqs. (3) and (4), but for sufficiently strong plasma couplings,
even this picture is likely to be inadequate for readily accessible
G(k,ω).

E. Effect of non-Maxwellian velocity distributions

Because the plasmas we consider here have such large
initial T splits and the cases we have studied exhibit distinct

FIG. 11. Ion kinetic energy distributions from MD (purple),
together with the closest-fit Maxwellian distribution.

kinetic and configurational ion temperatures, it is of interest to
know if the assumption of Maxwellian velocity distributions
(which we have made thus far in the theoretical estimates)
is truly well founded for the time intervals over which MD
data has been taken. It is conceivable that the disagreements
we have seen, LB theory vs MD, result in part from the
inadequacy of the Maxwellian assumption. To this end, we
examine the velocity distributions from MD, fe(v) and fi(v),
at representative times for the trajectory corresponding to the
n = 1026 cm−3, Ti = 105 K, and Te = 107 K case. Figure 11
shows the ion distribution (purple) from our MD simulation,
together with the Maxwellian distribution (green) at the Ti

corresponding to the total ion kinetic energy at this t . A
small but systematic deviation between the two is noticeable.
Figure 12 shows the residual (purple curve minus green curve
in Fig. 11) over this same energy range (purple).

The green curve in Fig. 12 is our smooth fit to this residual,
constructed by expanding the multiplicative deviation of fi(v)
from the Maxwellian distribution f

(0)
i (v) in a series of Laguerre

polynomials

fi(v) = f
(0)
i (v)

∞∑
n=0

Ai
nL

(1/2)
n

(
miβiv

2

2

)
. (27)

We find that the residual is best fit with just the first nonunity
term in this expansion. The blue curve in Fig. 11 shows f

(0)
i (v)

plus our fit to the residual. The electron distribution at this same
time (and for all times) has practically no residual at all; this
is to be expected from the fact that the ions move much more
slowly than the electrons and are therefore slower to come into
intraspecies equilibrium [70].

Using the mathematical techniques employed in Ref. [71],
we predict that the ion residual shown in Fig. 12 increases the
LB prediction of dTi/dt by only ∼3%, relative to that of the
perfect Maxwellian distribution with T = Ti . Details of this
calculation are given in the Appendix. This then demonstrates
that intraspecies equilibration is indeed much faster than the
time scale for interspecies heat exchange of primary interest
in this work, as expected. Thus, despite the large initial T

splits that could in principle have skewed the MD velocity

043202-14



MOLECULAR DYNAMICS STUDIES OF ELECTRON-ION . . . PHYSICAL REVIEW E 95, 043202 (2017)

FIG. 12. The Ei-dependent residual, together with a fit comprised
(chiefly) of a single Laguerre polynomial.

distributions appreciably at later times, we conclude that the
plasmas we study here are indeed amenable to theoretical
T -equilibration treatments that assume Maxwellian velocity
distributions. However, the failure of the ion static structure
[represented by gii(r)] to reflect the correlations of a system
of ions in thermal equilibrium at the kinetic temperature Ti is
another matter entirely and is undoubtedly a manifestation of
nonadiabatic effects that are beyond the scope of our current
theoretical tools [in the manner of Eq. (3)].

V. CONCLUSION

We have presented nonequilibrium classical molecular
dynamics results for temperature equilibration of hydrogen
plasmas at a density of n = 1026 cm−3. Interparticle inter-
actions were taken to be QSPs of the Dunn-Broyles [27]
and Minoo et al. [28] forms [35]. The initial temperatures
considered, Ti = 105 K and Te between 107 and 5 × 108 K,
were chosen to coincide with those studied in a paper of
Vorberger and Gericke [20] in which they used the Lenard-
Balescu equation to predict that the energy equilibration rate
for such systems is substantially lowered due to the presence
of ion acoustic waves. Our Lenard-Balescu calculations for the
associated classical QSP plasmas also predict a corresponding
reduction, but fail to agree with the energy equilibration rates
from our MD. Inclusion of static local-field corrections in
the (generalized) Lenard-Balescu calculations does little to
improve this. However, replacing the Lindhard ion density
response function χ0

i by one in which collisional broadening
is assumed largely extinguishes the coupled-mode effect.

The large differences between Te and Ti complicate the
preparation of nonequilibrium systems compared to what has
been studied the past [11,13]. Thus, we discussed the relative
merits of three schemes for initializing the MD simulations.
The evaluation of the Lenard-Balescu equilibration rate is also
more complex when the plasmas considered are in this regime;
our strategy for computing it was described and comparisons
were made to the analogous strategies and results outlined in
Ref. [20].

We found that for the cases we studied with MD, there is a
sizable effect on dTe/dt and dTi/dt from time-varying poten-
tial energy, not treated in the usual Lenard-Balescu approach,
but discussed in detail in various recent works [7,14,21]. We
used a variety of approaches to quantify this effect and we
also demonstrated that it should be present for real quantum
hydrogen plasmas in these conditions as well (i.e., not just
for the classical QSP model of hydrogen with which we
have conducted our MD simulations of T equilibration). In
addition, we observed that the static structure of the ions in our
classical MD simulations is notably different (more structured)
from that corresponding to ions in thermal equilibrium at the
instantaneous kinetic Ti . This may very well result from strong
nonadiabatic effects in the systems under consideration, the
implications of which must be studied further.

Our MD results and associated comparisons to theory
constitute a crucial step in validating and critiquing new
models for temperature equilibration [23,24] aimed at treating
plasmas for which the electron-electron and electron-ion
couplings may be weak, but the ion-ion coupling is somewhat
stronger. In addition to being of potential interest to the field of
laser-produced plasmas (where, generally, Te � Ti initially),
this sets the stage for the investigation of plasmas containing
multiple ion species where some of these ions have a sizable
average charge. Such cases have also been predicted to be
strongly affected by coupled collective modes [see Eq. (1)].
However, we are now faced with the troubling result that the
coupled-mode effect itself seems to be greatly exaggerated in
the available theories, at least for the two-species plasmas we
have considered in this work. It is entirely possible that the
ion acoustic waves that constitute the coupled modes here are
so severely underdamped as to be veritably decoupled from
the other modes (e.g., plasmons) in the system; in this case,
such modes may not thermalize sufficiently to steal oscillator
strength away from the plasmons, as they are assumed to do in
the coupled-mode Lenard-Balescu treatment [20]. Still another
potential explanation is that stemming from the calculations
we have outlined in Sec. IV D, collisional broadening within
the strongly coupled ion subsystem.

It remains to be seen if a more sophisticated treatment of
the coupled electron-ion density response [21] yields more
favorable comparisons with MD or if the linear response
assumption itself is questionable in these Te � Ti cases.
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APPENDIX A: MODEL FOR THE INTERNAL ENERGY
OF A 2T HYDROGEN PLASMA

To approximate the internal energy of a real Coulomb
system, we follow a derivation similar to that given by Ashcroft
and Stroud [45]. The general Hamiltonian of a Coulomb
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system (classical or quantum) can be written as

H =
∑

i

p2
i

2m
+ 1

2

∑
i �=i ′

e2

|ri − ri ′ | − E0

+ 1

2

∑
j �=j ′

Z2e2

|Rj − Rj ′ | + E1 + E0

−
∑
i,j

Ze2

|ri − Rj | − E1 +
∑

j

P 2
j

2M
, (A1)

where ne is the mean electron number density, E0 is the self-
energy of a uniform background of charge density nee given
by

E0 = 1

2

∫
dr

∫
dr′ (nee)2

|r − r′| , (A2)

and E1 is the interaction between the ions and this background

E1 = 1

2

∑
j

∫
dr

Ze2ne

|r − Rj | . (A3)

Here {ri} and {Rj } denote electronic and ionic coordinates,
respectively, with {pi} and {Pj } being their momenta and
m and M being their masses. Lines 1–3 of (A1) have been
arranged to yield components that are individually finite in the
thermodynamic limit. For example, line 1 of (A1) is simply
the Hamiltonian of a free electron gas HFEG embedded in a
neutralizing uniform background. The rest of (A1), minus the
last term, can be expressed in Fourier space as

Vii = Z2

2

∫
dk

(2π )3
vee(k)[n̂ion(k)n̂ion(−k) − Nion], (A4)

Vei = −Z

2

∫
dk

(2π )3
vee(k)n̂ion(k)n̂e(−k), (A5)

where n̂ion(k) and n̂e(k) are the ion and electron density
operators respectively, Nion is the total number of ions, and
vee(k) = 4πe2/k2.

Generally speaking, the statistical mechanics of a two-
temperature system is poorly defined [44]. However, for the
electron-proton system of interest, we can simplify the calcula-
tions by approximating the ions as classical point particles and
temporarily fixing their coordinates, which is reasonable given
their mass discrepancy (M/m ≈ 1836) and lower temperature
(Ti/Te � 1/100). The ensemble average over the electron
degrees of freedom in terms of Te generates the internal energy
of the electron gas 〈HFEG〉 = NionUFEG(ne,Te) and the electron
density 〈n̂e(k)〉 and leaves the remaining variables unchanged.
This procedure is equivalent to the Born-Oppenheimer approx-
imation.

We next approximate the electron density in terms of the
ion density operator through a response function as

〈n̂e(k)〉 ≈ −Zvee(k)χ (k; ne,Te)nion(k). (A6)

In general, this response function would be calculated in terms
of cross correlations between the ions and electrons and thus
depend on both temperatures; however, the response will be
dominated by the electron temperature for the problem of
interest due to the previously mentioned disparate quanti-
ties [46,48]. Next the ionic coordinates are released and an

ensemble average is taken in terms of the ionic degrees of
freedom and Ti . Using the definition of the ion-ion static
structure factor

Sij (k) ≡ 1√
NiNj

〈n̂i(k)n̂j (−k)〉, (A7)

we obtain the expression for the total internal energy

〈H 〉 = NionUint

= NionUFEG(ne,Te)

+ Nion
Z2

2

∫
dk

(2π )3
vee(k)[Sii(k) − 1]

+ Nion
Z2

2

∫
dk

(2π )3
v2

ee(k)χ (k)Sii(k) + 3

2
NionkBTi,

(A8)

where lines 2–4 of (A8) correspond to lines 1–3 of (A1),
respectively. By next introducing the dielectric function
ε−1(k) = 1 + vee(k)χ (k), we can write the internal energy per
ion as

Uint = UFEG + 3
2kBTi + Z2

2

∫
dk

(2π)3 vee(k)
[

Sii (k)
ε(k) − 1

]
.

(A9)

As a simple model, we take the response function associated
with the linearized Thomas-Fermi (TF) functional. Within
this approximation, the dielectric function takes the form
ε(k) ≈ 1 + (λTFk)−2, where the TF screening length is λ−2

TF =
4πe2(∂ne/∂μ), with

ne = 2
∫

dp
(2π )3

(1 + e(p2/2m−μ)/Te )−1. (A10)

More complicated energy functionals have been explored with
gradient corrections to the density and exchange-correlation
effects, but these higher-order contributions were found to be
negligible for the system of interest [72]. The resulting internal
energy then simplifies to

Uint = UFEG(ne,Te) + 3

2
kBTi − Z2

2λTF

+ 2πZ2nion

∫ ∞

0
dr e−r/λTFr[gii(r) − 1], (A11)

where gii(r) is the ion-ion radial distribution function. Finally,
the internal energy of the electron gas can be estimated using
fits from Ref. [51], while the final potential energy term in
Eq. (A11) can calculated using the HNC approximation with
the appropriate screened Coulomb (Yukawa) interaction.

APPENDIX B: EQUILIBRATION RATES FOR
NON-MAXWELLIAN DISTRIBUTIONS

We compute energy equilibration for a plasma with elec-
trons and one ion species, for the case of general particle distri-
butions that include small non-Maxwellian components, using
the quantum Lenard-Balescu equation. Though our primary
aim in the bulk of the main text is the analysis of classical
plasmas, we use the quantum LB equation here because
the quantum LB collision operator is mathematically more
straightforward to handle in this context. However, we expect
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the effects of non-Maxwellian distributions on equilibration
rates to be largely insensitive to this distinction. Considering
two species, electrons and protons, their distributions are
written as

fe(v) = f (0)
e (v)

∞∑
n=0

Ae
nL

(1/2)
n

(
meβev

2

2

)
, (B1)

fi(v) = f
(0)
i (v)

∞∑
n=0

Ai
nL

(1/2)
n

(
miβiv

2

2

)
, (B2)

where f (0)
e and f

(0)
i are Maxwellian distributions and L

(1/2)
n are

Laguerre polynomials, which allow for complete flexibility in
the shapes of the distributions. Conservation of the number of
particles for each species requires [71]

Ae
0 = Ai

0 = 1. (B3)

The condition for kinetic energy conservation (this is all we
can assume here, given our use of the LB equation [16]) can
be derived from

Ee = 3

2

ne

βe

, Ei = 3

2

ni

βi

, (B4)

which gives

Ae
1 = Ai

1 = 0. (B5)

Since, for hydrogen, we have ne = ni ,

βiA
e
1 = −βeA

i
1. (B6)

The two-species LB kinetic equation is of the form

∂fe

∂t
= Cee(fe) + Cei(fe,fi), (B7)

∂fi

∂t
= Cii(fi) + Cie(fe,fi). (B8)

The intraspecies collision operators Cee and Cii are irrelevant
for energy equilibration. We compute the time rate of change
of the ion energy

d(E)i
dt

= 1

2
mi

∫
v2Cie(fe,fi)d

3v. (B9)

The collision operator is given by [73]

Cie(fe,fi) = − 1

4π2h̄2

∫
d3v′

∫
d3k

|φei(k)|2∣∣ε(k,k · v + h̄k2

2mi

)∣∣2

× δ[k · (v − v′) + h̄k2/2μ]

× [fi(v)fe(v′)−fi(v + h̄k/mi)fe(v′−h̄k/me)],

(B10)

where

μ ≡ memi

me + mi

(B11)

is the reduced mass. Next we plug the distributions (B1)
and (B2) into (B9) and use various identities to per-

form the integrals. The v′ integrals can be handled
immediately,

I1(k,ω) ≡
∫

d3v′δ(ω+ − k · v′)fe(v′)

= ne

(
βeme

2π

)1/2 1

k

∑
n

Ae
nL

(−1/2)
n (Y 2

+)e−Y 2
+ , (B12)

I2(k,ω) ≡
∫

d3v′δ(ω+ − k · v′)fe(v′ − h̄k/me)

= ne

(
βeme

2π

)1/2 1

k

∑
n

Ae
nL

(−1/2)
n (Y 2

−)e−Y 2
− , (B13)

where

ω ≡ k · v + h̄k2

2mi

, (B14)

ω± ≡ ω ± h̄k2

2me

, (B15)

and

Y 2
± ≡ meβeω

2
±

2k2
. (B16)

We then have

d(E)i
dt

= − 1

4π2h̄2

1

2
mi

∫
d3v

∫
d3k

|φei(k)|2
|ε(k,ω)|2 v2

×[fi(v)I1(k,ω) − fi(v + h̄k/mi)I2(k,ω)]. (B17)

Turning to the v integrals,

J1(k) ≡
∫

d3v
|φ(k)|2

|ε(k,ω)|2 v2fi(v)I1(k,ω), (B18)

J2(k) ≡
∫

d3v
|φ(k)|2

|ε(k,ω)|2 v2fi(v + h̄k/mp)I2(k,ω). (B19)

For these, we assume the k vector points in the z direction so
that

vz = ω−
k

, (B20)

dvz = 1

k
dω, (B21)

and

v2 = v2
⊥ +

(
ω−
k

)2

, (B22)

where

ω± ≡ ω ± h̄k2

2mi

. (B23)

To evaluate J1(k) and J2(k), we need the identities∫ ∞

0
e−βimiv

2
⊥/2L(1/2)

m

(
βimiv

2
⊥

2
+ βimiv

2
z

2

)
v⊥dv⊥

= 1

βimi

L(−1/2)
m

(
βimiv

2
z

2

)
(B24)
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and

∫ ∞

0
e−βimiv

2
⊥/2L(1/2)

m

(
βimiv

2
⊥

2
+ βimv2

z

2

)
v3

⊥dv⊥

= 4

(βimi)2
L(−3/2)

m

(
βimiv

2
z

2

)
. (B25)

Note that

βimiv
2
z

2
= Y

2
−, (B26)

where

Y
2
− ≡ βimiω

2
±

2k2
. (B27)

Using these relations, we obtain

J1(k) =
√

2

π

ni√
miβi

∑
m

Ai
m

∫ ∞

−∞

|φ(k)|2
|ε(k,ω)|2 e−Y

2
−

× [
2L(−3/2)

m (Y
2
−) + Y

2
−L(−1/2)

m (Y
2
−)

]I1(k,ω)

k
dω.

(B28)

To compute J2(k), we make the substitution u = v + h̄k/mp.
Because we choose k to point in the z direction, we have

v2 = u2
⊥ +

(
ω−
k

)2

(B29)

and we can immediately write

J2(k) =
√

2

π

ni√
miβi

∑
m

Ai
m

∫ ∞

−∞

|φ(k)|2
|ε(k,ω)|2 e−Y

2
+

× [
2L(−3/2)

m (Y
2
+) + Y

2
−L(−1/2)

m (Y
2
+)

]I2(k,ω)

k
dω.

(B30)

The equilibration rate is given by

d(E)i
dt

= − mi

2πh̄2

∫ ∞

0
[J1(k) − J2(k)]k2dk. (B31)

Noting that I1(k,ω) = I2(k, − ω), we can show by the substi-
tution ω → −ω that

J2(k) =
√

2

π

ni√
miβi

∑
m

Ai
m

∫ ∞

−∞

|φ(k)|2
|ε(k,ω)|2 e−Y

2
−

× [
2L(−3/2)

m (Y
2
−) + Y

2
+L(−1/2)

m (Y
2
−)

]I1(k,ω)

k
dω

(B32)

and

J1(k) − J2(k) =
√

2

π

ni√
miβi

∑
m

Ai
m

∫ ∞

−∞

|φ(k)|2
|ε(k,ω)|2 e−Y

2
−

× [
(Y

2
− − Y

2
+)L(−1/2)

m (Y
2
−)

]I1(k,ω)

k
dω.

(B33)

We now need to plug I1(k,ω) into this formula, which we do
by making use of the identities

Y
2
− − Y

2
+ = −βih̄ω (B34)

and

Y
2
− + Y 2

+ = miβi

2k2
(1 + α)ω2 + h̄ω

2
(βe − βi)

+ h̄2k2

8

(
βi

mi

+ βe

me

)
, (B35)

where

α ≡ meβe

miβi

. (B36)

Putting these pieces together, we find

d(E)i
dt

= 8neni

√
βe

2mi

e4
∞∑

m=0

∞∑
n=0

Ae
nA

i
m

×
∫ ∞

0

∫ ∞

−∞

e−(1+α)x2

|ε(x,y)|2
e−√

me/mi2xy(γ−1)

y2
e−(γ+me/mi )y2

×L(−1/2)
m (Y

2
−)L(−1/2)

n (Y 2
+)x dx dy, (B37)

where we have used the dimensionless variables

x2 = miβiω
2

2k2
, y2 ≡ h̄2βik

2

8me

, γ ≡ βe

βi

= Ti

Te

, (B38)

which lead to

Y± = √
αx ± √

γ y, (B39)

Y± = x ±
√

me

mi

y. (B40)

Now we need the two-component RPA dielectric function
for which the distributions of (B1) and (B2) are used. This is
derived in Appendix A of Ref. [71] (see also [74]):

ε(x,y) = 1 + η2

y2

[
wi(x) + ξγ

Z2
we(x)

]
, (B41)

where

wi
r (x) =

∑
k

Ai
kM

(
k + 1,

1

2
; −x2

)
, (B42)

wi
i (x) = √

πxe−x2
∑

k

Ai
kL

(−1/2)
k (x2) (B43)

and

we
r (x) =

∑
k

Ae
kM

(
k + 1,

1

2
; −αx2

)
, (B44)

we
i (x) = √

π
√

αxe−αx2
∑

k

Ae
kL

(−1/2)
k (αx2). (B45)
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Here M(a,b; z) is the confluent hypergeometric func-
tion. This result, together with (B37) and the method
of Appendix C of Ref. [71], provides us with the

means to compute (kinetic) energy equilibration rates
for non-Maxwellian particle distributions within the LB
theory.
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