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Equation of state, phonons, and lattice stability of ultrafast warm dense matter
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Using the two-temperature model for ultrafast matter (UFM), we compare the equation of state, pair-distribution
functions g(r), and phonons using the neutral pseudoatom (NPA) model with results from density functional
theory (DFT) codes and molecular dynamics (MD) simulations for Al, Li, and Na. The NPA approach uses
state-dependent first-principles pseudopotentials from an “all-electron” DFT calculation with finite-T exchange-
correlation functional (XCF). It provides pair potentials, structure factors, the “bound” and “free” states, as well
as a mean ionization Z̄ unambiguously. These are not easily accessible via DFT+MD calculations which become
prohibitive for T/TF exceeding ∼0.6, where TF is the Fermi temperature. Hence, both DFT+MD and NPA
methods can be compared up to ∼8 eV, while higher T can be addressed via the NPA. The high-Te phonon
calculations raise the question of UFM lattice stability and surface ablation in thin UFM samples. The ablation
forces in a UFM slab are used to define an “ablation time” competing with phonon formation times in thin UFM
samples. Excellent agreement for all properties is found between NPA and standard DFT codes, even for Li
where a strongly nonlocal pseudopotential is used in DFT codes. The need to use pseudopotentials appropriate
to the ionization state Z̄ is emphasized. The effect of finite-T XCF is illustrated via its effect on the pressure and
the electron-density distribution at a nucleus.
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I. INTRODUCTION

The equation of state (EOS) of common thermodynamic
phases of matter is well understood. However, recent laser and
shock-wave experiments have accessed novel ultrafast regimes
of density and temperature which are of great theoretical
and technological interest. The same physics appears during
the injection of hot carriers in field-effect transistors and
other nanostructures. Topics such as inertial-confinement
fusion [1], Coulomb explosions [2], space reentry shielding,
laser machining, and ablation [3] involve such regimes of
warm dense matter (WDM). However, elementary approaches
cannot be applied since the Coulomb coupling constant �,
i.e., the ratio of the Coulomb energy to the kinetic energy, is
larger than unity. The electrons may range from degenerate
to Boltzmann type, with T/EF ∼ 1 or larger, where T is
electron temperature in energy units, while EF is the Fermi
energy. This causes a prohibitive increase in basis sets that span
the many excited electronic states. WDMs pose a theoretical
challenge for rapid accurate computations of properties such
as pressure, heat capacity, phonons, and conductance needed
even for equilibrium WDMs.

A class of WDMs known as ultrafast matter (UFM) is
produced when energy is deposited using an ultrafast pulsed
laser on a metal surface [4]. The light couples strongly
to the mobile electrons which equilibrate on femtosecond
time scales, to a temperature Te (as high as many eV)
while the much heavier ions and their strongly bound core
electrons remain essentially at their initial temperature Ti ,
i.e., usually the room temperature Tr . This two-temperature
WDM (2T -WDM) phase with Te > Ti remains valid for
time scales t such that τee < τii < t < τei , where τee, τii ,
and τei are the electron-electron, ion-ion, and electron-ion
temperature relaxation times, respectively. It has been shown
for near-solid densities that τei is of the order of picoseconds,

and orders of magnitude longer than τee and τii [5,6]. For
WDMs with θ = T/EF small, similar relaxation times hold
as seen in calculations for typical systems [7]. Experiments
using femtosecond pump-probe techniques [8,9] provide data
for quasiequilibrium analogs of free energy and pressure,
transport, and relaxation processes. While many UFM samples
do not conform to the 2T model (e.g., as in Medvadev et al.
[10]), the 2T model provides a great simplification when
it holds. Even for UFMs, theory and experiment are quite
challenging as the system transits rapidly from a solid to a
plasma depending on the pump energy. Hence, a theoretical
model that encompasses a wide range of material conditions
is needed to describe the time evolving system as a series of
static 2T systems. The “quasiequilibrium” theory is applied to
each static picture of the time evolving system.

In this work, we use the neutral pseudoatom (NPA) model,
in the form given by Perrot and Dharma-wardana [11–16],
to study the 2T -WDM regime of a few nominally simple
metals, viz., aluminum, lithium, and sodium. These are
“simple” at ambient conditions since their valence electrons
are “free-electron like” and energetically separated from the
core electrons. The number Z̄ of valence electrons per atom
(mean ionization) for Al, Li, and Na is 3, 1, and 1, respectively.
Furthermore, if the matter density is ρ, each ion can be
assigned a spherical volume with the Wigner-Seitz (WS) radius
rWS = (3/4πρ)1/3, and it can be shown for Al, Li, Na that the
bound-electron core has a radius rc such that it is well inside the
WS sphere for the temperatures studied here (see Sec. IV D).
In such cases, the definition of Z̄ = N − nb, where nb is the
number of bound electrons in the core, is unambiguous, clear,
and is a physically measurable quantity, e.g., using x-ray
Thomson scattering [17]. In the case of equilibrium WDM,
the NPA calculated Z̄ for Al and Li remains 3 and 1 in
the range 0 < Te < 8 eV whereas in the case of sodium, Z̄

rises to 1.494 by T = 8 eV and 1.786 by 10 eV. The case of
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Na provides us an example of a typical variation of Z̄ very
common in equilibrium WDM systems and handled without
any ambiguity and with thermodynamic consistency by the
NPA approach coupled with determinations of the ion-ion g(r)
using the NPA pair potentials. However, in the case of UFM,
which is the scope of this work, Z̄ is kept unchanged for all
three elements through the 0 < Te < 8 eV temperature range.

The NPA model replaces the interacting many-nuclear and
many-electron problem by an effective noninteracting single-
nuclear and single-electron formulation where the many-body
problem is reduced using finite-T density functional theory
(DFT) [18,19]. The NPA charge densities are used to construct
2T pseudopotentials and effective ion-ion pair potentials.
The method takes into account particle correlations at the
pair-density level and beyond using density functional methods
via exchange-correlation functionals for electrons, and ion-
correlation functionals for ions in a decoupled step which
uses a classical integral equation or molecular dynamics. The
NPA framework is well adapted to treating metallic systems
ranging from solids to liquids or plasmas at very high or low
compressions, and from T = 0 to several keV. The importance
and relevance of the NPA lies in its accuracy, flexibility, and
computational rapidity compared to DFT coupled to molecular
dynamics (MD) methods (DFT+MD). However, the NPA, as
used here, is inapplicable when inner-shell electrons (e.g., d

electrons) play a role in the ion-ion interactions (e.g., as in
transition metals). A simple metal becomes “complex” when
its electronic bound states extend beyond its WS radius rWS.
This is not a shortcoming but a strength of the model which
signals the need for multi-ion contributions into the theory in
such ranges of temperature and pressure. In such regimes,
discontinuities in Z̄ where some are spurious may appear
unless suitable electron-ion XC-correlation potentials are
included in the theory [20]. Furthermore, transient molecule
formation can be successfully handled [21] within the NPA as
it allows for binary ion-ion correlations.

We compare our 2T -NPA predictions with those from
solid-state DFT electronic-structure codes such as ABINIT [22]
and VASP [23], which use MD to evolve the finite-T ionic
structures. These codes are primarily designed for Ti = Te = 0
situations, and solve the multinuclear Kohn-Sham equations
in a plane-wave basis, using T = 0 pseudopotentials to reduce
the number of electrons needed in the simulations. The solid,
liquid, or plasma is treated as a periodic solid in a simulation
box (“supercell”) containing N nuclei, with N being ∼100.
A finite-Te Fermi-Dirac distribution for electron occupation
numbers is used, along with T = 0 pseudopotentials and
T = 0 exchange-correlation functionals (XCF). The number
of electronic bands required to access high Te increases rapidly
with Te and becomes prohibitive for Te/EF greater than ∼1.
This method generates energy bands for the periodic solid
where as in reality there are no such band structures in
liquids and plasmas. This artifact is overcome by generating
electronic-structure calculations for many static ionic configu-
rations via MD simulations and averaging over a large number
of them.

DFT+MD provides only a “mean ionization” for the whole
N -ion supercell; it cannot provide, e.g., the composition of
an equilibrium mixture of specific charge states of ions in
a C, H “plastic” at, say, 1 eV. Furthermore, VASP and ABINIT

currently only implement the zero-T XCF even though finite-T
parametrizations have been available for some time, e.g., the
evaluation of finite-T bubble diagrams [24,25], from the work
of Iyetomi and Ichimaru [26], Perrot and Dharma-wardana
(PDW) [27], and from Feynman-path methods by Brown
et al. [28] parametrized recently by Karasiev et al. [29]. The
present NPA calculations are done with the PDW finite-T XCF
which is in close agreement with the quantum simulations
of Brown et al. [30]. In most cases, finite-T XC effects
contribute only small corrections and DFT+MD provides
valuable benchmarks for testing other methods.

The NPA method is summarized in Sec. II where we
emphasize its application to the 2T regime. Resulting 2T

pair potentials (2T PP), quasiequilibrium phonon dispersions,
and pair-distribution functions (PDF) g(r) are presented in
Sec. III. The phonon calculations confirm the results and also
validate the meV accuracy of the NPA method. The NPA
g(r) calculations for normal and compressed Li (∼ up to a
compression of 2) show that the local pseudopotential for Li is
successful. Here, we compare the ion-ion structure factor S(k)
with the simulations of Kietzmann et al. Having confirmed
the accuracy of the pseudopotentials and pair potentials,
the 2T -thermodynamic properties, such as the quasipressure,
are also presented. These are compared with the values for
systems in thermal equilibrium. Discussions about phonon
formation times in 2T systems, the role of finite-T XC
contributions in the 2T -EOS calculation, and the choice of
suitable pseudopotentials in ab initio finite-T simulations are
also presented.

II. NEUTRAL PSEUDOATOM MODEL

A. General description of the model

Several average-atom models and NPA models have been
proposed, even in the early literature [31]. Many of these are
intuitive cell models and are not true DFT models. A rigorous
DFT formulation of a NPA model at T = 0 was first used
for solids by Dagens [11,12]. There, the treatment of the
ion distribution was developed in the traditional manner as
providing a fixed external potential; Dagens showed that the
NPA results at T = 0 agree closely with the band-structure
codes available at the time. A finite-T version was given in
several papers by Perrot [13] and Dharma-wardana [27,32,33].
In Ref. [32], the ion distribution ρ(r) itself was treated within
DFT using the property that the free energy F [n,ρ] is a
functional of both n(r) and ρ(r) simultaneously. A classical
DFT equation for the ions and an ion-correlation functional
F ii

c (ρ), approximated as a sum of hypernetted-chain (HNC)
diagrams plus bridge diagrams, was introduced, without
invoking a Born-Oppenheimer approximation or treating the
ions as providing a fixed external potential [34]. Exchange-
correlation functionals Fei

XC(ρ) for electron-ion interactions
were also introduced although negligible in common materials.
This puts the NPA approach on a very rigorous DFT footing
where approximations enter in modeling the ion-correlation
functional, just as in the case of the electron DFT problem for
the electronic XCF.

However, in the following, we present the theory in terms of
the more familiar superposition picture. We consider a system
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of ions located at sites Ri at temperature Ti and average density
ρ, interacting with a system of electrons at temperature Te and
average density n. The multicenter problem is reduced to a
simplified single-center problem where the total electron den-
sity n(r) is regarded as the superposition of single-site densities
such that n(r) = ∑

i ni(r − Ri). In contrast to ion-sphere (IS)
models like those used in Purgatorio [35], or Piron and Blenski
[36], Starrett and Saumon [37], the single-site free-electron
density nf (r) extends over the whole of space, approximated
by a correlation sphere [32] of radius Rc which is of the order
of 10 ionic Wigner-Seitz radii. All particle correlations are
assumed to have died out when r → Rc. This Rc is similar
to the linear dimension of the simulation box of a DFT+MD
simulation which has to be as big as possible. However, in
practice the charge distribution used in DFT+MD simulations
spreads over a volume of about 100 ions. In contrast, the NPA
correlation sphere with Rc � 10rWS extends over {Rc/rWS}3,
i.e., the volume covered by ∼1000 ions. The calculation of
course uses only one nucleus, but its charge density overlaps
the space of some 1000 atoms, and this is crucial to getting the
right pair potentials with long-range Friedel oscillations, and to
satisfy the Friedel sum rule [32]. The IS models cannot satisfy
the Friedel sum rule. At higher temperatures where particle
correlations are weak, rc may be reduced to, e.g., 5rWS, but the
results are independent of Rc, and Rc is not an optimization
parameter.

The ion distribution ρ(r) = ρgii(r) contains the full ion-
ion PDF, g(r), when seen from any site taken as the origin.
It is found that in most cases it is sufficient, as far as the
bound-electron structure is concerned, to approximate g(r)
by a spherical cavity c(r) of radius rWS and total charge Z̄

centered on the ion, followed by a uniform positive density
ρ for r > rWS. As mentioned below, unlike in IS models, its
effect will be subtracted out (as a “cavity correction”) to obtain
the response of a uniform electron gas to the nucleus. Thus,
we have

c(r) = n[H (0) − H (r − rWS)], (1)

where H (r) is the Heaviside step function. Initially Z̄ is
unknown but its value is obtained self-consistently from
the iterative Kohn-Sham procedure. The single-site electron
density is written as ni = �ni + mi where mi is the cavity
correction and �ni is the electron pileup obtained by the DFT
calculation for the electrons in the external potential Vext given
by

Vext(r) = −Z

r
+ 1

|r − r′| � c(r′), (2)

where the symbol � means integration over all space. Here,
Z = Zn is the nuclear charge. The positive background with
the WS cavity, the nucleus at its center, and the free-electron
charge density filling the whole correlation sphere constitute
the neutral pseudoatom [27,33]. The WDM system is made up
of superpositions of such neutral pseudoatoms correlated to
give the ion-ion g(r), with the cavity contributions subtracted
out.

For simple metallic systems, this cavity model that defines
the extent of the bound states is sufficient to produce physically
accurate results and is mathematically convenient, as shown in
the papers by Dagens or those of Perrot and Dharma-wardana

cited above. Thus, to compute the cavity correction m(r), we
assume that the electrons respond linearly to the cavity c(r),
viz., in Fourier space,

m(q) = −V (q)c(q)χee(q,n,Te). (3)

Here, V (q) = 4π/q2 is the Coulomb potential and χee is the
interacting-electron response function at the electron density
n and temperature Te. To go beyond the random phase
approximation (RPA), we use the following finite-T response
function:

χee(q,n,Te) = χ0(q,n,Te)

1 − V (q)[1 − G(q)]χ0(q,n,Te)
, (4)

with χ0 the finite-T Lindhard function and G(q) = G(q,Te) a
local-field correction (LFC) defined as

G(q) =
(

1 − γ0

γ

)(
q

kTF

)2

. (5)

In the above, the Thomas-Fermi wave vector kTF = √
6πn/EF

is defined by the Fermi energy of the system EF = 1/(αrs)
where rs is the electron WS radius and α = (4/9π )1/3.
The finite-T interacting electron compressibility 1/γ =
n2∂2[nf (rs,Te)]/∂n2 is determined from the homogeneous
electron gas free energy per electron f (rs,Te), as given in
Eq. (13), which include a finite-T XC contribution fXC.
The noninteracting electron compressibility γ0 is obtained by
setting fXC = 0.

The simplicity of the NPA model rests on decomposing the
total charge distribution into a superposition of single-center
distributions. If the ion-ion structure factor Sii(q) is known,
any total electron charge distribution nt (q) can always be
written as a convolution of the Sii(q) with some effective
single-center charge distribution n(q), even for transition
metals or systems with resonant levels; but, partitioning the
electron contributions from states that extend beyond their WS
cells without correctly including the physical interactions is not
sufficient. Furthermore, a “simple metal” at one temperature
may behave as a “transition metal” at another temperature
when a shell of electrons begins to transit to the continuum,
and vice versa. If the system is of such low density that
rWS is larger than the bond length of a possible dimer (e.g.,
Li2), then the dimer itself will be contained within the WS
sphere, and in such cases the NPA model fails; a more
elaborate “neutral-pseudomolecule” approach or the use of
suitable electron-ion XC potentials Fei

XC(n,ρ) is then needed.
We do not examine such nonsimple WDMs in this study.
Similarly, at high densities, WDM-Li shows complex phases
containing persistent Li4 clusters [38], and the simple NPA
model needs modifications. In the present case, a single-center
decomposition is physically transparent if the bound-electron
core is unambiguously confined within the WS sphere of the
ion. We discuss in the results section (Sec. IV D) the variation
of the Z̄ of Na which changes from unity at low T to 1.49 by
T = 8 eV. The occupation number in the 2p level begins to
decrease, while its radius slightly decreases, and hence there
is no ambiguity in estimating Z̄ = Z − nb where nb are all
the bound electrons compactly contained well inside the WS
sphere. That is, the electron density pileup �ni can be clearly
divided into bound and free parts such that �ni = nb + nf .
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Once this division is achieved, the interaction of an electron
with the nucleus plus its core can in most cases be replaced by
a pseudopotential Uei which is a weak scatterer because it is
constructed using linear response; this is given by

Uei(q) = nf (q)/χee(q,rs,Te), (6)

where χee is provided by Eq. (4).
Even though linear response is used, the resulting pseu-

dopotential includes nonlinear effects since nf (q) is the fully
nonlinear free-electron density obtained from DFT. Only a
range of q between zero to slightly above 2kF (depending
on Te) needs to be included as the large-q behavior (short
range in r , i.e., inside the core) is not relevant. The result-
ing pseudopotential is valid only if it satisfies the relation
Uei/[−Z̄V (q)] � 1. Unlike the pseudopotentials used in VASP,
ABINIT, and similar DFT codes, this linear-response pseudopo-
tential does not require solving a Schrödinger equation. It is
a state-dependent local pseudopotential that can be fitted to,
say a Heine-Abarankov form for convenience (see Shaw and
Harrison [39]). This has a constant core potential VHA = D

for r < rc and it is Coulomb type, VHA = −Z̄/r for r > rc.
However, such a fitting is not needed except to conveniently
report the pseudopotential and to quantify the core radius
associated with the potential. In our NPA calculations we use
the numerical form of Uei(q) directly.

The pseudopotential calculated at Ti can be used to form a
2T ion-ion pair potential (2T PP) with ions at Ti and electrons
at Te since it is a sum of the direct Coulomb interaction and
the indirect interaction via the displaced-electron charge, viz.,

Uii(q,Ti,Te) = −Z̄2(Ti)V (q) + |Uei(q)|2χee(q,Te). (7)

This procedure is valid because Z̄ remains unchanged in UFM
since the bound core of electrons remains at the initial ion
temperature for times t < τei . If Te is large enough to change Z̄,
be it for UFM or equilibrium systems, then the pseudopotential
has to be recalculated using an NPA calculation at the needed
temperature.

At low Te, the Friedel oscillations in the electron density
resulting from the sharp discontinuity at k = 2kF in χee(q)
produce oscillations in the pair potential Uii(r). These lead
to multiple minima in the ion-ion energy which contribute to
the maxima in g(r). Such physically important features are not
found in “Slater-sum” approaches [40] to finite-T potentials, in
“Yukawa-screening” models [7,41], or in Gordon-Kim models
[42]. Furthermore, the charge densities restricted to the WS
sphere used in IS models cannot capture such long-range
effects. Our NPA pair potential can be used to study phonons in
the system or to generate the ion-ion gii(r) and corresponding
structure factor Sii(k) when necessary. The ion subsystem in
a UFM is clamped at Ti ∼ 300 K when Al, Li, and Na are
crystalline metals. Hence, the ion-ion pair distribution function
is simply given by the relation

gii(r) = 1

4πρ

∑
{i}

δ(r − Ri). (8)

The summation is over the crystal lattice, permitting a simple
computation of the ion contribution to the quasi-free energy
and pressure from the 2T pair potential.

B. NPA quasithermodynamic relations

The total free energy F of the 2T system given by the NPA
is

F = Femb + Fcav + Fheg + Fion, (9)

where Fheg, Femb, Fcav, and Fion are, respectively, the free-
energy contribution of the interacting homogeneous electron
gas (HEG), the embedding free energy of the NPA into the
electron gas, the correction from the cavity, and the ion-ion
free energy. The only parameters of this model are the nuclear
charge Z, electron temperature Te, and the HEG density n such
that the average ion density ρ = n/Z̄, itself determined by the
ion temperature Ti . We discuss these four terms below, using
Hartrees with h̄ = me = |e| = 1.

(i) The embedding energy Femb is the difference between
the free energy of the electron gas containing the central ion
and the unperturbed HEG; thus,

Femb = T [n + �n(r)] − T [n] −
∫

Z̄

|r| · [�n(r) + c(r)]dr

+ 1

2

∫
[�n(r) + c(r)]

|r − r′| · [�n(r′) + c(r′)]dr dr′,

(10)

with T [n] the electron kinetic energy.
(ii) The cavity correction Fcav is computed from the total

screened Coulomb potential V (r) resulting from the total
electron displacement �n(r):

V ∗
i (r) =

∫
[c(r′) + �n(r′) − Z̄δ(r′ − Ri)]

|r − r′| dr′. (11)

Since each cavity involves a charge deficit η(r) = n − c(r),
the cavity correction is

Fcav = − 1

2

∫
η(r) · [c(r′) − m(r′)]

|r − r′| dr dr′ (12)

+
∫

η(r) · V ∗(r)dr.

(iii) The free energy of the HEG FHEG is written as

FHEG = Z̄f (n,Te) = Z̄[f0(n,Te) + fxc(n,Te)], (13)

where f0 and fXC are, respectively, the noninteracting and
exchange-correlation free energies per electron at the density
n and temperature Te. To compute f0, we use the thermo-
dynamic relation f0 = �0/nV + μ0, where �0 and μ0 are
the noninteracting grand potential and the chemical potential,
respectively.

We emphasize that the NPA correlation-sphere model uses
the noninteracting μ0 associated with the mean electron
density n as required by DFT theory. In IS models, the
known matter density defines the Wigner-Seitz cell, and the
free electrons are confined in it, and the corresponding μ is
determined by an integration within the WS sphere [e.g., see
Eq. (1) of Faussurier [43], leading to a value of μ �= μ0. In
contrast, the mean electron density n, the nuclear charge Zn,
and the temperature T are the only inputs to the NPA code.
The computation outputs the corresponding mean ion density
ρ and Z̄ = n/ρ. A series of calculations are done in a range of
n and the specific n which gives the physical ion density, viz.,
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ρ is selected. For a given electron density n and temperature
Te, the noninteracting chemical potential μ0 is obtained by
satisfying the relation

n = (
√

2/π2)T 3/2
e I1/2(μ0/Te), (14)

while, using this μ0, the noninteracting part of the grand
potential is given by

�0/V = (2
√

2/3π2)T 5/2
e I3/2(μ0/Te), (15)

with Iν(z) the Fermi-Dirac integral of order ν. Note that only
the noninteracting chemical potential, viz., μ0, appears in the
DFT-level occupations of the NPA model since DFT theory
maps the interacting electrons to a system of noninteracting
electrons at the interacting density (see also Ref. [32]).

The XC contribution fXC is computed directly from the
PDW parametrization at the given rs and Te. The total free
energy per electron of the interacting HEG is the sum of f0

and fXC.
(iv) The ion-ion interaction energy is given explicitly by

the pairwise summation over the pair potential Uii as defined
at Eq. (7):

Fion = 1

V

1

2

∑
{i �=j}

Uii(|Ri − Rj |), (16)

where the sum is over the positions of the ions in their initial
crystal configuration. This is the only term in F that depends
explicitly on the ion structure.

Both the cavity correction and the embedding energy
involve the ion with its bound core of electrons held at the
temperature Ti , while the electrons are at Te. The numerical
results are insensitive to using a simple NPA calculation with
even the core at Te, if the bound-state occupancies (and thus
Z̄) remain virtually unchanged.

The quasiequilibrium pressure of the system is obtained
by the appropriate density derivative of the ion-structure-
independent free-energy terms while the structure-dependent
ion-ion contribution is given by the virial equation

P = n2 ∂

∂n
(Fheg + Femb + Fcav)

−
∫

gii(r)

(
3

r

∂

∂r
− n2 ∂

∂n

)
Uii(r)dr. (17)

The explicit electron-density dependence of the ion-ion pair
potential is taken into account in computing the pressure [44].
Analytical results can be obtained for the terms

Pemb = −
∫

η(r) · V ∗(r)dr, (18)

Pcav = −Z̄V ∗(rWS), (19)

whereas other derivatives have to be done numerically.

III. RESULTS

We used the NPA model to determine the properties of
2T -WDM as produced by femtosecond laser pulses interacting
with three common metals in their usual solid state, viz.,
aluminum, lithium, and sodium, with electron densities such
that rs is 2.07, 3.25, and 3.93 a.u., corresponding to Z̄ = 3, 1,

and 1, respectively. Note that the Z̄ for Na deviates from
unity for T > 3 eV. The ion density is kept constant in the
calculations for isochoric sodium. We present the 2T ion-ion
pair potentials, nonequilibrium phonon dispersion curves,
and pressures for varying Te, while the ions remain cold at
Ti = 0.026 eV (300 K).

A. Ion-ion pair potentials

The first step within our UFM model is to compute
the equilibrium (at room temperature, Te = Ti = 0.026 eV)
free-electron density nf (q) from the NPA calculation. The
pseudopotential Uei(q) at Te = Ti can then be obtained using
Eq. (6). This pseudopotential is an atomic property that
depends on Z̄ and on the core radius given the ionic rWS,
which is then used to construct ion-ion pair potentials Uii(q,Te)
at any Te via Eq. (7). For this, the electron response at
Te �= Ti is used. This method is simpler and numerically
almost indistinguishable from calculating the pseduopotential
from a full 2T -NPA procedure where the core electrons are
held frozen at Ti and nf (q,Te) is calculated from the Kohn-
Sham equation, with Z̄ remaining unchanged. The agreement
between the two different ways of calculating the 2T potentials
provides a strong check on our calculations. Furthermore,
while pair potentials cannot be easily extracted from ab initio
calculations, the NPA model provides this physically important
quantity.

Examples of NPA ion-ion pair potentials at different tem-
peratures are presented in Fig. 1. At equilibrium or sufficiently
low Te, all three pair potentials display Friedel oscillations as
discussed in Sec. II. Hence, it requires many neighbor shells
to compute the total pairwise ion-ion interaction energy with
sufficient precision. For Li and Na, we used 8 shells whereas
30 shells were necessary for the Al-Al interaction. As Te

increases, the sharp Fermi surface breaks down, the discon-
tinuity in f (k) at k = kF broadens, and oscillations disappear,
yielding purely repulsive Yukawa-screened potentials [41].

B. 2T quasiequilibrium phonon spectra

As the electrons get heated, the screening weakens and
interionic forces become stronger; hence, there is an interest

3 4 5 6
r [A]

-0.10

0.00

0.10

0.20

0.30

U
ii [e

V
]

0.026 eV
3.000 eV
6.000 eV

3 4 5 6
r[A]

0.026 eV
3.000 eV
6.000 eV

3 4 5 6
r[A]

0.026 eV
3.000 eV
6.000 eV

(a)  Al Z=3 (b)  Li Z=1 (c)  Na Z=1

rs=2.07 a.u. rs=3.25 a.u. rs=3.93 a.u.

FIG. 1. Two-temperature ion-ion pair potentials for electrons at
three different temperatures and ions at Ti = 0.026 eV (300 K), for
(a) Al, (b) Li, and (c) Na.
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in computing the phonon spectra although in many cases the
phonon oscillation times may be comparable to the lifetime of
the UFM system. Once the 2T PP is constructed for the
desired Te, the phonon spectra are easily calculated by the
diagonalization of the dynamical matrix [45]

D(k) =
∑

i

D(Ri)e
−ik·Ri , (20)

where the elements of the harmonic matrix D(R) are given by

Dμν(R) = 1

2

∑
j

∂2Uii(Rj )

∂uμ(R)∂uν(0)
(21)

with Rj the position of the j th atom and Uii the pair
potential of Eq. (7). From the s eigenvalues λs(k) of D(k),
the phonon frequencies are given by ωs(k) = √

λs(k)/M with
M the mass of the ion. The resulting phonons are compared
with the results from ABINIT-DFT simulations employing
density functional perturbation theory [46,47] (DFPT), which
determines the second derivative of the energy using the
first-order perturbation wave functions. We used the common
crystal structure for each metal, i.e., face-centered cubic (fcc)
for Al and body-centered cubic (bcc) for Li and Na, with
their room temperature lattice parameters a = 4.05, 3.49, and
4.23 Å), respectively.

Quasiequilibrium phonon dispersion relations at Te = 6 eV
using the two methods are presented in Fig. 2 with the
NPA equilibrium phonons as reference to illustrate important
modifications in the spectra. In addition, the NPA quasiequi-
librium phonon spectrum at Te = 12 eV are also presented;
at this temperature DFPT becomes prohibitive. The excellent
accord between the NPA and experimental equilibrium phonon
spectra at low temperatures has already been demonstrated
and shows the meV accuracy of the NPA calculations even at
low temperatures [48]. It is not possible to get good accord
with experiment in this regime if the free electron density is
constrained to be within the Wigner-Seitz sphere, as found
by Blenski et al. [49] within their ion-sphere model for Al at
normal density and at low T .

For the three systems in this study, the two methods (NPA
and DFPT) predict very similar 2T phonon spectra, thus
reconfirming the 2T NPA calculations and corroborating the
DFPT calculations at finite T . This is important as there are
as yet no experimental observations of UFM phonon spectra.
In the case of Al, we observe a large increase in frequencies,
as high as 32% for longitudinal (L) modes, which supports
the “phonon hardening” theory. However, we notice that
transverse (T) branches in the � − L region are barely affected
by the electron heating, as was also noted by Recoules [50]. In
the case of Li and Na, we find that the spectral modifications
are more complex than the “homogeneous” increase found
for Al; here, an important increase in the L branch in the
middle of the � − H region takes place, whereas there is
no change at the symmetry point H . No modifications to
T branches are noticed in this region. In the region H − �,
the L-branch frequencies increase in the middle of the region
H − P but remain unchanged at the symmetry point H . For
the T branch, an increase is noticeable at the maximum in the
region P − � whereas no change affects the minimum in the
region H − P . In the region � − N and for the L branch, we
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FIG. 2. Quasiequilibrium phonon spectra at Te = 6 eV obtained
with NPA and with ABINIT for (a) Al, (b) Li, and (c) Na. The NPA
equilibrium phonon spectra at 300 K are shown to illustrate the effect
of increasing Te (dashed lines).

observe the overall largest increase of 29% and 37% for Li
and Na, respectively, whereas frequencies of T modes are only
slightly modified.

C. 2T quasiequilibrium equation of state

A system in its initial equilibrium configuration (Ti = Te =
Tr ) rapidly reaches a new UFM state with Ti remaining near
Tr while Te increases. However, since the ion motion within
the time of arrival of the probe pulse is negligible, the pressure
builds up essentially isochorically due to electron heating.

In Fig. 3, we compare the pressure calculated with the NPA
model with ABINIT and VASP simulations. In the latter, we used
an energy cutoff of 1630 eV for the plane-wave basis, with 60
energy bands to capture finite-T effects. In ABINIT simulations,
we used norm-conserving (NC) pseudopotentials with the
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FIG. 3. Quasiequilibrium pressures obtained with the NPA
(lines), ABINIT (circles), and VASP (triangles) for Al, Li, and Na.

T = 0 Perdew-Burke-Ernzerhof (PBE) XCF within the gener-
alized gradient approximation (GGA). In VASP, we employed
projected-augmented-wave (PAW) pseudopotentials with the
PBE XCF for Li and Na, and the Perdew-Wang (PW) T = 0
XCF for Al. With both codes, pseudopotentials were chosen
specifically to simulate Z̄ = 3 valence electrons for Al, and
Z̄ = 1 for Li and Na as the core electrons remain bound, and
at the ion temperature. This is an important aspect discussed
in Sec. IV D.

We find that, for all three metals, calculations using NPA,
ABINIT, and VASP predict nearly identical pressures with small
deviations only at high Te. At Te = 8 eV, the maximum
difference between all models is 9, 4, and 3 GPa for Al, Li,
and Na, respectively. Thus, the results from the extension of
the NPA model to the 2T regime confirms the usability of the
solid-state codes at least up to 6 eV on the one hand, and on
the the other hand the validity of the NPA approach. However,
since NPA uses a finite-T XC functional whereas ab initio
simulations do not, the effect of such finite-T corrections will
be reviewed in Sec. IV.

The computational efficiency and accuracy of the NPA
approach make it a valuable tool for studying WDM and other
complex systems where iterative computations of materials
properties such as 2T EOS, 2T specific heat, transport
properties, opacities, energy-relaxation times, etc., are needed
as the system evolves with time since mean ionization,
pair potentials, and structure factors are readily obtained. A
few minutes on a desktop computer are sufficient in NPA
calculations to generate accurate results which require long
and intensive computations with DFT+MD.

IV. DISCUSSION

A. Crystal-lattice stability

As electrons absorb the laser energy (within fs time scales)
and heat up to Te, the internal pressure of the system becomes
very high as discussed in Sec. III C. In metals, the thermal
expansion is also caused by the free-electron pressure. We
studied the crystal stability of the solids as a function of lattice
expansion; the results are presented in Fig. 4.

For Al at Te = 2 eV, we find that a moderate expansion
a/a0 = 1.24 is sufficient to reduce the pressure back to zero,
indicating that the crystal may appear stable if the time scale
needed for such lattice motion is available before the UFM
breaks down. However, in all other cases, the pressure goes
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FIG. 4. Total pressure of the solids as a function of the lattice
parameter of the crystal relative to the room-temperature value a0 for
(a) Al, (b) Li, and (c) Na.

to zero only asymptotically with increasing lattice parameter,
suggesting that such UFM crystals are unstable. Such thermal
expansions or spontaneous fluctuations lead to the “explosive”
breakdown of the solid on ps time scales. However, since
UFM conditions are reached in fs time scales, the ions remain
essentially in their initial positions and (as already noted) no
net linear forces act upon them due to crystal symmetry. They
remain trapped in a stronger harmonic potential leading to
hardening of most of the phonon branches. The physical reason
for the hardening at increased Te is the decreased screening of
ion-ion interactions by the hotter electron gas.

B. “Phonons” and surface ablation

The UFM system is under very large pressure and the
ion-ion 2T PP is purely repulsive unless Te is small (cf. Fig. 1).
The discussion in terms of phonons may become inapplicable
at higher Te due to nonzero ablation forces acting on ions
in typical UFM samples (0.1–1 μm thick). An ideal periodic
lattice implies that the linear derivative of the total potential
is zero because the crystal is isochorically constrained by
the external pressure. The phonons of UFM “exist” only
within this artifice. Small thermal “Debye-Waller”–type ionic
displacements u (with a mean value 〈u〉 = 0.2 Å) at 300 K
for Al, retained in the UFM) do not render the periodic
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TABLE I. The “ablation force” Fabl and the “ablation time” τabl for
the (100) surface of an Al slab from VASP and NPA at three different
electron temperatures Te and lattice temperature Ti = 0.026 eV. The
fastest [100] phonon oscillation time τω is also given for each Te.

Te F NPA
abl F VASP

abl τNPA
abl τ VASP

abl τω

(eV) (eV/Å) (eV/Å) (fs) (fs) (fs)

2.00 0.91 0.90 111 111 105
4.00 2.75 2.70 63.9 64.2 92.6
6.00 5.03 4.70 47.1 48.6 80.6

UFM unstable, and slightly split the degeneracy of transverse
branches.

However, pump-probe experiments use very thin metal
films. Crystal symmetry is broken and large uncompensated
forces act at the surface of the films; as a result, the surface layer
and successive layers ablate. We calculated the ablation force
F VASP

abl on an fcc-(100) Al surface and the two inner layers using
the VASP code with the Al surface reconstructed as happens for
the cold surface at 0 K. Five layers of Al and five layers of
vacuum were used for evaluating the Hellman-Feynman forces
on the surface atoms. The NPA method is beyond its regime
of validity since the charge density at a surface is not uniform.
However, the NPA pressure is the force per unit area at the
bounding (100) surface, with one ion per unit area. This is used
as the NPA estimate of the ablation force F NPA

abl . The forces on
the inner neighbor and next-neighbor layers calculated from
VASP at Te = 6 eV were 3% and 0.02%, respectively, of the
force on the surface layer. The surface force Fabl determines
an approximate “ablation time” τabl, the time needed for the
surface plane to move by an interplane distance (a/2 in the case
of Al). This τabl estimate makes some assumptions, e.g., Fabl

to be constant over a/2, with no movement of inner layers.
To verify if phonons can form within such time scales, we
compare τabl with the shortest time for an ion oscillation τω

at the highest phonon frequency for the [100] direction; the
results are presented in Table I.

As Te increases, phonons “harden” and Fabl increases.
In order to observe the “hardening” of phonons on any
measurement, a probe time τpr such that τω < τpr < τabl is
required. However, for sufficiently high Te (e.g., above ∼2 eV
for Al), the Fabl are strong enough to make τabl < τω. Hence,
the ion oscillations have no time to build up and it is
probably impossible to satisfy the time constraint enabling
the observation of hardened phonons. The phonon concept
itself becomes misleading for thin UFM films. Interpreting
experiments when τpr > τabl may require explicit inclusion of
surface ablation corrections in the theory used for analyzing
optical data (e.g., in the Helmholtz equations).

C. Finite-T exchange and correlation

In the NPA model, we used the finite-T XCF of PDW and
assessed the importance of such corrections in the temperature
regime studied here. The valence density, or “free” -electron
density nf (r), of the solid at Te > Ti is the key quantity for
the NPA model. In Fig. 5, we present the nf (r) obtained
using the PDW finite-T XCF with that obtained from the
zero-T XCF. Even though the correction is small, it may be

0.4 0.6 0.8 1 1.2
r/rws

0

0.05

0.1

0.15

n f(r
) [

a.
u.

]

Finite-T Fxc
Zero-T Fxc

0 1 2 3
r/rws

0.00

0.01

0.02

0.03

0.04

n f(r
) [

a.
u.

]

Al     Te = 8 eV     rws = 2.99 [a.u.]

FIG. 5. The NPA free-electron density nf (r) for Al3+ at density
ρ = 2.7 g/cm3, with Te = 8 eV and Ti = 0.026 eV, calculated using
XC at finite T and at T = 0. The inset shows the density for larger
r/rWS.

of importance in some circumstances, e.g., x-ray Thomson
scattering spectra, and hence there is no reason to neglect
it. The difference between the T = 0 XCF and the finite-T
XCF increases with θ = T/EF at first, and it rapidly and
asymptotically goes to zero as θ > 1 and as T → ∞. Hence,
the more important consequences of using finite-T XCF should
occur in the partially degenerate regime 0 < θ < 1.

The finite-T XCF is present in two contributions to
the pressure, namely, the electron-electron interacting linear
response function χ (k,Te), which is used to construct the
pseudopotential and the pair potential, and the HEG electron
kinetic pressure. Although the finite-T XCF has noticeable
effects on the pair potentials or on the energy spectrum of
bound states, we observe that overall thermodynamic effects
are only slightly sensitive to such finite-T corrections as can
be seen in Fig. 6. In fact, at Te = 8 eV, the finite-T XCF only
decreases the pressure in Al by 4%. Since individual finite-T
contributions are considerable, this insensitivity to XCF comes
from the interplay of several terms. For instance, the electron
pressure by itself differs by about 10% in the regime θ ∼ 0.8,
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150

P 
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Zero-T Fxc
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FIG. 6. Comparison between the pressure of Al in the UFM
regime computed via the NPA model with the finite-T FXC and with
the zero-T FXC.
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TABLE II. Mean ionization Z̄, the 2p Fermi factor, and the 2p

mean radius (a.u) for sodium (normal solid density) are given as a
function of the temperature T in eV. The WS radius rWS = 3.3912 a.u.
and hence the core is compactly contained inside the WS sphere of
Na for all values of T investigated here.

T Z̄ f2p 〈r2p〉
1.00 1.001 1.000 0.808
3.00 1.004 0.999 0.804
5.00 1.104 0.983 0.792
8.00 1.494 0.919 0.762
10.0 1.786 0.872 0.744

but the overall pressures obtained from T = 0 and finite-T
NPA calculations differ by less than 4%.

D. Pseudopotential and mean ionization

Here, we discuss the importance of choosing the proper
pseudopotential for ab initio simulations of UFM systems in
the 2T model. The pump-laser frequency is normally chosen
such that core electrons are not excited and remain strongly
bound to the “cold” nuclei at temperature Ti . Thus, only
the Z̄ valence electrons on each ion are heated to Te during
the irradiation. In DFT calculations, the electron temperature
is used in a Fermi-Dirac distribution for the occupation
numbers of all electrons in the simulation. Thus, if the chosen
pseudopotential includes more of the core electrons as free
electrons, i.e., exceeding the appropriate number of valence
electrons, then they too will be “heated” even if they should
not be. Then, wrong predictions may result, e.g., for the 2T

pressure of the given UFM and its electronic specific heat.
To illustrate this point, we carried out ABINIT simulations

using PAW pseudopotentials which include Z̄ = 3 and 9
valence electrons for Li and Na, respectively. We also did
NPA-DFT calculations with all electrons at Te. In the NPA
model, the mean ionization Z̄ = Zn − nb can be computed as
in Ref. [27]. The Z̄ as a function of Te is not an integer in the
NPA but represents an average over different ionization states
as discussed in Ref. [14].

In the case of Al and Li, the NPA predicts that Z̄ is
unaffected for Te < 8 eV, relevant to UFMs. Pressure should
also be unchanged, which is exactly what we obtain with
the ABINIT simulations of Li using the all-electron PAW
pseudopotential. However, in the case of Na, Z̄ starts to
increase around Te = 3 eV up to Z̄ = 1.49 at Te = 8 eV (see
Table II). The increase in Z̄ is accompanied by a decrease in
the occupation of the 2p level as electrons are promoted to the
continuum. The decreased screening in the core (both due to
increase of T and due to the decrease in the number of core
electrons) leads to a decrease in the radius of the n = 2 shell.
Hence, the increase of Z̄ and the modification of the core levels
do not lead to any ambiguity in specifying Z̄.

We computed the pressure with the NPA model including
the changed Z̄ and compared it with the ABINIT simulations of
Na using the nine-electron PAW pseudopotential. Results are
presented in Fig. 7.

We find that, at Te = 8 eV, the pressure, when heating
of some core electrons is included, is 54% higher than the
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FIG. 7. Comparison between the pressure computed with the
NPA (line) and with ABINIT (circles) when heating is applied to the
valence electron of Na only or to all electrons (nine electrons in
the ABINIT simulations).

correctly calculated value. The use of “all-electron” codes for
the study of UFM in the 2T state suffers from this pitfall of not
selecting the physically appropriate Z̄ and the corresponding
pseudopotential. When suitable pseudopotentials are not avail-
able for DFT+MD calculations, one possibility is to use only
the relevant part of the electron density of states (DOS) that is
assigned to the free electrons on the basis of Z̄, when pressure
and related properties are computed. For instance, when
calculating the specific heat of “free electrons” for use in UFM
studies, the free-electron DOS used in the calculations should
be consistent with the number of actual free electrons that
couple with the laser. In a metal such as gold (not studied here),
even though a pseudopotential with 11 valence electrons is
needed, the DOS used for evaluating the electron specific heat
for Te < 2 should be only for Z̄ = 1. The optical properties of
gold (see Ref. [51]) show that the d shell couples to light only
when the interband threshold energy (∼2 eV) is exceeded. In
the case of gold, the 5d shell hybridizes with the continuum
electrons (nominally made up of 6s electrons) and extends
outside the Au-Wigner-Seitz sphere until the s − d transition
threshold (∼2 eV) is reached. Hence, at low temperatures the
NPA model with its “one-center” formulation cannot be used
for gold at normal density. Similarly, WDM systems with
bound states extending outside the Wigner-Seitz sphere cannot
be treated unless explicit multicenter electron-ion correlation
terms are included.

E. Local pseudopotential for Li

The Li pseudopotential used in the NPA is a local pseudopo-
tential, whereas it is widely found in the context of large DFT
codes that Li almost always needs a nonlocal pseudopotential.
Even in early studies of phonons, a nonlocal pseudopotential
was used by Dagens, Rasolt, and Taylor [52], and yet the
Li phonons at room temperature they obtained were less
satisfactory than for, say, sodium. We have already shown that
the NPA pair potential based on a local pseudopotential quite
adequately reproduces the Li phonons at room temperature
and high temperature at normal density, but not as accurately
as for aluminum or sodium. Hence, it is of interest to test
the robustness of the Li pseudopotential and pair potential at
higher compression by calculating the Li-Li g(r) using the
NPA potentials. Here, we use the modified hypernetted chain
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FIG. 8. The Li-Li NPA-MHNC pair distribution function g(r)
at 2000 K (0.173 eV), ρ = 0.85 g/cm3, compared with the g(r) of
Ref. [54].

(MHNC) method where a bridge term is included using the
Lado-Foiles-Ashcroft (LFA) criterion [53] which is based on
the Gibbs-Bogoliubov inequality for the free energy of the
system. The MHNC assumes radial symmetry and limits us to
“simple-liquid” structures.

Since Li becomes a complex liquid with clustering effects
at high compressions [38], we consider a compression of
∼1.6 and compute the PDF for Li at 0.85 g/cm2 and at
2000 K (0.173 eV) for which results are available from
Kietzmann et al. [54]. The LFA criterion yields a hard-sphere
packing fraction η = 0.371 to model the bridge function.
The resulting NPA-MHNC g(r) is displayed together with
the g(r) of Ref. [54] in Fig. 8. We find that the simple but
state-dependent local pseudopotential constructed from the
free-electron charge pileup at a Li nucleus is adequate to
calculate phonons (i.e, requiring an accuracy of meV energies),
as well as the Li-Li PDFs up to moderate compressions and
high coupling constants �.

F. Comparison between equilibrium WDM and UFM EOS

In UFM, the internal pressure mainly results from the hot
electron subsystem since ions remain close to their initial
temperature Tr . Here, we investigate the difference in the
pressure between the quasiequilibrium UFM regime (Ti �= Te)
and the equilibrium WDM regime which will usually be in a
liquid or plasma state with Ti = Te. In DFT codes it is possible
to simulate liquids by computing forces among ions and the
MD evolution of the positions of the N ions in the simulation
cell. However, to obtain reasonable statistics, one needs to
use a supercell containing as many ions as possible, thus
reducing considerably the first Brillouin zone and increasing
the required number of electronic bands to be included. As
mentioned earlier, the number of bands needs to be even
larger in order to simulate Te via a Fermi-Dirac distribution.
As examples, to obtain reasonably good band occupations
for a system of 108 Al atoms at room density, 360 bands
at Te = 1 eV are required, and this number grows to 1200 at
Te = 5 eV. Thus, since computing repeatedly at every MD step
a high number of bands in DFT codes is computationally very
demanding, it becomes prohibitive at higher temperatures.
Such a problem does not occur in the NPA model as only one
DFT calculation at a single nucleus is required to construct the
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FIG. 9. Comparison of the NPA isochoric pressures for the UFM
system and the equilibrium liquid system. Inset: comparison of the
NPA pressures in the low-T regime where DFT+MD is practical.

ion-ion pair potential. The structure factors may be computed
using MD, or with MHNC equation for simple liquids.

The comparison of the pressure from UFM and equilibrium
WDM is presented in Fig. 9. The equilibrium WDM pressure is
much higher than the UFM value. Furthermore, the DFT-NPA
calculation is in agreement with NPA up to Te = 5 eV (the
limit of our DFT+MD simulation). This mutually reconfirms
the validity of the NPA as well as DFT+MD approaches in
the WDM regime.

Since Z̄ reaches ∼7 at Te ∼ 100 eV, codes for simulating
Al should employ pseudopotentials that include more electrons
than the three valence electrons valid at low temperatures.
Simulations with high Z̄ values will greatly increase the
computational load and such calculations become prohibitive.
Hence, NPA methods or orbital-free Hohenberg-Kohn meth-
ods become relevant [55]. The latter do not, however, provide
energy spectra and details of the bound electrons.

V. CONCLUSION

In order to describe physical properties of UFM, we exam-
ined applications of the NPA model within the two-temperature
quasiequilibrium model. We computed phonons, as well as
the pressure resulting from the heating of free electrons.
The excellent accord between such NPA calculations and
DFT simulations using the ABINIT and VASP codes reconfirms
the use of the NPA in this regime. As the internal pressure
increases due to the heating of electrons by the ultrafast laser
pulses, we explicitly showed that the phonon picture does
not have much physical meaning, especially for thin WDM
samples, even if frequencies could be computed using the
harmonic approximation. As the NPA approach has negligible
computational cost compared to standard DFT codes, it is a
valuable tool for swiftly and accurately calculating important
WDM properties such as mean ionization, pair potentials,
structure factors, phonons, x-ray Thomson scattering spectra,
electron-ion energy relaxation, conductivity, etc.

043201-10



EQUATION OF STATE, PHONONS, AND LATTICE . . . PHYSICAL REVIEW E 95, 043201 (2017)

ACKNOWLEDGMENTS

This work was supported by grants from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)

and the Fonds de Recherche du Québec-Nature et Technolo-
gies (FRQ-NT). We are indebted to Calcul Québec and Calcul
Canada for generous allocations of computer resources.

[1] G. Dimonte and J. Daligault, Phys. Rev. Lett. 101, 135001
(2008).

[2] See e.g., V. Mijoule, L. J. Lewis, and M. Meunier, Phys. Rev. A
73, 033203 (2006).

[3] P. Lorazo, L. J. Lewis, and M. Meunier, Phys. Rev. Lett. 91,
225502 (2003); Phys. Rev. B 73, 134108 (2006).

[4] Y. Ping, A. A. Correa, T. Ogitsu, E. Draeger, E. Schwegler, T.
Aob, K. Widmanna, D. F. Price, E. Lee, H. Tamb, P. T. Springer,
D. Hansonb, I. Koslowb, D. Prendergast, G. Collins, and A. Ng,
High Energy Density Phys. 6, 246 (2010).

[5] H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More,
Phys. Rev. Lett. 61, 2364 (1988).

[6] B. Chimier, V. T. Tikhonchuk, and L. Hallo, Phys. Rev. B 75,
195124 (2007).

[7] L. Harbour, M. W. C. Dharma-wardana, D. D. Klug, and L. J.
Lewis, Phys. Rev. E 94, 053211 (2016).

[8] K. P. Driver and B. Militzer, Phys. Rev. Lett. 108, 115502 (2012).
[9] Z. Chen, B. Holst, S. E. Kirkwood, V. Sametoglu, M. Reid,

Y. Y. Tsui, V. Recoules, and A. Ng, Phys. Rev. Lett. 110, 135001
(2013).

[10] N. Medvedev, U. Zastrau, E. Forster, D. O. Gericke, and B.
Rethfeld, Phys. Rev. Lett. 107, 165003 (2011).

[11] L. Dagens, J. Phys. C: Solid State Phys. 5, 2333 (1972).
[12] L. Dagens, J. Phys. (Paris) 36, 521 (1975).
[13] N. Garcia, P. Crespo, A. Hernando, C. Bovier, J. Serughetti, and

E. Duval, Phys. Rev. B 47, 570(R) (1993).
[14] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. E 52, 5352

(1995).
[15] M. W. C. Dharma-wardana and M. S. Murillo, Phys. Rev. E 77,

026401 (2008).
[16] M. S. Murillo, J. Weisheit, S. B. Hansen, and M. W. C. Dharma-

wardana, Phys. Rev. E 87, 063113 (2013).
[17] S. H. Glenzer and Ronald Redmer, Rev. Mod. Phys. 81, 1625

(2009).
[18] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[19] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[20] F. Perrot, Y. Furutani, and M. W. C. Dharma-wardana, Phys.

Rev. A 41, 1096 (1990).
[21] M. W. C. Dharma-wardana, arXiv:1607.07511.
[22] X. Gonze and C. Lee, Comput. Phys. Commun. 180, 2582

(2009).
[23] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[24] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. A 30, 2619

(1984).
[25] D. G. Kanhere, P. V. Panat, A. K. Rajagopal, and J. Callaway,

Phys. Rev. A 33, 490 (1986).
[26] H. Iyetomi and S. Ichimaru, Phys. Rev. A 34, 433 (1986).
[27] F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. B 62, 16536

(2000); 67, 079901 (2003).
[28] E. W. Brown, J. L. DuBois, M. Holzmann, and D. M. Ceperley,

Phys. Rev. B 88, 081102(R) (2013).

[29] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Phys.
Rev. Lett. 112, 076403 (2014).

[30] M. W. C. Dharma-wardana, Contrib. Plasma Phys. 55, 79 (2015).
[31] J. M. Ziman, Proc. R. Soc. London 91, 701 (1967).
[32] M. W. C. Dharma-wardana and F. Perrot, Phys. Rev. A 26, 2096

(1982).
[33] M. W. C. Dharma-wardana, Phys. Rev. E 86, 036407 (2012).
[34] M. W. C. Dharma-wardana and F. Perrot, in Density Functional

Theory, edited by E. H. K. Gross and R. M. Dreizler, NATO
ASI Series B: Physics (Plenum, New York, 1993), Vol. 337,
pp. 625–650.

[35] S. B. Hansen, A. Y. Faenov, T. A. Pikuz, K. B. Fournier, R.
Shepherd, H. Chen, K. Widmann, S. C. Wilks, Y. Ping, H. K.
Chung, A. Niles, J. R. Hunter, G. Dyer, and T. Ditmire, Phys.
Rev. E 72, 036408 (2005); B. Wilson et al., J. Quant. Spectrosc.
Radiat. Transfer 99, 658 (2006).

[36] R. Piron and T. Blenski, Phys. Rev. E 83, 026403 (2011).
[37] C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104

(2013).
[38] I. Tamblyn, J.-Y. Raty, and S. A. Bonev, Phys. Rev. Lett. 101,

075703 (2008).
[39] R. W. Shaw and W. A. Harrison, Phys. Rev. 163, 604 (1967).
[40] H. Wagenknecht, W. Ebeling, and A. Förster, Contrib. Plasma

Phys. 41, 15 (2001); T. Morita, Prog. Theor. Phys. 20, 920
(1958).

[41] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders
College, Philadelphia, 1976), Chap. 17, Eqs. (17.42)–(17-55);
A. J. Archer, P. Hopkins, and R. Evans, Phys. Rev. E 74,
010402(R) (2006).

[42] R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972).
[43] G. Faussurier, Phys. Plasmas 21, 112707 (2014).
[44] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic, San Diego, 1990).
[45] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders

College, Philadelphia, 1976), Chap. 22.
[46] X. Gonze, Phys. Rev. B 55, 10337 (1997).
[47] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[48] L. Harbour, M. W. C. Dharma-wardana, D. D. Klug, and L. J.

Lewis, Contrib. Plasma. Phys. 55, 144 (2015).
[49] T. Blenski, R. Piron, C. Caizergues, and B. Cichocki, High

Energy Density Phys. 9, 687 (2013).
[50] V. Recoules, J. Clérouin, G. Zérah, P. M. Anglade, and S.

Mazevet, Phys. Rev. Lett. 96, 055503 (2006).
[51] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[52] L. Dagens, M. Rasolt, and R. Taylor, Phys. Rev. B 11, 2726

(1975).
[53] H. C. Chen and S. K. Lai, Phys. Rev. A 45, 3831 (1992).
[54] A. Kietzmann, R. Redmer, M. P. Desjarlais, and T. R. Mattsson,

Phys. Rev. Lett. 101, 070401 (2008).
[55] V. V. Karasiev, T. Sjostrom, and S. B. Trickey, Comput. Phys.

Commun. 185, 3240 (2014).

043201-11

https://doi.org/10.1103/PhysRevLett.101.135001
https://doi.org/10.1103/PhysRevLett.101.135001
https://doi.org/10.1103/PhysRevLett.101.135001
https://doi.org/10.1103/PhysRevLett.101.135001
https://doi.org/10.1103/PhysRevA.73.033203
https://doi.org/10.1103/PhysRevA.73.033203
https://doi.org/10.1103/PhysRevA.73.033203
https://doi.org/10.1103/PhysRevA.73.033203
https://doi.org/10.1103/PhysRevLett.91.225502
https://doi.org/10.1103/PhysRevLett.91.225502
https://doi.org/10.1103/PhysRevLett.91.225502
https://doi.org/10.1103/PhysRevLett.91.225502
https://doi.org/10.1103/PhysRevB.73.134108
https://doi.org/10.1103/PhysRevB.73.134108
https://doi.org/10.1103/PhysRevB.73.134108
https://doi.org/10.1103/PhysRevB.73.134108
https://doi.org/10.1016/j.hedp.2009.12.009
https://doi.org/10.1016/j.hedp.2009.12.009
https://doi.org/10.1016/j.hedp.2009.12.009
https://doi.org/10.1016/j.hedp.2009.12.009
https://doi.org/10.1103/PhysRevLett.61.2364
https://doi.org/10.1103/PhysRevLett.61.2364
https://doi.org/10.1103/PhysRevLett.61.2364
https://doi.org/10.1103/PhysRevLett.61.2364
https://doi.org/10.1103/PhysRevB.75.195124
https://doi.org/10.1103/PhysRevB.75.195124
https://doi.org/10.1103/PhysRevB.75.195124
https://doi.org/10.1103/PhysRevB.75.195124
https://doi.org/10.1103/PhysRevE.94.053211
https://doi.org/10.1103/PhysRevE.94.053211
https://doi.org/10.1103/PhysRevE.94.053211
https://doi.org/10.1103/PhysRevE.94.053211
https://doi.org/10.1103/PhysRevLett.108.115502
https://doi.org/10.1103/PhysRevLett.108.115502
https://doi.org/10.1103/PhysRevLett.108.115502
https://doi.org/10.1103/PhysRevLett.108.115502
https://doi.org/10.1103/PhysRevLett.110.135001
https://doi.org/10.1103/PhysRevLett.110.135001
https://doi.org/10.1103/PhysRevLett.110.135001
https://doi.org/10.1103/PhysRevLett.110.135001
https://doi.org/10.1103/PhysRevLett.107.165003
https://doi.org/10.1103/PhysRevLett.107.165003
https://doi.org/10.1103/PhysRevLett.107.165003
https://doi.org/10.1103/PhysRevLett.107.165003
https://doi.org/10.1088/0022-3719/5/17/011
https://doi.org/10.1088/0022-3719/5/17/011
https://doi.org/10.1088/0022-3719/5/17/011
https://doi.org/10.1088/0022-3719/5/17/011
https://doi.org/10.1051/jphys:01975003606052100
https://doi.org/10.1051/jphys:01975003606052100
https://doi.org/10.1051/jphys:01975003606052100
https://doi.org/10.1051/jphys:01975003606052100
https://doi.org/10.1103/PhysRevB.47.570
https://doi.org/10.1103/PhysRevB.47.570
https://doi.org/10.1103/PhysRevB.47.570
https://doi.org/10.1103/PhysRevB.47.570
https://doi.org/10.1103/PhysRevE.52.5352
https://doi.org/10.1103/PhysRevE.52.5352
https://doi.org/10.1103/PhysRevE.52.5352
https://doi.org/10.1103/PhysRevE.52.5352
https://doi.org/10.1103/PhysRevE.77.026401
https://doi.org/10.1103/PhysRevE.77.026401
https://doi.org/10.1103/PhysRevE.77.026401
https://doi.org/10.1103/PhysRevE.77.026401
https://doi.org/10.1103/PhysRevE.87.063113
https://doi.org/10.1103/PhysRevE.87.063113
https://doi.org/10.1103/PhysRevE.87.063113
https://doi.org/10.1103/PhysRevE.87.063113
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/RevModPhys.81.1625
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevA.41.1096
https://doi.org/10.1103/PhysRevA.41.1096
https://doi.org/10.1103/PhysRevA.41.1096
https://doi.org/10.1103/PhysRevA.41.1096
http://arxiv.org/abs/arXiv:1607.07511
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1016/j.cpc.2009.07.007
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevA.30.2619
https://doi.org/10.1103/PhysRevA.33.490
https://doi.org/10.1103/PhysRevA.33.490
https://doi.org/10.1103/PhysRevA.33.490
https://doi.org/10.1103/PhysRevA.33.490
https://doi.org/10.1103/PhysRevA.34.433
https://doi.org/10.1103/PhysRevA.34.433
https://doi.org/10.1103/PhysRevA.34.433
https://doi.org/10.1103/PhysRevA.34.433
https://doi.org/10.1103/PhysRevB.62.16536
https://doi.org/10.1103/PhysRevB.62.16536
https://doi.org/10.1103/PhysRevB.62.16536
https://doi.org/10.1103/PhysRevB.62.16536
https://doi.org/10.1103/PhysRevB.67.079901
https://doi.org/10.1103/PhysRevB.67.079901
https://doi.org/10.1103/PhysRevB.67.079901
https://doi.org/10.1103/PhysRevB.88.081102
https://doi.org/10.1103/PhysRevB.88.081102
https://doi.org/10.1103/PhysRevB.88.081102
https://doi.org/10.1103/PhysRevB.88.081102
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1103/PhysRevLett.112.076403
https://doi.org/10.1002/ctpp.201510002
https://doi.org/10.1002/ctpp.201510002
https://doi.org/10.1002/ctpp.201510002
https://doi.org/10.1002/ctpp.201510002
https://doi.org/10.1088/0370-1328/91/3/323
https://doi.org/10.1088/0370-1328/91/3/323
https://doi.org/10.1088/0370-1328/91/3/323
https://doi.org/10.1088/0370-1328/91/3/323
https://doi.org/10.1103/PhysRevA.26.2096
https://doi.org/10.1103/PhysRevA.26.2096
https://doi.org/10.1103/PhysRevA.26.2096
https://doi.org/10.1103/PhysRevA.26.2096
https://doi.org/10.1103/PhysRevE.86.036407
https://doi.org/10.1103/PhysRevE.86.036407
https://doi.org/10.1103/PhysRevE.86.036407
https://doi.org/10.1103/PhysRevE.86.036407
https://doi.org/10.1103/PhysRevE.72.036408
https://doi.org/10.1103/PhysRevE.72.036408
https://doi.org/10.1103/PhysRevE.72.036408
https://doi.org/10.1103/PhysRevE.72.036408
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1016/j.jqsrt.2005.05.053
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.83.026403
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevE.87.013104
https://doi.org/10.1103/PhysRevLett.101.075703
https://doi.org/10.1103/PhysRevLett.101.075703
https://doi.org/10.1103/PhysRevLett.101.075703
https://doi.org/10.1103/PhysRevLett.101.075703
https://doi.org/10.1103/PhysRev.163.604
https://doi.org/10.1103/PhysRev.163.604
https://doi.org/10.1103/PhysRev.163.604
https://doi.org/10.1103/PhysRev.163.604
https://doi.org/10.1002/1521-3986(200101)41:1<15::AID-CTPP15>3.0.CO;2-1
https://doi.org/10.1002/1521-3986(200101)41:1<15::AID-CTPP15>3.0.CO;2-1
https://doi.org/10.1002/1521-3986(200101)41:1<15::AID-CTPP15>3.0.CO;2-1
https://doi.org/10.1002/1521-3986(200101)41:1<15::AID-CTPP15>3.0.CO;2-1
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1143/PTP.20.920
https://doi.org/10.1103/PhysRevE.74.010402
https://doi.org/10.1103/PhysRevE.74.010402
https://doi.org/10.1103/PhysRevE.74.010402
https://doi.org/10.1103/PhysRevE.74.010402
https://doi.org/10.1063/1.1677649
https://doi.org/10.1063/1.1677649
https://doi.org/10.1063/1.1677649
https://doi.org/10.1063/1.1677649
https://doi.org/10.1063/1.4902123
https://doi.org/10.1063/1.4902123
https://doi.org/10.1063/1.4902123
https://doi.org/10.1063/1.4902123
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.55.10337
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1103/PhysRevB.55.10355
https://doi.org/10.1002/ctpp.201400092
https://doi.org/10.1002/ctpp.201400092
https://doi.org/10.1002/ctpp.201400092
https://doi.org/10.1002/ctpp.201400092
https://doi.org/10.1016/j.hedp.2013.06.003
https://doi.org/10.1016/j.hedp.2013.06.003
https://doi.org/10.1016/j.hedp.2013.06.003
https://doi.org/10.1016/j.hedp.2013.06.003
https://doi.org/10.1103/PhysRevLett.96.055503
https://doi.org/10.1103/PhysRevLett.96.055503
https://doi.org/10.1103/PhysRevLett.96.055503
https://doi.org/10.1103/PhysRevLett.96.055503
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1103/PhysRevB.6.4370
https://doi.org/10.1103/PhysRevB.11.2726
https://doi.org/10.1103/PhysRevB.11.2726
https://doi.org/10.1103/PhysRevB.11.2726
https://doi.org/10.1103/PhysRevB.11.2726
https://doi.org/10.1103/PhysRevA.45.3831
https://doi.org/10.1103/PhysRevA.45.3831
https://doi.org/10.1103/PhysRevA.45.3831
https://doi.org/10.1103/PhysRevA.45.3831
https://doi.org/10.1103/PhysRevLett.101.070401
https://doi.org/10.1103/PhysRevLett.101.070401
https://doi.org/10.1103/PhysRevLett.101.070401
https://doi.org/10.1103/PhysRevLett.101.070401
https://doi.org/10.1016/j.cpc.2014.08.023
https://doi.org/10.1016/j.cpc.2014.08.023
https://doi.org/10.1016/j.cpc.2014.08.023
https://doi.org/10.1016/j.cpc.2014.08.023



