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We used molecular simulation to study the static behavior of polymer droplets in vacuum and on solid surfaces,
namely the size of the droplet and the contact angle, respectively. The effects of the polymer chain length and
the total number of particles were calculated by the many-body dissipative particle dynamics method. For the
spherical droplet containing the same number of particles, we show that its radius depends on the polymer chain
length. The radius of the droplet is also proportional to one-third power of the total number of particles for all
given chain lengths. For the hemispherical droplet, the contact angle increases with the number of particles in
the droplet, and this effect is relatively strong, especially for longer polymer chains. The effect of wettability of
the solid surface was also investigated by using polymerphobic (low-affinity) and polymerphilic (high-affinity)
surfaces. As the chain length increases, the contact angle on the low-affinity surface decreases, while that on
the hydrophilic surface increases. The simulation reveals that there is a critical affinity for the monomer on the
solid surface; above and below which the wettability increases and decreases as the molecular length increases,
respectively.
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I. INTRODUCTION

Microdroplet technology has been employed in applications
via microfluidic functionality in many fields, including chem-
istry, biology, and engineering [1]. In particular, the control of
wetting behavior on a solid surface is a very important research
topic that spans physics and engineering. It is well known
that microtextured or nanotextured hydrophobic surfaces can
become superhydrophobic [2]. Many plants and insects in
the natural world have used such superhydrophobic structures
effectively [3–6]. For example, a water strider could “walk”
on the water surface owing to its distinctive legs. The surface
of a lotus leaf shows strong hydrophobic property due to
the microscale bumps, thereby preventing dirt from adhering
to the leaf. Moreover, the microstructure of the spider silk
increases its ability to collect water. The interest to mimic
such natural structures is growing in the field of engineering,
and the study of microdroplets and wettability has attracted
attention in recent years.

Polymer droplets are especially useful in microdroplet
technology. Inkjet printing has emerged as an attractive
patterning technique for functional polymers. Because the
formed microdroplets enable high-resolution definition of
channel lengths in several micrometers, it has been used
in organic electroluminescence display devices and organic
transistors [7]. In regenerative medical engineering, the inkjet
technique is a promising biofabrication tool for artificial cells
and bones through the mapping of biological polymers [8,9].

Hence, inkjet printing using polymer droplets has been stud-
ied extensively as an important next-generation technology
[10–12]. For example, Wang et al. [10] evaluated the influence
of solution viscosity, ink volume, and contact angle in the
process of dewetting of inkjet-printed droplets of a conducting
polymer. They found that dewetting is determined by the
competition between reduced liquid thickness and increased
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liquid viscosity caused by water evaporation. Independently,
Léonforte and Müller [11] investigated the static and dynamic
properties of a polymer brush-liquid system. They also studied
the wetting behavior of polymer droplets with different contact
angles and on substrates that differ in softness. They found that
the surface and droplet compliance can be tuned independently
to the surface softness, and a wide range of wetting and defor-
mation behaviors can be induced by varying the droplet size.
Perelaer et al. [12] experimentally studied the spreading of
inkjet-printed droplets of a polystyrene and toluene solution on
solid dry surfaces. They showed that the in-flight evaporation
of the solvent depends on not only the vapor pressure but also
the viscosity of the solution, since a more viscous solution
leaves a smaller dried droplet on the substrate.

It is known that the properties of polymer melts strongly
depend on the chain length of the polymer (polymerization
degree) [13,14]. When the chains are sufficiently short to
remain unentangled in the melt, their dynamics can be
described by the Rouse model [13]. In this model, the single
chain diffuses according to Brownian motion of particles
connected by harmonic springs. This model can describe the
concentration-dependent terminal relaxation time, terminal
modulus, and diffusion coeffcient of semidilute short-chain
polymer melts. For example, the scaling relationships of the
diffusion constant D and the viscosity η with the chain length
N are written as D ∝ N−1 and η ∝ N .

On the other hand, when the molecular weight of the
polymer exceeds a certain critical value, Mc, the behavior of
polymer melt cannot be predicted by the Rouse model owing
to chain entanglement. In such systems, the transverse motion
of a polymer chain is restricted by the surrounding chains. As a
result, the viscosity of the polymer melt increases dramatically.
This concept leads to the reptation model [15,16]. In the
reptation regime, the corresponding scaling laws obtained are
D ∝ N−2 and η ∝ N3.

Therefore, the chain length is one important index used to
understand the behavior of polymer melts. Haine et al. [17,18]
studied the spreading dynamics of polymer droplets using
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molecular dynamics (MD) simulation. They found that the
diffusive behavior of the precursor foot is in good agreement
with the molecular kinetic model. In another study of the
polymer-based lubricant droplet spreading on a solid substrate,
Noble et al. [19] focused on the effects of the molecular
mass, molecular length, and functional end groups of the
lubricant and the substrate. The functional end groups of the
polymer were shown to play a critical role in droplet spreading.
However, various studies [17–21] have been performed over
the past few decades, but those incompletely reveal the effects
of the chain length and size of the polymer droplet on the
equilibrium properties, such as the droplet shape and contact
angle with a solid surface. Such a relationship is vital in
applications such as controlling the wettability and ink-jet
printing. In this paper, we performed molecular simulations
for droplets of polymers with various chain lengths and total
number of particles, both on the solid surface and in vacuum.
The relationship between the number of particles and the radius
of the droplet in vacuum was obtained. Then, we clarify the
effects of the number of particles and chain length on the
contact angle of a hemispherical droplet on a solid surface.

II. METHOD AND CONDITIONS

A. Many-body dissipative particle dynamics

To investigate the polymer droplet system, we employed
the many-body dissipative particle dynamics (MDPD) method
[22–25]. In the classical dissipative particle dynamics (DPD)
method [26–28], the interaction between the particles contains
only repulsive forces and reflects the mean force between two
coarse-grained particles [29,30]. However, the classical DPD
method fails to produce a sharp density difference in cases
including the vapor-liquid interface, the bubble formation,
and the capillary flow in a cylindrical tube. To overcome
this limitation, Warren [24] introduced the following attractive
term into the DPD:

FC
ij = aij

(
1 − |r ij |

rc

)
nij + bij

(
ρ̄i + ρ̄j

)(
1 − |r ij |

rd

)
nij .

(1)
Here, ρ̄i is the local density at the particle, and rc and rd

are cutoff distances. The first term in Eq. (1) represents an
attractive interaction, and the second term represents the many-
body effect, which behaves as a repulsive interaction. Hence,
the values of aij and bij are chosen to be negative and positive,
respectively. The local density is given by

ρ̄i =
∑
i �=j

15

2πr3
d

(
1 − |r ij |

rd

)2

. (2)

Warren [24] performed a simulation of pendant droplets
with the vapor-liquid interface using the MDPD method. He
reported that the shape obtained from simulation agrees with
the theoretical one. MDPD method has since been employed
in studies of the contact angle in capillary flow [31,32], liquid
droplets on solid surfaces [33,34], and bubble formation [35],
etc.

In the current MDPD simulations, we use reduced units for
the cutoff radius rc, the particle mass m, and the energy kBT ,
where T is the temperature and kB is the Boltzmann’s constant.

Hence, rc = m = kBT = 1. And the time unit is defined as
τ = √

mr2
c /kBT = 1.

B. Segmental repulsion potential

In the MDPD method, a soft potential is also used as
the interaction between particles. Therefore, it is known to
be unable to reproduce the entanglement effects [36,37]. To
capture the entanglement behavior of the polymer, an improved
segmental repulsion potential (mSRP) [38] was applied with
the soft DPD potential in our simulation. The entanglement
force (FE

kl) is given by

FE
kl =

{
aE

kl

(
1 − |dkl |2

dc

)
d̂kl, |dkl| � dc

0, |dkl| > dc

, (3)

where k and l represent bond indexes, FE
kl is the force acting

between bonds k and l separated by a distance dkl , aE is the
force constant, dc is the cutoff radius for the entanglement
force, dkl = dk − d l , and d̂kl = dkl/|dkl|. The position of
a bond is defined as the midpoint of the bond vector Pk .
Therefore, the distance between two bonds can be computed
as dkl = Pk − P l . Moreover, FE

kl is decomposed into particle
forces. For particles i and j in bond k, Fi = 0.5 FE

kl and Fj =
0.5 FE

kl . In our simulations, the cutoff radius dc and the force
constant aE

kl were set at 0.9 rc and 100 kBT/rc, respectively.

C. Simulation conditions

We prepared six systems that differ from each other in
the number of particles (N ), N = 1920, 3840, 7680, 15 360,
23 040, and 30 720. In each case, five different chain lengths
(Nc) were examined: Nc = 1, 2, 4, 8, and 16. For example,
Nc = 1 means monomers with a single particle and Nc =
2 means a dumbbell-shaped dimer molecule. Each particle
and its nearest-neighbor in the molecule are connected by a
harmonic spring with a spring constant of 100 kBT/r2

c , and the
equilibrium bond length is 0.86 rc. These values are widely
used in DPD simulations of the polymer [39–41]. The value
corresponds to the first peak of the radial distribution function
in the monomer solution.

Moreover, as shown in Fig. 1, two types of systems
were prepared: a spherical configuration [Figs. 1(a1), 1(a2),
and 1(a3)], and a hemispherical configuration on a solid surface
[Figs. 1(b1), 1(b2), and 1(b3)]. The solid wall is composed of
40 000 particles on a diamond lattice with a lattice constant
α = 0.5 rc. Therefore, we examined 60 simulations in total.

All simulations were performed in the NV T ensemble. In
the DPD simulation, the thermostat is achieved by pairwise
random and dissipative forces. These forces are coupled via
the fluctuation-dissipation theorem [27]. The noise amplitude
(σ ) and the friction coefficient (γ ) are parameters included
in dissipative and random forces, respectively. They satisfy
the σ = √

2γ kBT , which reproduce a canonical ensemble.
Hence, σ and γ were set at 3.0 and 4.5, respectively. The
temperature was set at 0.5 kBT to substantially eliminate the
effect of the thermal fluctuations. The total number of particles
(Ntotal) in the droplet was 1920 to 70 720, depending on the
droplet size. Particles in the polymer and the solid wall are
labeled by the letters P and S, respectively. In our simulation,
interaction parameters in Eq. (1) are described by aPP = −40
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FIG. 1. Snapshots of initial configuration of droplet systems (τ =
0). A spherical droplet system (a1) in the x-y plane view (a2) and in
the x-z plane (a3). A hemispherical droplet on a solid surface system
(b1) in the x-y plane (b2) and in the x-z plane (b3).

kBT/rc, aPS = −25 kBT/rc, aSS = 0 kBT/rc, and bPP = bPS

= bSS = 25 kBT/rc, which are representative values for the
solid-liquid-vapor coexisting system, such as a capillary flow
with a water-oil interface [31,32] and a droplet sliding across
micropillars [34]. Based on these studies, we use 0.75 rc and
0.005 τ as the cutoff radius dc for the repulsive conservation
force and 	t , respectively. Moreover, to investigate solid walls
of different wettability, when −25 kBT/rc is defined by the
polymer-neutral surface, the interaction parameter aPS was
set to −15 kBT/rc and −35 kBT/rc for polymerphobic and
polymerphilic surfaces, respectively. In our simulation, each
run is 5000 τ in duration in order to reproduce the equilibrium
droplet. The reported data are averaged over the last 500 τ of
simulation.

III. RESULTS AND DISCUSSION

A. Validation of simulation method

Some early studies [24,42,43] report that MDPD method
can reproduce the Laplace law. However, to satisfy the law
for the system reproduced by the MDPD method with the
SRP has not yet been verified. In this section, we describe
the validation of current simulation method by confirming the
droplet behaviors satisfy the Laplace law based on Tiwari and
Abraham’s study [44].

The Laplace law predicts a relationship between the
pressures inside and outside of a droplet at equilibrium. The

FIG. 2. Verification of Laplace law for the our MDPD model.
The vertical axis is a pressure difference (pin − pout) between inside
and outside of the drop, and the horizontal axis is a reciprocal of the
radius (R). The dashed line is the Laplace law prediction.

relationship is given by

pin − pout = 2σs

R
, (4)

where p is the pressure, the subscripts “in” and “out” represent
the region inside and outside of the droplet, respectively, σs is
the surface tension, and R is the radius of the droplet.

To establish the relationship between the pressure differ-
ence and 1/R, we examined eight simulations with 1920, 3840,
7680, 15 360, 23 040, 30 720, 46 080, and 61 440 particles,
respectively. The pressure is calculated by the virial equation:

p = ρkBT + 1

6V

∑
i

∑
j

r ij · FC
ij . (5)

Here, ρ and V are the density and the volume of droplet,
respectively. We chose the virial radius r to calculate the
pressure inside of the liquid droplet. This is 0.7 times as large
as the equilibrium radius R of the droplet. This procedure can
avoid the pressure fluctuations near the interface [44].

The simulation results obtained are shown in Fig. 2. The
pressure was computed based on averaging the instantaneous
values over 50 000 time steps. The pressure difference in-
creased in proportion to 1/R. The data were fitted to the linear
function [Eq. (4)]; the surface tension σs was 0.50 kBT/r2

c .
The simulation method satisfies the Laplace law; therefore,
the validity of the simulation method is proved.

B. Droplet radius

In the first series of simulations, we set the DPD particles to
form a spherical shape as shown in Fig. 1(a) and then computed
the radius of the polymer droplet to investigate the effects of
the chain length and system size on the radius of the droplet.
First, we calculated the density distribution by considering the
concentric spherical shells around the center of mass of the
droplet. Then, the density distribution is drawn by computing
the density of each shell. Here the distance between adjacent
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FIG. 3. An outline of the computational procedure of the droplet
radius. To calculate the density distribution, the concentric spherical
shells around the center of mass of the droplet is considered. Here
the distance between adjacent shells (dr) is set to 0.1. The density
distribution at N = 1920 and Nc = 1. We defined R as the radius
when ρ drops to half the value near the center of mass.

shells, dr , is set to 0.1. Figure 3 shows the density distribution
at N = 1920 and Nc = 1. The vertical axis is the density (ρ),
and the horizontal axis is the distance, r , from the center of

mass of the droplet. The value of ρ is almost constant (∼5.2)
for r < 4.0. When r becomes greater than 4.0, the density
decreases drastically. We defined R as the radius when ρ drops
to half the value near the center of mass (∼2.6 in this case).
For N = 1920 and Nc = 1, R is approximately 4.2.

We summarized the computation results in Fig. 4(a) by
plotting R against the number of particles N . As N increases,
R increases with Nc, as expected. The solid lines are the fitting
results using the following equation:

R(N ) = C × N1/3. (6)

Here, C is a constant. The value of 1/3 is chosen because the
volume of a spherical droplet is 4

3πR3. Therefore, independent
of the polymer chain length, the radius of the droplet is propor-
tional to N1/3. Since the effect of the system size (N ) on the
droplet radius is very weak, it is possible to predict the shape
and size of a polymer droplet by simulating a smaller system.

We computed the surface tension σ for varying chain
length as shown in Fig. 4(b). The surface tension decreases
exponentially when Nc increases. In this simulation, we
obtained that the surface tension of the droplet is proportional
to N−1

c . Figures 4(c) are equilibrium snapshots for N = 30 720.
As Nc increases, the droplet surface also becomes rougher.
Therefore, it suggests that increased roughness in the droplet
surface is indicative of higher capillary wave activity.

The droplet radius increases with increasing chain length.
The reason is that the equilibrium bond length is greater than
a nonbonded distance [see Fig. 5(a)]. Note that this general

FIG. 4. (a) Relationship between the droplet radius (R) and the number of the particles (N ). The solid lines are the fitting results in the
form of R(N ) = C × N1/3. (b) Equilibrium snapshots for N = 30 720. (τ = 5000) (b1) Nc = 1, (b2) Nc = 2, (b3) Nc = 4, (b4) Nc = 8,
(b5) Nc = 16. (c) Radial distribution functions of (b).
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FIG. 5. (a) The radial distribution functions g(r) depending on the chain length and (b) dependence of g(r) on location in the droplet.
(N = 30 720 and Nc = 1).

relationship is satisfied in many coarse-grained molecular
simulation studies. For example, the Kremer-Grest model
[45,46], a typical model for coarse-grained MD simulation,
satisfies this relationship. Even though R only changes slightly
between Nc = 1 and 2, it increases significantly when Nc = 4.
Moreover, subsequent doublings of the chain length produce
increasingly diminishing differences. Thus, the dependence of
R on Nc is expected to be an effect of a small molecule.

In order to clarify the reason for this, we calculated the radial
distribution function (RDF) as shown in Fig. 4(c). For all Nc

values, the sharp first peak of RDF arises at r ∼ 0.6 (Note:
it is smaller than the equilibrium bond length). However, the
second and third peaks are quite different between Nc � 2
and Nc � 4. The RDF is similar to that of a monoatomic
molecule (e.g., Argon) in the liquid phase. In this simulation,
five distinct peaks are observed for the r range from 0.0 to 3.2.

Meanwhile, when Nc � 4, the second and subsequent peaks
are not distinct. It suggests that long-order structures (r > 1.5)
are hardly formed as the chain length increases. A gap is
formed between the chains. Hence, the radius of the droplet
increases for longer chain length.

We also calculated the g(r) depending on the location in the
droplet as shown in Fig. 5(b). The g(r) near the center region
shows a sharp peak and then decays relatively rapidly for
r > 2.0. In the medium region, a first peak is narrow compared
with other locations. The g(r) near the surface shows some
sharp peaks, in other words, it decays most slowly. The result
suggests the ordering more pronounced near the free surface
of the droplet. This trend was observed in all sizes of droplets
in our simulation.

Moreover, the size of the droplet may be affected by
the radius of gyration (Rg), which is a function of Nc and

FIG. 6. Number of particles dependence of (a) the mean-square radius of gyration 〈Rg〉 and (b) the mean-square end-to-end distance 〈Re〉.
Circles and squares represent spherical and hemispherical droplet system, respectively.
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FIG. 7. Dependencies of (a) the mean-square radius of gyration 〈Rg〉 and (b) the mean-square end-to-end distance 〈Re〉 on location in the
droplet (N = 30 240 and Nc = 16). Circles and squares represent spherical and hemispherical droplet system, respectively. The 〈Rg〉 and the
〈Re〉 of bulk system are represented by dashed-dotted line.

included in the constant C in Eq. (6). It is further discussed in
the next section.

C. End-to-end distance and radius of gyration

In order to investigate the effect of the system size on
polymer length, we computed the mean square of the radius of
gyration 〈R2

g〉 and the mean square end-to-end distance 〈R2
e 〉.

The radius of gyration and the square end-to-end distance are
defined by

R2
g = 1

Nc

∑
i

|r i − rg|2 (7)

and

R2
e = |r1 − rNc

|2, (8)

respectively. Here, rg is a center of mass of a polymer chain.
As shown in Fig. 6, 〈R2

g〉 is nearly the same across all N

values for each given Nc, and it changes little between the
free spherical droplet and the hemispherical one on the solid
wall. 〈R2

e 〉 also seems to be independent of N . On the other
hand, the hemispherical droplet has slightly larger 〈R2

e 〉 than
the spherical droplet when Nc � 8. In conclusion, the behavior
of the polymer is not much affected by the system size.

For the freely jointed chain, 〈R2
e 〉 = 6〈R2

g〉. In our simu-
lation, 〈R2

e 〉/〈R2
g〉 ≈ 5 was obtained due to the lower values

of 〈R2
e 〉. This result indicates that the polymer cannot spread

sufficiently, owing to the vapor-liquid interface.
Next, we investigated dependencies of 〈Rg〉 and 〈Re〉 on

location in the droplet as shown in Fig. 7. Both 〈Rg〉 and
〈Re〉 are higher than values on bulk. Thus, we found that
each polymer chain is elongated compared with that in bulk
(polymer melt), and the stretching effect is weak near the
central region and the surface of the droplet. This trend was
observed in all Ns.

Finally, we examine the relationship between Rg and the
constant C in Eq. (6), as shown in Fig. 8. Since Rg is almost

constant for any given Nc [Fig. 6(a)], its value is taken as the
ensemble average for each Nc: Rg = 0.58, 1.01, 1.46, and 2.06
when Nc = 2, 4, 8, and 16, respectively. As a result, C ∝ R−1

g

is obtained. In other words, we can expect the radius of the
droplet to become saturated as Nc increases.

D. Contact angle

In the second series of simulations, we set the DPD particles
to form a hemispherical shape on a solid surface, as shown
in Fig. 1(b). Then, the contact angle (θ ) of the polymer
droplet is calculated for different chain lengths and system
sizes. To estimate the contact angle between a solid surface
and the droplet, we calculated the density distribution in the
same manner as for estimating the radius based on prior
studies [47–49]. First, the droplet is divided into thin layers
in the z direction, as shown in Fig. 9. Then, the density

FIG. 8. Relationship between the radius of gyration Rg and the
fitting constant C.
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FIG. 9. An outline of the computational procedure of the contact angle between a solid surface and a droplet. The droplet is divided into
thin layers in the z direction to calculate a density distribution. Here the distance between adjacent layers (dz) is set to 0.5. (a) The density
distributions at N = 1920 and Nc = 1. We determined a surface position in each layer when ρ drops to half the value at r = 0. (b) The contact
angle is computed from the angle between the circle and the solid surface at their intersection.

FIG. 10. (a) Relationship between the contact angle (θ ) and the number of the particles (N ). (b) Relationship between θ and N after a
correction. (c, d) Equilibrium snapshots for droplet on the solid surface for N = 30 720. (τ = 5000) (c) Nc = 1 of view in the x-z plane
(c1) and in the x-y plane (c2). (d) Nc = 8 of view in the x-z plane (d1) and in the x-y plane (d2). (d3) and (d4) are enlarged figures of (d1) and
(d2), respectively.
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FIG. 11. Relationship between the correction contact angle and the number of the particles when two types of an affinity with the solid
surface such as a polymerphobic surface (a) and polymerphilic surface (b). Interaction parameters aPS in polymerphobic and polymerphilic
surfaces were set at −15 kBT and −35 kBT , respectively.

distribution is obtained by computing the density in each
layer at different distances from the central axis. The distance
between adjacent layers, dz, is set to 0.5. Figure 9(a) shows
the density distributions at N = 1920 and Nc = 1. The vertical
axis is the density ρ, and the horizontal axis, r , is the distance
from the central axis of the droplet. Similar to the definition of
R in Sec. III A, we determined a surface position in each layer
when ρ drops to half the value at r = 0. These positions in each
layer are fitted to a circle as shown in Fig. 9(b). θ is computed
from the angle between the circle and the solid surface at their
intersection. When N = 1920 and Nc = 1, θ is about 86.6◦.

Using the method, we computed 30 contact angles for
different conditions, and summarized them in Fig. 10(a). First,
we noticed that the value of θ fluctuates as the chain length N

increases. When Nc = 1, the contact angle is almost constant
(∼84◦) for all values of N . On the other hand, as Nc increases
beyond 4, smaller droplets (N < 10 000) have lower θ than
larger droplets. This means that the size of the system has
a strong effect on the contact angle, particularly when Nc is
large. Therefore, a large number of particles (N > 15 000) are
needed when simulating the contact angle of droplets, so as
not to underestimate it (i.e., more polymerphilic) for longer
chain lengths.

Next, we found that the contact angle depends on the chain
length. At the highest N value, θ is about 88◦ when Nc = 1, and
only about 80◦ at Nc = 16. The dumbbell-shaped molecules
(Nc = 2) have an intermediate contact angle (θ ∼ 84◦). If N

is sufficiently large, θ is almost constant when Nc � 4. These
results indicate that a droplet composed of a monoatomic
molecule has less affinity with the solid surface compared with
that of polymer molecule with the same number of monomers.

Generally, the bulk domain in a droplet is more stable
energetically compared to the interface domain. Hence,
molecules on the droplet surface fluctuate significantly,
especially when Nc is large [Figs. 10(c) and 10(d)]. Polymers
near a solid surface contact [Figs. 10(d3) and 10(d4)] spread
onto the surface via the formation of a precursor foot [17] to

reduce the surface energy, as the solid-liquid surface is lower in
energy than the vapor-liquid one. Taking this into account, we
corrected the contact angle by fitting using points except for
the distance in the interaction from the solid wall. In Fig. 10(b),
the contact angles for Nc = 1 remain almost unchanged
after the correction, whereas the others increase to values
similar to when Nc = 1(85◦ < θ < 90◦). Such significant
changes imply that the polymerphilic behavior in a polymer
droplet is governed by the polymer molecules in the vicinity
of the surface.

Finally, we also compared the correction contact an-
gle when the surface is polymerphobic, polymerphilic, or
polymer-neutral, in order to evaluate the effect of wettability.
The results are summarized in Fig. 11. Similar to the neutral
case, the contact angles on the other two surfaces also depend
on the polymer chain length Nc. As Nc increases, θ decreases
for the polymerphobic surface, on which the contact angles
at Nc = 1, 2, 4, 8, and 16 are 108◦, 97◦, 93◦, 92◦, and
89◦, respectively [Fig. 11(a)]. In contrast, as Nc increases,
θ increases for the polymerphilic surface. The contact angles
in Nc = 1, 2, 4, 8, and 16 are calculated as 74◦, 78◦, 79◦, 79◦,
and 81◦, respectively [Fig. 11(b)]. Altogether, the effect of the
affinity with the solid surface increases when the chain length
of the polymer increases.

On the polymerphilic surface, the contact angle increases
(i.e., the wettability decreases) as the chain length increases.
This result is consistent with early studies [17,19] of such
spreading. As Nc increases beyond a critical value, the
spreading is inhibited by molecular entanglement. In contrast,
polymers near the polymerphobic solid surface come into
contact with the surface and spread on it via the formation of a
precursor foot to reduce the surface energy. Consequently, the
contact angle decreases as Nc increases, implying increased
affinity between the droplet and surface. Hence, we found that
there is a critical affinity for the monomer on the solid surface;
above and below which the wettability increases and decreases
as the molecular length increases, respectively. However, a
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contact angle is not reversed between polymerphobic and
polymerphilic walls, but it is expected to asymptotically
approach a certain value.

IV. CONCLUSION

In conclusion, we performed MDPD simulation for the
spherical droplet in vacuum and hemispherical droplet on solid
surfaces, in order to investigate the effects of the chain length
of the polymer (Nc) and the total number of particles (N ) on
the static behavior of the droplet, namely the radius and the
contact angle.

First, we described the validation of the MDPD method with
the entanglement force by confirming the droplet behaviors
satisfy the Laplace law. As a result, the pressure difference
increased in proportion to 1/R. The simulation method satis-
fies the Laplace law; therefore, the validity of the simulation
method was proved.

For the spherical droplet with a given N value, the radius of
the droplet increased with Nc. For a given Nc value, this radius
was proportional to N1/3. Since the latter scaling relationship
indicates a weak dependency on N , the size and shape of
a polymer droplet can be predicted by simulating a smaller
system (N < 2000).

We also calculated the radial distribution function g(r)
depending on the location in the droplet. The g(r) near

the center region decayed relatively rapidly, meanwhile that
near the surface decayed most slowly. The result suggests
the ordering more pronounced near the free surface of the
droplet. Additionally, we investigated dependencies of the
mean square of the radius of gyration 〈Rg〉 and the mean-square
end-to-end distance 〈Re〉 on location in the droplet. Both 〈Rg〉
and 〈Re〉 were higher than values in bulk. Thus, we found
that each polymer chain is elongated compared with that in
bulk (polymer melt), and the stretching effect is weak near the
central region and the surface of the droplet.

For the hemispherical droplet on the solid surface, the
simulated contact angle (θ ) for a comparatively small droplet
(N < 10 000) was lower than that for a large droplet. This
means that the size of the system has a comparatively stronger
effect on the contact angle. This trend was particularly
conspicuous when Nc is large. These results suggest that a
large number of particles (N > 15 000) have to be included
to calculate the proper contact angle, otherwise this angle will
be underestimated (more polymerphilic), especially when the
chain length is long. We also studied the effect of wettability of
the solid surface by using polymerphobic and polymerphilic
surfaces. As Nc increases, θ decreases on the polymerphobic
surface and increased on the polymerphilic one. We found
that there is a critical affinity for the monomer on the solid
surface; above and below which the wettability increased and
decreased as the molecular length increased, respectively.
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