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We discuss a theoretical framework to define an optimal subgrid closure for shell models of turbulence.
The closure is based on the ansatz that consecutive shell multipliers are short-range correlated, following the
third hypothesis of Kolmogorov formulated for similar quantities for the original three-dimensional Navier-
Stokes turbulence. We also propose a series of systematic approximations to the optimal model by assuming
different degrees of correlations across scales among amplitudes and phases of consecutive multipliers. We show
numerically that such low-order closures work well, reproducing all known properties of the large-scale dynamics
including anomalous scaling. We found small but systematic discrepancies only for a range of scales close to the
subgrid threshold, which do not tend to disappear by increasing the order of the approximation. We speculate that
the lack of convergence might be due to a structural instability, at least for the evolution of very fast degrees of
freedom at small scales. Connections with similar problems for large eddy simulations of the three-dimensional
Navier-Stokes equations are also discussed.
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I. INTRODUCTION

Three-dimensional turbulence is a multiscale phenomenon
triggered when the nonlinear transport terms in the Navier-
Stokes (NS) equations are much more intense than the viscous
linear damping [1]. The control parameter is given by the
Reynolds number, Re = u0l0/ν, made out of the typical root
mean square velocity, u0, the typical length scale, l0 and
the kinematic viscosity, ν. It is an empirical fact that in the
turbulent regime the flow develops a dissipative anomaly:
a Re-independent energy transfer, from the scale where the
external forcing is acting till the viscous range. The energy
transfer mechanism is characterized by anomalous scaling
laws and by a highly non-Gaussian and intermittent statistics
[1]. It is fair to say that we do not yet possess either the
analytical or the numerical tools to fully quantify turbulence
for three-dimensional flows.

Shell models provide a natural playground for funda-
mental studies of developed turbulence [1–4]. These models
allow accurate numerical simulations and possess nontrivial
properties of the Kolmogorov-Obukhov theory for turbulence
at high Reynolds numbers: a forward energy transfer, a
dissipative anomaly, and intermittency with anomalous scaling
similar to what observed for the original three-dimensional NS
equations. The idea is to build simple models sharing the key
statistical properties of the turbulent energy cascade. In this
paper, we focus on the Sabra shell model [5] (a modified ver-
sion of the Gledzer-Ohkitani-Yamada model [2,6,7]), which is
obtained by reducing dynamics to a discrete sequence of shells
|k| = kn in the Fourier space for the geometric progression
of wave numbers kn = k0λ

n, n = 1,2,3, . . . (we use k0 = 1
and λ = 2). The turbulent “flow” is described by complex
velocity variables un(t), which mimic the velocity increments
at the corresponding shells, un ∼ δ�v = v(�) − v(0). Thus, the
shell variable un characterizes the velocity fluctuation at scale
� ∼ 1/kn.

One of the main theoretical and applied challenges in
the theory of turbulence consists in closing the equations

of motion on a coarser grid, i.e., to derive a model for the
small-scale degrees of freedom to be used to evolve the
variables at large scales. The problem is key for large eddy
simulations (LES), a set of applied numerical tools meant
to reduce the computational costs to simulate high Reynolds
number turbulence [8–11]. The problem is also key from
a theoretical point of view, because, if successful, would
imply a complete control on the energy-transfer mechanism
at all scales. The main difficulties to accomplish the goal
for the three-dimensional NS case are connected to the
extremely complicated functional and statistical dependency
of the unresolved subgrid variables from the resolved ones,
the legacy of the strong nonlinear character of the dynamical
evolution together with the strong nonlocal coupling in both
real and Fourier space of the original equations. In fact, despite
many advancements, the problem of finding an optimal subgrid
model to be applied in LES is considered still open.

Our aim here is to show that this task can be accomplished
for the Sabra shell model in a way that accurately describes
the statistics of subgrid scales. The good news is that the
simplified structure of the nonlinear terms allows for a precise
theoretical and numerical analysis of the statistical coupling
among resolved and unresolved shells. As a result, it is
possible to define what would be the optimal closure, in
theory. The bad news is that the problem is not of easy
implementation even in this case and that it is difficult to
figure out a systematic protocol of more and more complex
subgrid models which converge toward the “optimal” one.
The main idea is to close the subgrid dynamics in terms of
multiscale correlations among multipliers, i.e., ratios among
consecutive shell variables [12–18]. The approach goes back
to the third hypothesis of Kolmogorov [1], made to disentangle
universal small-scale fluctuations from nonuniversal coupling
with the large-scale motion. Differently from the original
case of NS equations, multipliers in shell models follow a
simple nonlinear dynamical evolution. It is therefore possible
to manipulate them and to make predictions [12,13]. It turns
out that it is crucial to distinguish the correlations among
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their amplitude and their phases. In this paper we first show
how to define a formal optimal subgrid model. The model
is still too complicated to be implemented in practice, being
defined in terms of the conditional probability of a few subgrid
variables with all resolved degrees of freedom, a task out of
reach even for simplified dynamics as for the case of shell
models. Then we show how to develop a series of simple
approximations for the subgrid closure that work well; i.e., they
are able to quantitatively reproduce the large-scale dynamics
except for a short range of shells close to the cutoff. We also
show that the observed deviations are Reynolds independent,
i.e., the discrepancies remain localized to a limited number
of scales close to the cutoff independently of the intensity
of turbulence. Unfortunately, numerics demonstrates that the
proposed systematic protocol of more and more refined
closures denies a controllable convergence to the optimal
model at small scales. We speculate that this might be due to
nontrivial strong sensitivity of the structure of the attractor on
the small-scale closure, a sort of breaking of ergodicity at fast
small-scale degrees-of-freedom. A comment on the potential
connections with the equivalent problem to find an optimal
subgrid closure for LES of turbulence is also proposed.

The paper is organized as follows. In Sec. II we discuss the
setup on how to define the optimal subgrid model for a general
shell model. In Sec. III we show how to implement the third
hypothesis of Kolmogorov to define a systematic universal
closure for the subgrid model. In Sec. IV we show how this
procedure works in simple shell models where the dynamical
evolution is not intermittent. In Sec. V we formulate it for the
case of the Sabra model, one of the most popular and studied
shell models for turbulence. In the same section, we propose
and apply a set of approximations to the optimal closure for the
Sabra model and discuss their pluses and minuses. Conclusions
follow in Sec. VI.

II. REDUCED SYSTEM FOR A PROBABILITY DENSITY

Shell models are dynamical systems which mimic the
fluid dynamics by considering a geometric progression of
wave numbers, kn = k0λ

n, for some fixed λ > 1 and n =
1,2, . . . ,N . Each wave number defines a shell |k| = kn in
Fourier space represented by one or several shell variables,
which describe intensity of the flow at a corresponding scale.
Characteristic scale in physical space can be defined as
� ∼ 1/kn. Thus, n ∼ 1 corresponds to large scales � ∼ 1/k0,
while n ∼ N yields the smallest scales of the system.

For simplicity, we start by assuming real shell variables
un and considering a model with only the nearest-shell
interaction. These assumptions are made in order to present
the derivations in a simple and clear form, and then we extend
the results to general shell models in Sec. V. Equations of our
simple shell model read

u̇n = knQn − νk2
nun, n = 1, . . . ,N, (1)

with the quadratic nonlinear term coupling only the nearest
neighbors:

Qn = Q(un−1,un,un+1) =
∑

i,j∈{−1,0,1}
aijun+iun+j . (2)

A boundary condition must be supplied for the initial shell

u0 = u0(t). (3)

The total number of shells N is assumed to be large enough
leading to the strong decay due to viscosity at small scales, i.e.,
uN ≈ 0. Note that we use no explicit forcing term in Eq. (1),
with the excitation performed by the boundary condition (3) as
it is typical for realistic flows. The nonlinear term in (2) must
be chosen such that the system possesses an inviscid invariant
E = 1

2

∑
u2

n called the energy.
The number of shells involved in the dynamics depends

on viscosity ν. Considering the integral scales of the system
L ∼ 1/k0 ∼ 1 and T ∼ 1, the Reynolds number is defined
simply as Re = 1/ν. In statistically stationary regime with
large Reynolds numbers, one can distinguish three ranges
of scales with qualitatively different behavior [1]. The range
of large scales, n ∼ 1, is called the forcing range, as it is
influenced by the boundary conditions producing the energy
input into the system. The energy dissipates at small scales
n � nK of the viscous range. The estimate

nK ≈ − 3
4 logλ ν (4)

can be obtained by comparing � ∼ 1/kn with the Kolmogorov
scale η = (ν3/ε)1/4, where ε ∼ 1 is the rate of energy dissi-
pation [1]. For large Reynolds numbers (small viscosity) the
forcing range, where energy is injected, is separated from the
viscous range, where it dissipates. The intermediate range with
L � 1/kn � η is called the inertial interval. In the inertial
interval, both forcing and viscosity can be neglected leading
to a positive mean energy flux ε from larger to smaller scales,
called the energy cascade.

We will consider the evolution of a statistical ensemble,
corresponding to some probability distribution as initial
condition. We denote by P (u1, . . . ,uN ; t) a probability density
of the shell variables at time t . Time dependence of this
distribution is governed by the continuity equation

∂P

∂t
+

N∑
n=1

∂

∂un

(u̇nP ) = 0. (5)

Our goal is to derive a reduced model for a given sequence of
shells variables, u1, . . . ,us , where s is any shell number from
the inertial interval. The latter means that the viscous term in
Eq. (1) can be neglected for the corresponding shells with

u̇n = knQn, n = 1, . . . ,s. (6)

The reduced probability distribution is defined as the result of
integration over all shells with n > s:

Ps(u1, . . . ,us ; t) =
∫

P (u1, . . . ,uN ; t)
N∏

m=s+1

dum. (7)

Similar integration applied to Eq. (5) yields

∂Ps

∂t
+

N∑
n=1

∫
∂

∂un

(u̇nP )
N∏

m=s+1

dum = 0. (8)

The terms with the derivatives ∂/∂un for n = s + 1, . . . ,N

vanish after the integration with respect to un. For the other
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terms, we write P = (P/Ps)Ps and substitute in (6). The
resulting equation becomes

∂Ps

∂t
+

s∑
n=1

∂

∂un

(knRnPs) = 0, (9)

where

Rn(u1, . . . ,us ; t) =
∫

Qn

P

Ps

N∏
m=s+1

dum. (10)

Here we specified that the functions Rn may depend on all
shell variables u1, . . . ,us and time, due to the corresponding
dependence of P and Ps . The key point is to realize that Eq. (9)
describes the evolution of the probability density for a reduced
dynamical system:

u̇n = knRn, n = 1, . . . ,s. (11)

Equation (11) will be our coarse-grained system when we
obtain closed expressions for the right-hand sides in (10) as
functions of the variables u1, . . . ,us .

The same approach can be followed for the full Navier-
Stokes equations; see Ref. [9, Chap. 13.5.6]. The main
advantage given by shell models is that they have only local
or quasilocal interactions among consecutive shells. Indeed,
the factor Qn = Q(un−1,un,un+1) does not depend on the
integration variables in (10) for those shells with n < s,
while Qs = Q(us−1,us,us+1) depends on us+1. Hence, the
integration in (10) can be carried out using (7) and leading
to the explicit expressions

Rn =
{

Qn, n = 1, . . . ,s − 1;∫
Qs

Ps+1

Ps
dus+1, n = s.

(12)

Here Ps+1(u1, . . . ,us+1; t) is defined by the expression analo-
gous to (7). We see that the original system (6) and the reduced
system (11) and (12) differ only by the last equation. This is
natural because the nonlinear term Qs is the only one that
depends on the unknown shell variable us+1. Thus, the only
missing component of the reduced system is the unknown
integral expression in Eq. (12). In the jargon of LES the subgrid
model is influencing the explicit dynamical evolution of only
one resolved variable (but still depends on the correlations
with all of them).

In general, one needs to know the whole distribution
Ps+1(u1, . . . ,us+1,t) to compute Rs in (12). The main idea
of this paper is that the form of the function Rs is in fact
universal in the developed turbulent dynamics, as suggested
by numerical simulations and some theoretical considerations
described below. This observation is central for our work and
provides the subgrid model (12) in closed form.

III. KOLMOGOROV’S THIRD HYPOTHESIS AND
UNIVERSALITY OF THE REDUCED EQUATIONS

In 1962 Kolmogorov [19] conjectured that the statistics of
velocity increment ratios (multipliers) δ�v/δ�′v is universal
and depends only on the scale ratio �/�′ in the inertial
interval of homogeneous isotropic hydrodynamic turbulence.
This conjecture, called the third Kolmogorov hypothesis, was
confirmed both numerically and experimentally [1,20–26].

For shell models, this conjecture implies that the probability
distribution of multipliers zn = un/un−1 is universal and does
not depend on n in the inertial interval, which agrees very well
with numerical simulations for the Sabra shell model [13]. Fur-
thermore, Kolmogorov assumed that the multipliers for widely
separated shells are statistically independent. Indeed, the
distribution of multipliers appears to be short-range; i.e., cor-
relations between zn and zn+j decay rapidly with increasing j .

The factor in the integral expression (12),

Ps+1

Ps

dus+1 = Pcond(us+1|us, . . . ,u1; t)dus+1, (13)

is by definition the conditional probability of us+1 for
given us, . . . ,u1 at time t . Note that there is a one-to-one
correspondence between the shell variables u1, . . . ,us (with
given boundary condition for u0) and the multipliers z1, . . . ,zs

in the case when all of them are nonzero. The singular subset,
when one of the variables vanishes, has zero measure, and it
is not important for our probabilistic analysis. Similarly, there
is one-to-one correspondence between the shell variable us+1

and the multiplier zs+1 for given u1, . . . ,un (or z1, . . . ,zn).
Hence, the change of variables from un to zn = un/un−1 yields
the conditional probability for shell variables in terms of the
conditional probability for multipliers as

Pcond(us+1|us, . . . ,u1; t)dus+1

= P̃cond(zs+1|zs, . . . ,z1; t)dzs+1. (14)

The third Kolmogorov hypothesis for the developed turbulent
regime implies that the function

P̃cond(zs+1|zs, . . . ,z1; t) = P̃uni(zs+1|zs,zs−1, . . .) (15)

is universal and time independent, such that it is uniquely
determined for a given shell model. Also, P̃uni must have short-
range dependence on its arguments; i.e., it depends essentially
only on a few neighboring shells zs,zs−1, . . . with very weak
dependence on zn for smaller n. From now on, we will use the
arguments written as zs,zs−1, . . . to indicate such a short-range
dependence.

Note that Eqs. (14) and (15) do not necessarily imply
the universality of Pcond(us+1|us, . . . ,u1; t). This is because
the correlations between the shell variables un extend to the
whole range of scales, and, hence, Pcond may depend on the
first (large scale) shells and on the boundary conditions.

Using Eqs. (13)–(15) and (2) in (12), yields

Rs(us,us−1, . . .)

=
∫

Q(us−1,us,us+1)P̃uni(zs+1|zs,zs−1, . . .) dzs+1. (16)

Since Q in (2) is a quadratic function of its arguments, we can
write

Q(us−1,us,us+1) = u2
sQ

(
z−1
s ,1,zs+1

)
. (17)

Using this expression in (16) provides the final expression

Rs(us,us−1, . . .) = u2
s R̃s(zs,zs−1, . . .), (18)

R̃s(zs,zs−1, . . .)

=
∫

Q
(
z−1
s ,1,zs+1

)
P̃uni(zs+1|zs,zs−1, . . .) dzs+1. (19)
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The universality of P̃uni automatically implies the universality
of the reduced system function Rs . Furthermore, the expres-
sions show that Rs is a homogeneous function of its arguments
of degree 2, just like the original nonlinearity Qs . Short-range
dependence of P̃uni(zs+1|zs,zs−1, . . .) on its arguments leads
to the similar property for Rs(us,us−1, . . .): this function
depends essentially on a few variables us,us−1, . . ., while the
dependence on un becomes very weak with decreasing n.

We arrived to the important and rigorous conclusion that
the third Kolmogorov hypothesis yields the universal law (18)
and (19) describing the dynamics of the last shell us in the
system (11) and (12). This deterministic dynamical system
governs the evolution of the reduced probability density Ps in
Eq. (9) in the developed turbulent regime.

Note that the standard LES formulation of the NS equations
involves modeling the (effective) turbulent eddy viscosity
[8–10,27]. Such viscosity can be introduced explicitly in terms
of velocity field or defined with renormalization techniques;
see, e.g., Refs. [28,29]. For example, it is defined in terms of
the rate-of-strain tensor in the Smagorinsky model [30]. As a
result, the effective viscous term is a homogeneous function
of degree 2 in the velocity field. Such an observation puts
our closure for shell models in direct relation with the LES
approach: the homogeneous function Rs can be seen as a
generalized term that includes the turbulent eddy viscosity.
The idea of our work is to go beyond the concept of effective
viscosity focused on the process of energy dissipation, by
modeling a closure that describes the actual statistics at subgrid
shells. As such, the proposed analysis of subgrid closures
in shell models becomes a useful theoretical tool for testing
optimal strategies, which may be potentially extended to the
LES schemes for the NS equations.

IV. APPLICATION TO THE DESNYANSKY-NOVIKOV
SHELL MODEL

Typical models with simple first-neighbor coupling as (2)
develop a nonchaotic (nonturbulent) behavior. However, we
still can use such models for demonstrating basic principles of
the reduction, before considering more sophisticated models
in the next section. Let us consider the Desnyansky-Novikov
model [31,32] defined by the nonlinear term of the form

Q(un−1,un,un+1) = u2
n−1 − λunun+1. (20)

The model possesses the energy E = 1
2

∑
u2

n as an inviscid
invariant and has a nonchaotic time evolution. Solutions of
equations (1) develop a power-law tail

un ≈ ak−1/3
n (21)

in the inertial interval (Fig. 1). Here a > 0 is an arbitrary factor
generally depending on time, which is related to the energy
flux from large to small scales. Such a tail can be interpreted
as a shock wave for a continuous representation of the model
[33], in close analogy with the Burgers equation.

Though the shell model dynamics is regular, the Kol-
mogorov hypothesis holds in the inertial interval. As follows
from Eq. (21), all the multipliers

zn = un

un−1
= λ−1/3 (22)

1 3 5 7 9 11 13 15 17 19
-10

-8
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-4

-2

0

FIG. 1. Black lines with crosses are solutions of the full
Desnyansky-Novikov model at times t = 0,1,2,3 (lower curves
correspond to larger times). Red lines with circles show corresponding
solutions for the reduced system. The dashed line marks the slope
∝k−1/3

n in the inertial interval.

are constant. The corresponding universal probability density
becomes the Dirac delta function as

P̃uni(zs+1|zs, . . .) = δ(zs+1 − λ−1/3). (23)

Relation (19) with Q from (20) yields

R̃s =
∫ (

1

z2
s

− λzs+1

)
δ(zs+1 − λ−1/3) dzs+1 = 1

z2
s

− λ2/3.

(24)

Finally, we find the reduced system function from (18) as

Rs(us,us−1) = u2
s−1 − λ2/3u2

s . (25)

The reduced system (11), (12) becomes

u̇n =
{

kn

(
u2

n−1 − λunun+1
)
, n = 1, . . . ,s − 1;

ks

(
u2

s−1 − λ2/3u2
s

)
, n = s.

(26)

For a numerical test, we consider the Desnyansky-Novikov
model with n = 20 shells, viscosity ν = 10−7, and wave
numbers kn = λn with λ = 2. As a boundary condition, we
take u0 = 0 and consider a decaying solution from the initial
data un(0) = k

−1/3
n . The solution is shown by black lines with

crosses in Fig. 1. It has viscous range around the shell 17
and the power-law dependence (21) in the inertial interval
4 � n � 15. The reduced system (26) was integrated with
s = 8 shells, and the numerical results are presented in Fig. 1
by red circles demonstrating an excellent match with the full
model solution.

V. APPLICATION TO THE SABRA SHELL MODEL

It is straightforward to extend the results of Secs. II and III to
more general shell models, where shell variables are complex
numbers as in the GOY or Sabra shell models [5–7] or defined
in term of sets of variables (vectors) [34–37]. Equations of
motion for such models have the same structure (1), but the
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nonlinear term Qn may depend on several shells from each
side.

In this section, we formulate the reduction for the Sabra
shell model [5], which is characterized by complex shell
variables un ∈ C. The nonlinear term Qn in (1) describes the
interaction with two neighbors given by

Qn = Q(un−2, . . . ,un+2)

= i(λun+2u
∗
n+1 + bun+1u

∗
n−1 − cλ−1un−1un−2), (27)

where the shells u0 and u−1 must be specified by boundary
conditions. The choice c = −1/λ and b = −1 − c corre-
sponds to the so-called 3D regime and leads to the two
inviscid invariants: the energy E = 1

2

∑ |un|2 and the helicity
H = 1

2

∑
(−1)nkn|un|2.

The probability density of this system evolves under the
continuity equation written similarly to (5) as

∂P

∂t
+

N∑
n=1

[
∂

∂an

(ȧnP ) + ∂

∂bn

(ḃnP )

]
= 0, (28)

where we denoted un = an + ibn. The analogous derivation
as in Sec. II yields the description for the reduced probability
distribution Ps(u1, . . . ,us) in the form

∂Ps

∂t
+

N∑
n=1

[
∂

∂an

(knAnPs) + ∂

∂bn

(knBnPs)

]
= 0, (29)

where s is a fixed shell number from the inertial interval, and
the functions An + iBn = Rn(u1, . . . ,us) are defined below.
For complex variables un, this equation corresponds to the evo-
lution of probability density for the reduced dynamical system

u̇n = knRn, n = 1, . . . ,s. (30)

Similarly to Eqs. (12) and (13) one derives

Rn =
{
Qn, n = 1, . . . ,s − 2;

〈Qn|us,us−1 . . .〉, n = s − 1,s,
(31)

where the first s − 2 equations of the shell model remain
unchanged. The last two equations are given by the conditional
averages

〈Qn|us,us−1 . . .〉 =
∫

QnPcond(us+2,us+1|us, . . . ,u1; t)

×
s+2∏

m=s+1

dam dbm. (32)

Again, our construction shows that the subgrid scheme is given
by a deterministic system of equations. The time independence
and universality of this conditional average follows from
the Kolmogorov hypothesis formulated for multipliers as we
demonstrate below.

Let us introduce the complex multipliers zn ∈ C as [12,13]

zn = wne
i	n, wn =

∣∣∣∣ un

un−1

∣∣∣∣,
	n = arg un − arg un−1 − arg un−2. (33)

Here the phases 	n are chosen to be invariant under the phase
symmetry

un �→ une
iθn , θn = θn−1 + θn−2, n = 1,2, . . . , (34)

which is an analog in the Sabra model of the physical space
homogeneity [5]. The combination of phases given by 	n

is important because it is strictly connected to the existence
of a mean forward energy cascade [see expression (48) and
discussion thereof]. It is easy to see that there is one-to-one
correspondence between the multipliers z1, . . . ,zs and the
shell variables u1, . . . ,us with u0 and u−1 given by boundary
conditions (except for a zero-measure subset when some
un = 0). Thus, an argument similar to the one used in Eqs. (14)
and (15) can be applied to the conditional probability Pcond in
(32). Namely, one can use the third Kolmogorov hypothesis
for expressing this function as

Pcond(us+2,us+1|us, . . . ,u1; t)
s+2∏

m=s+1

dam dbm

= P̃uni(zs+2,zs+1|zs, . . .)
s+2∏

m=s+1

dxm dym, (35)

where we denoted zn = xn + iyn and P̃uni is a universal
function describing the conditional distribution for multipliers
in the developed turbulent regime. The function P̃uni is
expected to have a short-range dependence on its arguments;
i.e., the dependence on zn for n � s gets very weak with
decreasing n. The universality property was thoroughly studied
numerically in Refs. [12,13].

According to (31) the reduced system (30) contains the two
unknown functions on the right-hand sides, Rs−1(us,us−1, . . .)
and Rs(us,us−1, . . .). Using the explicit form (27) of the
nonlinear term in the conditional average (32) for n = s − 1
yields

Rs−1 = 〈Qs−1|us,us−1 . . .〉
= i(λu∗

s 〈us+1|us,us−1 . . .〉 + busu
∗
s−2 − cλ−1us−2us−3)

= i(λ|us |2ei arg us−1〈zs+1|zs,zs−1 . . .〉
+ busu

∗
s−2 − cλ−1us−2us−3), (36)

where we used (33) and the fact that the conditional
average for given us,us−1, . . . is equal to the conditional
average for given zs,zs−1, . . .. Similar computation for Rs

yields

Rs = 〈Qs |us,us−1 . . .〉
= i(λ〈us+2u

∗
s+1|us,us−1 . . .〉 + bu∗

s−1〈us+1|us,us−1 . . .〉
− cλ−1us−1us−2)

= i(λ|us |us〈|zs+1|2zs+2|zs,zs−1 . . .〉
+ b|us−1|us〈zs+1|zs,zs−1 . . .〉 − cλ−1us−1us−2). (37)

Combining (36) and (37), we write the final expressions for
the reduced system as

Rs−1(us,us−1, . . .) = i(λ|us |2ei arg us−1A1 + busu
∗
s−2

− cλ−1us−2us−3),

Rs(us,us−1, . . .) = i(λ|us |usA2 + b|us−1|usA1

− cλ−1us−1us−2), (38)
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FIG. 2. Probability density functions of (a) speed multipliers wn

and (b) phases 	n. (c, d) Corresponding correlation coefficients
as functions of shell separation j . Each panel shows five curves
corresponding to n = 13, . . . ,17. These curves collapse to a scale-
invariant universal distribution.

where

A1 = 〈zs+1|zs,zs−1 . . .〉, A2 = 〈|zs+1|2zs+2|zs,zs−1 . . .〉.
(39)

By construction, A1 and A2 are functions of zs,zs−1, . . .

or, equivalently, homogeneous functions of zero degree with
respect to shell variables us,us−1, . . .. As a result, the functions
Rs−1 and Rs in (38) are homogeneous of degree 2 with
respect to shell variables un. Note that the multipliers in our
approach are used for justification of the universality, but the
final expressions can be written in terms of the original shell
variables un.

A. Simple subgrid models

For computing the statistics of multipliers, we performed a
single long-time simulation with the intershell ratio λ = 2 and
the viscosity ν = 10−12 (the viscous range starts around nK ≈
30) and constant boundary conditions with u0=u−1/2=1+i.
All the results in this section are obtained using 106 samples
(u1, . . . ,uN ) equally spaced in time. Figures 2(a) and 2(b)
show the PDFs for the absolute values wn = |zn| and phases
	n = arg zn for different n, confirming the scale invariance of
the distribution for multipliers in agreement with earlier results
[12,13]. Figures 2(c) and 2(d) demonstrate the corresponding
correlation functions confirming the short-range property, i.e.,
a rapid decay of correlations with the shell separation. The
correlation is larger for phases than for absolute values.
The main consequence is that, with such rapidly decaying
correlations, one may hope to obtain a reasonably accurate
approximate subgrid model by keeping very few multipliers
in the conditional averages (39).

In this section, we introduce three low-order approxi-
mations for the functions (39) that uniquely determine the
corresponding subgrid models given by (30), (31), and (38).

The first model will be denoted by SMK and called the
Kolmogorov closure. It is given by the probability function

P̃uni(zs+2,zs+1) = δ(zs+2 − iλ−1/3) δ(zs+1 − iλ−1/3). (40)

Here the product of Dirac delta functions simply means that
both multipliers have deterministic absolute values ws+2 =
ws+1 = λ−1/3 according to the Kolmogorov scaling law,
and their phases 	s+2 = 	s+1 = π/2 are fixed at the most
probable values; see Fig. 2(b). In this case, expressions (39)
yield

SMK : A1 = iλ−1/3 ≈ 0.79i, A2 = iλ−1 = 0.5i. (41)

The next model, denoted by SM0, is considered to be a zero-
order approximation based on numerical information obtained
from the unclosed original equations. Namely, we take the
values

SM0 : A1 = 〈zs+1〉 ≈ 0.40i,

A2 = 〈|zs+1|2zs+2 | zs = iλ−1/3〉 ≈ 0.37i, (42)

by supposing to consider the minimal degree of correlation
in (39). In particular, the value for A1 has been estimated
from an unconditional average of the full viscous unclosed
model, while for A2 we imposed the minimal constraints by
fixing the first resolved multiplier to its Kolmogorov value.
The conditioning in the latter expression is necessary because
the unconditional average 〈|zs+1|2zs+2〉 would diverge. The
divergence is related to shell variables us passing close to the
origin, which leads to large |zs+1| = |us+1/us | simultaneously
with small |zs | = |us/us−1|; see Ref. [13]. Thus, this defect
can be avoided by excluding the events with small zs . Note
that the numerical values in (42) are quite different from the
Kolmogorov prediction in (41), caused by cancellations due to
a large spread of the phases.

Finally, we consider the model denoted by SM1, which is
obtained as a first-order approximation by considering the av-
erages conditioned to the single multiplier zs = |us/us−1|ei	s

in (39),

SM1 : A1(zs) = 〈zs+1|zs〉, A2(zs) = 〈|zs+1|2zs+2|zs〉. (43)

The averages are determined numerically from the results of a
direct numerical simulation of the full unclosed equations as
mentioned above. Due to the “defect” of the averages at the
origin, it is convenient to use the ansatz

SM1 : A1(zs) = ϕ−1
s f (ϕs,	s), A2(zs) = ϕ−1

s g(ϕs,	s),

ϕs = atan ws. (44)

Here the variable 0 � ϕs < π/2 is used for representing the
infinite semi-interval ws � 0. The functions f (ϕs,	s) and
g(ϕs,	s) are universal in the inertial interval. We compute
them by fitting the simulation data with the Fourier expansion
in 	s , where coefficients are polynomial functions of ϕs ; see
Fig. 3. The averaged data are obtained by taking mean values
of the simulation results in every grid cell (δ	s,δϕs) in Fig. 3.
This yields

f (ϕs,	s) = if0 + f1e
i	s + f−1e

−i	s + if2e
2i	s ,

g(ϕs,	s) = ig0 + g1e
i	s + g−1e

−i	s + ig−2e
−2i	s , (45)
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FIG. 3. Functions (a) f (ϕn,	n) and (b) g(ϕn,	n) of the subgrid model SM1. Red and green surfaces correspond to real and imaginary
parts, respectively. Black grids indicate the values obtained by averaging with the numerical simulation results. The insets demonstrate the
comparison for cross sections with ϕn = π/4.

with

f0 = −0.32ϕ3
s + 0.23ϕ2

s + 0.43ϕs,

f1 = −0.04ϕ3
s − 0.04ϕ2

s + 0.27ϕs − 0.03,

f−1 = 0.13ϕ3
s − 0.32ϕ2

s + 0.1ϕs + 0.12,

f2 = −0.13ϕ3
s + 0.34ϕ2

s − 0.21ϕs,

g0 = 0.07ϕ2
s + 0.08ϕs + 0.19,

g1 = −0.03ϕ2
s + 0.06ϕs − 0.04,

g−1 = −0.04ϕ2
s + 0.06ϕs,

g−2 = 0.04ϕ2
s − 0.10ϕs + 0.07. (46)

In these approximations, we kept the Fourier modes for 	s ,
which had the dominant contribution, while the coefficients
depending on ϕs were approximated with low-order polynomi-
als neglecting the coefficients smaller than 0.02. All functions
in (46) appear to be real due to the inherent symmetries of
the Sabra model. Figure 3 demonstrated the comparison of
expressions (45) with the same functions found numerically
by averaging expressions (43) in the inertial interval.

B. Numerical tests

The numerical tests are carried out for the three subgrid
models from the previous section with s = 15 and 20 shells.
We do this in the time interval 0 � t � 103 with the constant
boundary conditions

u0 = 2, u−1 = 1. (47)

For initial conditions we take the Kolmogorov state un =
k

−1/3
n eiφn with random phases φn. The comparison is also

made with the simulation of the full viscous model (1), (27)
with total N = 40 shells and viscosity ν = 10−12 (the viscous
range starts around shell nK ∼ 30).

Simulation results for some representative interval of time
are compared in Fig. 4. One can see that the dynamics at
large scales (first row) is qualitatively similar for all models,

but small scales (second row) demonstrate some qualitative
differences. In particular, we notice a tendency to lock among
the last three variables much more pronounced than in the
unclosed case, an indication that phase correlation is probably
not fully correct. Note that obviously we do not expect a
detailed correspondence of the solutions, since subgrid models
are designed to describe a probability distribution rather than
a particular solution.

The differences among the models can be seen more clearly
and systematically in Fig. 5 presenting the time-averaged
energy spectra:

En = 〈|un|2〉.
One can see that, indeed, large deviations are observed in the
region of large shell numbers n ∼ s (small scales near cutoff),
while good agreement is attained at smaller n (larger scales).
Surprisingly, more elaborated subgrid models do not show
improved results, with a better match given by the simplest
SMK model. We postpone a discussion on why this happens
to the next section and concentrate on describing different
aspects of solutions for different models now. From Fig. 5 one
can see that the deviations demonstrated by every model do
not depend on the total number of the shells s: they repeat the
same pattern for n ∼ s that converges to the full model results
for smaller n. Similar results are observed for other velocity
moments as well. In particular, Fig. 6 presents the results for
the flatness:

Fn = 〈|un|4〉
〈|un|2〉2

demonstrating similar type of discrepancies at final shell
numbers.

Though showing rather large deviations for average values,
the subgrid models describe probability of non-Gaussian rare
events (intermittency) reasonably well. Figures 7(a) and 7(b)
shows the normalized PDFs in the logarithmic vertical scale,
where fat tails are well reproduced. Still, also in this case, the
models SM1 or SM0 are less accurate than a simple model
SMK based on the Kolmogorov closure. Figure 7(c) provides
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FIG. 4. Qualitative comparison of the dynamics of absolute values for large-scale shell variables u1, . . . ,u9 (first row, curves from top
to bottom) and for the cutoff variables us−2,us−1,us (second row) with s = 15. (a, e) The full model with viscosity ν = 10−12. The subgrid
models: (b, f) SMK , (c, g) SM0, (d, h) SM1. Time windows are different for different panels.

the comparison of PDFs for the phase variable 	s at the last
subgrid shell number s = 20, demonstrating a considerable
variation among different models. Note that the phases 	n

determine the direction of energy flux; see Eq. (48) below.
The next test is related to the energy flux. Recall that the

energy E = 1
2

∑ |un|2 is an inviscid invariant for the Sabra
model. A general expression for the energy flux across shell
n is given by �E

n = Im (kn+1un+2u
∗
n+1u

∗
n − cknun+1u

∗
nu

∗
n−1);

see, e.g., Refs. [3,4,38]. With the phases 	n from (33), this
expression is written as

�E
n = kn+1|un+2un+1un| sin 	n+2

− ckn|un+1unun−1| sin 	n+1. (48)

Expression (48) determines the nonlinear contributions to the
total change of the energy in the shells up to n. Thus, for

0 10 20 30
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100
Full model
SM

K
SM

0
SM

1

0 10 20 30
10-8

10-6

10-4

10-2

100

(a) (b)

FIG. 5. Energy spectrum for the full model (black) is compared
with different subgrid models: SMK (red), SM0 (blue), and SM1

(green). The results are shown for the subgrid models with cutoff at
(a) s = 15 shells and (b) s = 20 shells.

inviscid dynamics, the energy balance takes the form

d

dt

⎛⎝1

2

n∑
j=1

|uj |2
⎞⎠ = �E

0 − �E
n , (49)

where �E
0 is the work per unit time done by the boundary due to

nonzero values of the shells u0 and u−1. For subgrid models,
expression for the energy flux is different for the modified
shells n = s − 1 and s. Direct computations for these fluxes
using (49), (30), (31), and (38) yields

�E
s−1 = ks−1 Im[λ|us |2|us−1|A1 − cusu

∗
s−1u

∗
s−2], (50)

�E
s = ks Im[λ|us |3A2 − c|us |2|us−1|A1]. (51)

In particular, for the SMK model given by (41) with λ = 2 and
c = −1/2, one obtains the strictly positive flux at last shell as

SMK : �E
s = ks |us |2(|us | + 2−4/3|us−1|). (52)

Similarly, the inviscid invariant called helicity is introduced
as H = 1

2

∑
(−1)nkn|un|2. In this case the helicity flux of the

inviscid model is given by the expression

�H
n = (−1)nk2

n Im[λun+2u
∗
n+1u

∗
n + (b − λ−1)un+1u

∗
nu

∗
n−1].

(53)

The time-averaged values of the energy and helicity fluxes
computed at shell corresponding to the small-scale range
n  s are in very good agreement with the unclosed model.
For example, in Fig. 8 we compare the PDFs of energy fluxes
for different models, computed at the large-scale shell n = 3
and for the last two shells s − 1 = 19 and s = 20. One can see
that a very good convergence is attained for large scales, but
again the some discrepancies are observed for the small scales.
Here the models SMK and SM0 show no energy backscattering
events with a strictly positive flux as predicted by Eq. (52). On
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FIG. 6. Flatness, Fn, for the full and subgrid models with (a) s = 15 and (b) s = 20. (c) The flatness computed in terms of energy flux, F�
n ,

for s = 20.

the contrary, the full model and the model SM1 show energy
backscattering events (negative energy flux).

For interpreting this result, it is necessary to recall that the
subgrid models were designed for the statistical distribution
averaged over the shell numbers n > s. Thus, the reference
quantity for checking the validity of subgrid models must be
the energy flux averaged in the same manner. We performed
such an averaging of the energy flux numerically for the full
viscous model: using the long-time simulation results, the flux
function �E

s was averaged over the points with nearby values
of shell speeds us and us−1 but arbitrary us+1 and us+2. The
PDF for the resulting (conditionally averaged) flux is shown in
Fig. 8(c) by a bold gray dotted line. This results shows a rather
surprising result that, after averaging over shells n > s, the
energy flux �E

s becomes strictly positive. This also means that
the models SMK and SM0 have the correct behavior, while the
backscattering events demonstrated by the model SM1 [green
line in Fig. 8(c)] should not be interpreted in favor of this
subgrid model.

It is also instructive to compute the flatness in terms of the
energy flux as

F�
n =

〈∣∣�E
n

∣∣4/3〉〈∣∣�E
n

∣∣2/3〉2 .

The corresponding numerical results are given in Fig. 6(c),
demonstrating a slightly more regular behavior. Deviations
are still present at cutoff shells, but this time the model SM0

shows a better match with the full model.

C. Why improved subgrid models do not work better?

In subgrid models discussed in Secs. V A and V B, we
used direct averages for equations of the last shells, or the
average conditioned on one multiplier zs . Though the closures
constructed in this way are rather simplistic, the very fast decay
of correlations of multipliers with a shell separation suggests
that even such simple models should be reasonably accurate;
see Figs. 2(c) and 2(d). On the other hand, we saw that more
accurate models do not demonstrate any improvement for the
statistics at small scales. In order to verify this observation with
higher-order approximations, we also constructed the subgrid
model that depends on two multipliers, zs and zs−1. This was
done by using expansions in multidimensional spherical har-
monics, which is possible due to a homogeneity property ofA1

and A2 as functions of shell speeds (us,us−1,us−2). Details of
this study are rather lengthy and will not be presented here. The
conclusion is, however, the same: no considerable improve-
ment was observed for the statistics at small scales, in compar-
ison with the simplest model SMK . In this section we propose
a possible explanation to this unfortunate lack of convergence.

The distribution limited to a finite number of shells in the
inertial region, P (u1, . . . ,us), can be expected to be a smooth
positive function, as one can infer from Kolmogorov’s third
hypothesis (see Sec. III). Our subgrid models are constructed
with the purpose of recovering this regular distribution in a
statistical sense, i.e., as an attractor. However, the regularity
of the distribution imposes a very strong requirement on the
subgrid model, which is reminiscent to the mixing property
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K
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FIG. 7. PDFs of shell variables for the full and subgrid models with s = 20. Real parts of shell variables (a) u19 and (b) u20; PDFs are
normalized with standard deviation. (c) PDFs for the phase variable 	20.
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FIG. 8. PDFs for the energy flux at shell (a) n = 3, (b) n = s − 1, and (c) n = s. Black line is the result of the full viscous model. Red,
blue, and green lines correspond, respectively, to the subgrid models SMK , SM0, and SM1 with s = 20 shells. Bold gray dotted line represents
the distribution for the full model, averaged with respect to the shells n > s.

for measure-preserving dynamical systems: an infinitely long
trajectory of the subgrid model must be dense everywhere
in the configuration space. As we know from the dynamical
system theory, such a property is structurally unstable for a
nonconservative dynamical system, like our subgrid model.
This implies that an arbitrarily small change of the “ideal”
subgrid system may drastically change its long-time statistical
behavior; see also Ref. [39], where this issue was investigated
for the Lorenz system. In a general case, one can expect that the
subgrid model possesses a chaotic (fractal) attractor, therefore
occupying only a zero measure subset in configuration space.
This structural instability may be the main cause of the
persistent divergence from the full model statistics in our
subgrid models. It is important to notice that this high
sensitivity to the closure is nevertheless limited to a fixed
(Reynolds independent) number of shells, indicating that the
large-scale dynamics is robust and universal with respect to
the small-scale closure, i.e., we do not have a strong sensitivity
of the global attractor on the fine details of high-frequency
fluctuations.

It is possible to demonstrate some quantitative evidence in
favor of our hypothesis. The inviscid Sabra model has unstable
time-independent solutions of Kolmogorov type, which up to
phase-symmetry factors have the form

un = iank
−1/3
n , an = an+3, (54)

with arbitrary period-3 real coefficients an; see, e.g.,
Refs. [40,41]. In this case, all multipliers (33) are fixed
numbers, zn = −iλ−1/3an/an−1, similarly to the Desnyansky-
Novikov shell model in Sec. IV. For our subgrid models, the
factors an are not arbitrary and can be found by substituting
(54) into the equations Rs−1 = 0 and Rs = 0; see (30) and (31).
The elementary computations with expressions (38) yield

as

as−1
= λ−2/3 A1

A2
,

as−1

as−2
= λ1/3 A2

iA2
1

. (55)

For the two simplest models, where A1,2 are constants (see
Sec. V A), we have

model SMK :
as

as−1
= 1,

as−1

as−2
= −1, (56)

model SM0 :
as

as−1
≈ 0.7,

as−1

as−2
≈ −2.83. (57)

Figure 9 shows the PDFs for the absolute values of multipliers,
ws = |zs | and ws−1 = |zs−1|, in these two models obtained
from numerical simulations. Blue arrows indicate the positions
given by the time-independent solutions (54)–(57) as ws =
λ−1/3|as/as−1| and ws−1 = λ−1/3|as−1/as−2|. One can clearly
see the correlation between the PDFs and time-independent
solutions, which can be explained by the intermittent dynamics
alternating between the chaotic and regular behavior; see, e.g.,
Ref. [42]. One can also see some footprints of this temporary
“locking” to a time-independent solution for the model SMK

in Fig. 4(f), where a small plateau is developed with slowly
changing amplitudes.

We conclude that the chaotic attractor may be influenced by
the time-independent solution at small scales. As we explained,
this defect is generic and, hence, hardly can be removed by
using more accurate subgrid models, unless some special extra
conditions are imposed. For example, noise can be used as a
mechanisms to improve the dynamics at subgrid scales, by
counteracting the attraction to specific solutions. In order
to see how large is the effect, we applied random phase
perturbations 	s+1 = π/2 + x1 and 	s+2 = π/2 + x2 in the
models SMK ; see Sec. V A. Here x1(t) and x2(t) are obtained
as solutions of the Langevin equation ẋ = −τ−1x + στ−1/2ξ

with the Kolmogorov time scale τ = k
−2/3
s and white noise ξ

with 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). To have a moderate
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FIG. 9. PDFs for the absolute values of multipliers, ws (solid line)
and ws−1 (dashed line), for the models (a) SMK and (b) SM0. Arrows
mark positions of the constant multipliers of the time-independent
solution. Dotted red line indicates the universal PDF of the full model.
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results of the full model (bold red) are compared with the model
SMK (thin blue line) and the same model after addition of noise
(black line).

noise level we choose σ = 0.4. Figure 10 shows the PDFs
of the multipliers ws and phases 	s at the last shell of the
model with s = 20. One can see that the noise has some effect
improving the distributions, as compared with the bold red
PDFs of the full model, but this effect is small. The results
suggest that adding an uncorrelated noise to the evolution of
phase is not an effective mechanism for our subgrid model.

VI. CONCLUSIONS

We have discussed a theoretical framework to define
the optimal subgrid closure for shell models of turbulence.
The theoretical framework would predict a very complicated
subgrid models which depends on the conditional probability
of subgrid variables on all resolved scales, a task unrealistic
even for the simple structure of shell models. We have
proposed a series of approximate closures based on the ansatz

that consecutive shell multipliers are short-range correlated,
following the third hypothesis of Kolmogorov formulated for
similar quantities for the three-dimensional Navier–Stokes
turbulence. Different approximations assume different degrees
of correlations across scales among amplitudes and phases of
consecutive multipliers. We show numerically that such low
order closures work well, reproducing all known properties
of the large-scale dynamics including anomalous scaling. We
found small but systematic discrepancies only for a range
of scales close to the subgrid model, which do not tend to
disappear by increasing the order of the approximation. We
speculate that the lack of convergence might be due to a
breaking of ergodicity at least for the evolution of very fast
degrees of freedom at small scales. Effects of the subgrid
closure on the resolved range of scales must be quantified also
for real LES of three-dimensional Navier-Stokes equations.
Correlations between the subgrid stress tensor and velocity
increments at the resolved scales can be estimated on the basis
of fusion-rules [21,22]. They are supposed to be subleading
with respect to the scaling of single-scale velocity increments
[43], i.e., reproducing the same kind of sensitivity to the
particular closure only for a range of separations close to the
subgrid cutoff. A quantitative assessment of the importance of
such a feedback is nevertheless missing.
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