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A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative
dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here
trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous “sweeping
effect,” a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian
coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale
Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling
exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations
and/or observation. The results of our numerical experiments cover a wide range of “Reynolds numbers” and show
that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories
in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in
a geophysical context, potential applications may regard small-scale parametrization issues in general circulation
models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
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I. INTRODUCTION

The physical characteristics of a fluid dynamical system
can be classified in two major categories: Eulerian, dealing
with vector and scalar fields as functions of space and time
coordinates, and Lagrangian, dealing with quantities related
to the motion of fluid particles. As far as transport processes
are concerned, the Lagrangian approach provides information
not trivially obtainable from the only knowledge of the velocity
field [1]. The existence of Lagrangian chaos [2,3] has shown
the possibility to have efficient transport and dispersion even
in regular velocity fields, e.g., periodic in space and/or time. In
addition to this, turbulence [4] can act further as a mechanism
of particle dispersion on intermediate scales of motion.

Modeling Lagrangian particle trajectory evolution is, there-
fore, an intriguing task from both the theoretical and method-
ological points of view. Ideally, starting from the knowledge
of the velocity field, in every point and at every time, one can
numerically integrate fluid particle trajectories by means of a
computer over arbitrarily long time intervals. Of course, such
an approach cannot be used in realistic situations, since models
and/or observative data are always affected by finite resolution.
Trying to accurately describe the dynamics at all scales of
motion presents, in general, insurmountable difficulties, even
in the hypothesis of having a full knowledge of the physics
of the system (which, in fact, is only partly true). So, usually,
one has to find a suitable compromise between the level of
resolution of the model and the number of degrees of freedom
to take into account.
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As far as Lagrangian dynamics is concerned, i.e., the
evolution of fluid particle trajectories, there are two major
statistics to consider: one-particle, or absolute, dispersion,
i.e., the mean displacement from the initial positions, which
depends essentially on the large-scale dynamical features, and
two-particle, or relative, dispersion, i.e., the mean separation
between trajectories, which carries interesting information
about the physics of the system [5]. In the present paper
we will deal only with relative dispersion modeling. In this
regard, we recall that, in some sense one could say luckily, the
Lagrangian properties of a fluid, e.g., mixing and diffusion,
do not depend strongly on the details of the velocity field,
but do depend, indeed, mainly on the relationship between the
characteristic spatial and temporal scales of the system [1]. As
an example, if we consider the diffusion process simulated by
a τ -correlated Langevin equation (as in the classical Brownian
motion model), such that σ 2τ ∼ D, where D is the diffusion
coefficient, σ 2 is the variance of the velocity fluctuations and
τ is the velocity autocorrelation time, we notice that the same
type of dispersion process, i.e., a ballistic regime for times
smaller than τ and an asymptotic diffusive regime for times
larger than τ , can be simulated by the chaotic, deterministic
scattering across a lattice of (unsteady) kinematic eddies,
as long as l2/τ ∼ D, where l and τ indicate the eddy size
and turnover time, respectively. We will come back to this
point later. Such a fact opens interesting possibilities from
the Lagrangian modeling viewpoint, since there is no need
to compute a realistic turbulent flow if the scope is only that
to simulate the relative dispersion process in turbulent flows.
For example, synthetic or kinematic models can accomplish
this task with good efficiency and low computational cost,
provided some important aspects are suitable considered.
The scope of this work is to present and discuss a general
kinematic model that can be utilized to numerically simulate
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Lagrangian trajectories in an ideal turbulent environment in
which stationarity, isotropy, and homogeneity conditions are
assumed to be fulfilled. What is known as dynamical system
approach to Lagrangian transport and mixing [1–3,6–8] will
be adopted as a guiding line throughout this paper.

The idea of implementing kinematic simulations of tur-
bulence, as an alternative to stochastic Lagrangian modeling
based on Langevin equations [9], is not new, and many
papers can be counted in support of this strategy [10–14].
Although our kinematic model differs from similar models
used in the cited literature, since it is purely deterministic,
the philosophy of the approach is quite the same: using an
analytical velocity field to numerically compute trajectories
that behave, in some statistical sense, like a real turbulent
flow. Some authors [15–17] have raised objections as far as
the use of kinematic simulations is concerned. It was correctly
argued, indeed, that a kinematic velocity field, characterized
by structures (eddies) that do not drift all over the domain,
therefore opposing an unnatural resistance to the dragging
force exerted by the large-scale energetic field, cannot generate
trajectories that simulate turbulent diffusion in the correct way.
It is known that pair dispersion, within the inertial range of
scales where the turbulent cascade has developed, is expected
to evolve according to the so-called locality hypothesis; i.e., it
is assumed that only those structures having characteristic size
of the same order as the particle separation scale contribute
efficiently to the dispersion process [4]. This means that, e.g.,
the mean square particle displacement is expected to obey the
well-known “t3” Richardson-Obukhov law [18].

In a kinematic model, this property can be obscured (or
distorted) by the so-called sweeping effect due to the most
energetic components of the velocity field. These large-scale
structures drag the particle pairs across the domain but do not
have any effect on the kinematic eddies at smaller scales.
This implies that a particle pair does not spend sufficient
time around a local eddy such as to “thermalize” to the
local dynamics. As a consequence, the mean square relative
dispersion deviates from the “t3” law of an amount that
grows macroscopically in the limit of long inertial range and
high time resolution, as explained and discussed in detail by
Thomson and Devenish [15].

In the meanwhile, some years ago, Lacorata et al. [19] first
applied a type of “correct” kinematic model as subgrid-scale
parametrization of two-particle dispersion in a large-eddy
simulation of planetary boundary layer turbulence. Later,
this methodology also has been extended to oceanographic
applications [20,21]. The aim of the present work is to offer
a further and specific contribution to clarify this question. A
very general formulation of a three-dimensional, multiscale,
deterministic kinematic model will be introduced and analyzed
in detail by means of numerical simulations. The Lagrangian
turbulence model is built up assuming the validity of K41
theory [4]. For many applications, this does not have to be
considered as a limitation. A severe test on the skills of the
model is performed by computing the finite-scale Lyapunov
exponents (FSLEs; see next section), which measure the
spectrum of relative dispersion rates at all scales of motion
and allow a direct comparison with the theory.

This paper is organized as follows: the FSLE technique
is reviewed in Sec. II; in Sec. III, the kinematic Lagrangian

model is introduced and discussed; the results of the numerical
simulations are described in Sec. IV and a summary of the
conclusions that can be drawn is reported in Sec. V.

II. RELATIVE DISPERSION: THE FINITE-SCALE
LYAPUNOV EXPONENT

The finite-scale Lyapunov exponent (FSLE) is a scale-
dependent measure of the mean growth rate of the distance
between two trajectories, an established technique employed
in a wide range of applications [5,22–29], from studies on the
growth of finite perturbations in chaotic dynamical systems
to turbulent pair dispersion in the ocean and atmosphere, as
well as in fluid dynamics laboratory experiments. The idea
of measuring the diffusivity, i.e., the time derivative of the
mean square particle displacement, as a function of the particle
separation actually dates back to Richardson [18]. The FSLE
adopts the same philosophy, i.e., it measures the dispersion rate
at a fixed scale, thus avoiding issues related to the fixed time
averaging procedure [30]. Although definition and properties
of the FSLE have already been described and discussed in
detail in the literature (e.g., see Ref. [31] for a very general
review), for the sake of self-consistency we recall here its basic
characteristics. Given two trajectories, separated at time t by a
distance r(t), let us define τ as the time interval during which
the distance grows from δ to � · δ, where � � 1. Keeping δ

and � fixed, the mean growth time 〈τ 〉 from δ to � · δ, suitably
averaged [31], defines the FSLE λ(δ) according to the formula

λ(δ) ≡ 1

〈τ (δ)〉 ln
� · δ

δ
. (1)

The quantity τ (δ) is the first exit time of the distance r from
scale δ to scale � · δ. It is implicitly assumed that 〈τ (δ)〉, i.e.,
the phase space average or, equivalently, the average over
an arbitrarily large number of numerical experiments, is a
function of δ, for � ∼ O(1), but it does not depend on t , under
the hypothesis of stationary statistics. The idea is to define
Ns + 1 scales, such that δn = � · δn−1, with n = 1, . . . ,Ns , and
to compute the FSLE (1) for each of them. In a Lagrangian
dynamical context, the phase space coincides with the familiar
physical space, and the trajectories are those of passive tracer
particles in a given velocity field. Normally, the initial scale
δ0 should be smaller than the least characteristic length of the
flow, e.g., the Kolmogorov scale, and the final scale δNs

should
be of the order of the integral scale of the flow or possibly
larger, depending on the size of the system. A common value
of the amplification ratio, adopted also in this work, is � = √

2.
It is worth stressing a couple of remarks: the time τ (δ) is to be
computed as the first crossing time of the scale � · δ, starting
from the scale δ; the factor � must be chosen not too close
to unity, in order to avoid saturation issues of the FSLE at
small scale separations due to the finite time resolution of the
trajectories1 and not too much larger than unity, otherwise an
accurate scale-dependent description of the dispersion regimes
could not be feasible.

1The algorithm used for the computation of the FSLE is anyway
prepared to compensate possible clipping effects [30].
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FIG. 1. The three regimes of the normalized FSLE λ(δ)/λL,
for an ideal 3D fully developed turbulent flow: (a) exponential
separation, λ(δ) = λL, for δ � η, where η is the Kolmogorov length;
(b) Richardson-Obukhov law, λ(δ) ∼ δ−2/3, inside the inertial range
η < δ < L0, where L0 is the integral length; (c) standard eddy
diffusion, λ(δ) ∼ δ−2, at large separation scales δ � L0.

For a fully developed turbulent flow, in which a self-similar
energy cascade establishes in the inertial subrange between a
forcing scale L0 (integral length scale) and a dissipative scale η

(Kolmogorov length scale), three major regimes are expected
to be observable:

(1) Exponential separation, 〈r(t)2〉 ∼ r(0)2e2λLt , on scales
smaller than the Kolmogorov length, r � η, where λL is the
Lagrangian maximum Lyapunov exponent2 of the flow [1];

(2) Richardson-Obukhov scaling 〈r(t)2〉 ∼ CR ε t3 in the
inertial range, η < r < L0, where ε is the rate of energy
dissipation of the cascade and CR is the nondimensional
Richardson’s constant [18]; henceforth we will refer to any
power law of the type 〈r(t)2〉 ∼ tν , for which ν > 1, as
super-diffusion or, equivalently, a super-diffusive regime;

(3) Standard diffusion 〈r(t)2〉 ∼ 4 DE t on scales larger
than the integral length, r � L0, where DE is the eddy
diffusion coefficient [32].

Let us briefly discuss each of these regimes and the
relationship with the scaling properties of the FSLE (see
Fig. 1):

(1) The small-scale exponential separation is characterized
by a scale-independent mean growth rate of the distance
between two trajectories. In terms of FSLE this corresponds
to λ(δ) = λL for δ � η;

(2) By dimensional arguments it can be shown that, inside
the inertial range η < δ < L0, the Richardson-Obukhov law
corresponds to the scaling λ(δ) ∼ (CR · ε)1/3 δ−2/3;

(3) As for the previous point, by dimensional arguments
it is possible to show that, in the limit of large separation

2Taking into account intermittent fluctuations of the effective
Lyapunov exponent one has 〈r(t)2〉 ∼ r(0)2eL(2) t , where L(2) � 2λL.
In the present work we will ignore this detail.

scales δ � L0, standard diffusion corresponds to the scaling
λ(δ) ∼ DE δ−2.

From the FSLE analysis it is possible not only to distinguish
the type of regime in correspondence of a given range of
scales, but also to estimate, at least as order of magnitude, the
characteristic parameters of each regime, λL, ε or DE . At this
regard, it is clear that an unequivocal measure of the scaling
exponents, characteristic of the relative dispersion process, is
needed in order to assess whether or not numerical experiments
are in agreement with the theory. We would like to stress
again that the FSLE approach, where the “proper” variable is
δ, is rather different than looking at 〈r2(t)〉 versus t . In the
latter case, often, at a given time, one can have contamination
of effects due to different scales. As a result of such a
contamination, 〈r2(t)〉 can strongly depend on 〈r2(0)〉 [31].
This drawback is ruled out by the FSLE analysis technique.

III. KINEMATIC LAGRANGIAN MODEL

A. Velocity field

Let us assume that the flow is incompressible. For a two-
dimensional (2D) velocity field, u = {v1,v2} is a continuous
function of the spatial coordinates x = {x1,x2} and of the time
t . The incompressibility condition ∇ · u = 0 can be fulfilled by
introducing the stream function 
(x1,x2,t) and, then, writing
the velocity field as

u =
(

∂


∂x2
,− ∂


∂x1

)
. (2)

The evolution of the Lagrangian coordinates of a fluid particle
is given by

dr
dt

= u. (3)

The dynamical system (3), with the velocity field defined in
Eq. (2), is formally a Hamiltonian system with 
 playing
the role of the Hamiltonian function [3]. Once the stream
function, or equivalently the velocity field, is assigned, the
system formed by (2) and (3) is called a kinematic model.
Lagrangian trajectories computed in a 2D kinematic model
are regular, i.e., nonchaotic, if u does not depend explicitly on
time t . If, conversely, u is a nonlinear vector field explicitly
depending on the time t , Lagrangian dynamics (3) can be
chaotic, i.e., two arbitrarily close trajectories tend to separate
exponentially in time,

〈||δx(t)||〉 ∼ ||δx(0)||eλLt , (4)

in the limit ||δx|| → 0, where ||δx|| ≡ ||x(1) − x(2)|| is the
distance between two trajectories x(1), x(2), and λL > 0 is the
maximum Lagrangian Lyapunov exponent (LLE) of the flow.
The LLE λL can be positive even when u is a regular function,
e.g., periodic in space and time. A paradigmatic example of a
2D chaotic flow is the Rayleigh-Bénard convection model of
Solomon and Gollub [1,33].

When perturbing an integrable Hamiltonian system, the
transition from a nonchaotic to full chaotic regime occurs
via progressive destruction of the KAM tori, until a fully
chaotic regime is reached for suitable values of the perturbation
parameters, i.e., in the so-called overlap of the resonances
regime [34]. Therefore, typically, chaotic motions coexist
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with islands of regular motions in the phase space, and the
maximum Lyapunov exponent is not positive everywhere, but,
averaging over all possible initial conditions, it has a positive
mean [3,7]. In the case discussed in the present work, the
model velocity field is suitably perturbed in order to reach the
Chirikov regime, without trapping regions or other kinds of
regular islands.

Let us consider, now, the general three-dimensional (3D)
case. Let 
 = {
1,
2,
3} be a continuous and differen-
tiable vector field, function of the spatial coordinates, x =
{x1,x2,x3}, and of the time, t . Let u = {u1,u2,u3} be a velocity
field defined as u = ∇ × 
:

ui1 = ∂
i3

∂xi2

− ∂
i2

∂xi3

, (5)

where {i1,i2,i3} stand for all cyclic permutations of {1,2,3}.
Of course, u is a solenoidal field, i.e., ∇ · u ≡ 0. It must be
observed that, in the 3D case, providing u is nonlinear, a
dynamical system of the type (3) can display Lagrangian chaos
even when u is not explicitly time dependent [1]. Henceforth
we will consider only nonlinear velocity fields that are periodic
functions both in space and time. In this regard, for simplicity
of notation, let us define the following change of variables
from x = {x1,x2,x3} to s(t) = {s1(t),s2(t),s3(t)} as

si(t) ≡ xi − ε sin(ωit), (6)

where i = {1,2,3}, x is the position vector in the fixed reference
frame, and s(t) oscillates periodically around x with frequency
ω/(2π ) and amplitude ε. For technical reasons that will be
clear later it is convenient to define the same amplitude ε for
all components, and the pulsations ω1 � ω2 � ω3 � ω nearly
equal to one another. Let us now define a 3D periodic lattice
of convective cells as


i1

(
xi2 ,xi3 ,t

) = A

k
sin

[
ksi2 (t)

]
sin

[
ksi3 (t)

]
, (7)

where, as for Eq. (5), the set {i1,i2,i3} is a cyclic permutation
of {1,2,3}; k = 2π/l and l are spatial wave number and
wavelength, respectively; ε and ω/(2π ), contained in the
time-dependent terms s1(t), s2(t), and s3(t), are amplitude and
frequency of the stream function oscillation. The parameter
A defines the velocity scale of the flow. From (5) and (7) the
three components of the kinematic velocity field, adopting the
cyclic index notation as above, turn out to be

ui1 [x,t] = A
{

sin
[
ksi1 (t)

]
cos

[
ksi2 (t)

]
− sin

[
ksi1 (t)

]
cos

[
ksi3 (t)

]}
. (8)

The field (8) can be seen as a 3D version of the Solomon and
Gollub model [33]. Other options are possible, of course, in
the choice of the analytical form of u. The ABC flow [1],
for example, or the so-called double stream function (DSF)
model [19] are other good candidates. In analogy with the
overlap of the resonances in Hamiltonian dynamics [34], we
must expect that, for a certain range of values of the lattice
oscillation parameters ε and ω, every possible bounded region
of regular motion is destroyed and Lagrangian trajectories can
evolve chaotically across the whole domain. In other words, for
any ω, ε must be larger than a certain critical threshold εc(ω)
in order to let the model reach a suitable working point, i.e.,

a regime in which Lagrangian chaos attains a good efficiency as
mechanism of trajectory dispersion. In this regard, the standard
setup of the parameters can be defined on the basis of the
following considerations. The 3D periodic lattice is formed
by cubic elementary cells of edge l/2 and characteristic time
scale tc = 2 l / A. The periodic oscillations of the structure let
a fluid particle escape from its initial cell and perform a sort
of random walk through the lattice, with characteristic time of
the same order as tc, providing the oscillation frequency is of
the same order as the turnover frequency, i.e., ω/(2π ) ∼ 1/tc.
The oscillation amplitude can be fixed to some fraction of the
characteristic length of the cells, ε/l ∼ 10−1.

In all cellular flows of this type, characterized by only
one scale of motion, relative dispersion displays two regimes:
small-scale exponential separation,

〈||δx(t)||〉 ∼ ||δx(0)||eλLt ,

in the limit ||δx|| � l, with λL ∼ O(1/tc), and large-scale
standard diffusion,

〈||δx(t)||2〉 ∼ 4 Dl t,

for ||δx|| � l [1]. In order to simulate an intermediate regime
of turbulent dispersion, between these two asymptotic limits,
it is mandatory to include different scales of motions in the
velocity field. This can be attained by the superposition of a
series of Nm self-similar spatial modes, each corresponding to
a different wave number. With the cyclic index notation the
resulting multiscale stream function is


i1

(
xi2 ,xi3 ,t

) =
Nm∑

m=1



(m)
i1

(
xi2 ,xi3 ,t

)
. (9)

In Eq. (9) the terms in the right-hand side have the same
form as in Eq. (7) but now the parameters depend on the m

mode: Am, km, lm, εm, and ωm. The three components of the
kinematic velocity field are now obtained from (5) and (9). At
this point, the 3D kinematic model contains Nm spatial modes,
each having wavelength lm and characteristic velocity Am.
The wavelengths can be related to each other by a recursive
rule: lm = L0/a

(m−1), for m = 1, . . . ,Nm, and a > 1. We let
the largest scale L0 correspond to the integral length and the
smallest one lNm

≡ η to the Kolmogorov length of the flow.
With L0 and η fixed, the parameter a determines the density
of the modes. In order to simulate 3D isotropic homogeneous
turbulence, the further step is to assign the Kolmogorov scaling
[6] to the velocities of the modes:

A2
m ≡ 2 CK ε2/3 k−5/3

m �km, (10)

where km ≡ 2π/lm, �km ≡ km+1 − km, m = 1, . . . ,Nm; ε is
the mean rate of turbulent dissipation and CK is a nondi-
mensional adjustable constant (the equivalent Kolmogorov
constant). Equation (10) determines how energy is distributed
among the spatial modes in the inertial range. Amplitude
and frequency of the time-dependent oscillating terms are
set according to εm/lm ∼ O(10−1) and ωmtm/(2π ) ∼ O(1),
where the “local” time scales are defined as tm ≡ 2lm/Am. The
values of ωm along the three directions x1, x2, and x3, differ a
little from each other of “irrational” factors numerically very
close to 1. This is to avoid possible (even though unlikely)
anomalous trapping of particles inside a box which might affect
the chaotic diffusive process. At this point we have defined a
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3D unsteady lattice of convective cells of various wavelengths
ranging from η to L0, in which the velocities of spatial modes
are related to the corresponding characteristic lengths by
the Kolmogorov scaling. Integrating Lagrangian trajectories
with this kinematic model and looking at the two-particle
dispersion, we observe that, despite the scaling (10), the mean
square separation, or equivalently the FSLE, departs from
the expected Richardson-Obukhov scaling inside the inertial
range, with a discrepancy increasing with the width of the
inertial range, L0/η � 1. As argued in Ref. [15], this is due
to the fact that the large-scale velocity field advects a particle
pair, having an initially small separation, through the domain
without advecting the surrounding small-scale structures, the
so-called “sweeping” problem. As a direct consequence, not
only the locality hypothesis inside the inertial range is violated,
but also the mean rate of exponential separation, at scales
smaller than the Kolmogorov length, is sensitive to the integral
scale and, ultimately, depends on the width of the inertial range.

The maximum Lyapunov exponent, on the contrary, is
expected to be related to the inverse characteristic time of
the smallest coherent structure of the flow [6], i.e., λL ∼ 1/tη
where tη ∼ ε−1/3η2/3 is the turnover time at the Kolmogorov
scale η. The locality assumption, also, as far as the inertial
range is concerned, is disregarded since particle pairs cannot
“thermalize” to the local dynamics spending a sufficient time
around eddies of the same size as the separation distance.
The result is that the LLE depends on the large-scale velocity,
with all other parameters fixed, and relative dispersion within
the inertial range follows an anomalous scaling 〈δx(t)2〉 ∼
tν with 9/2 � ν � 6, or, equivalently, in terms of FSLE
λ(δ) ∼ δ−μ with 1/3 � μ � 4/9. The reasons why the scaling
exponents are expected to vary between these limits have been
explained in Ref. [15] and will not be repeated here. We are
only concerned in evaluating under what conditions inertial
range relative dispersion of the model is in agreement with
Richardson’s law or not.

B. Quasi-Lagrangian coordinates

In order to treat the “sweeping” problem in a proper way, all
spatial modes except the largest one can be written as functions
of two-particle (relative), instead of single-particle (absolute),
coordinates, i.e., making use of the so-called quasi-Lagrangian
frame technique [19,35]. The point is to consider two particles
at the same time and advect them together. The trajectories of
a whole set of tracer particles in this way can be integrated
pair by pair.

This strategy allows us to fix the problem of having flow
structures that do not move together with the fluid particles:
computing the kinematic velocity field in the reference frame
anchored to the center of mass of two particles simulates the
simultaneous advection of kinematic eddies and particle pair.
This advection may generated either by an external large-scale
velocity field or, simply, by letting the largest velocity mode
of the model be a function of single-particle coordinates, as is
the case treated in this work.

Let x(1) and x(2) be two fluid particle positions in the fixed
reference frame. The vector position of their center of mass is

x(C) ≡ x(1) + x(2)

2
. (11)

The m mode velocity component in x(j ) (j = 1,2) can be
written as

u
(m)
i1

[x(j ),t] = Am

{
sin

[
kms

(j )
i1

(t)
]

cos
[
kms

(j )
i2

(t)
]

− sin
[
kms

(j )
i1

(t)
]

cos
[
kms

(j )
i3

(t)
]}

, (12)

where the usual cyclic index notation is adopted, and

s(j )(t) ≡ x(j ) − ε sin(ωt) (13)

with ε ≡ ε(1,1,1). Let us consider both particles of a pair,
x(1,2), and rewrite (13) in the reference frame of their center of
mass:

s(1,2)
QL (t) ≡ [x(1,2) − x(C)] − ε sin(ωt), (14)

where x(C) is defined in Eq. (11). Let us write the full kinematic
Lagrangian model as follows:

u[x(1,2),t] = u(1)[s(1,2)(t)] +
Nm∑

m=2

u(m)
[
s(1,2)

QL (t)
]
,

dx(1,2)

dt
= u[x(1,2),t]. (15)

We will call (15) the QL model, in which every mode except
one (m = 1) is written as function of the quasi-Lagrangian
coordinates relatively to a given particle pair. In other terms,
the QL model velocity field depends on the coordinates of
both particles of a pair, via their center of mass. The kinematic
field in Eq. (15) for sQL ≡ s, i.e., setting xC ≡ 0 in Eq. (14),
will be called the E model, in which every mode is written
in terms of single-particle coordinates x. It is worth stressing
that the formulation in terms of two-particle coordinates does
not imply that the QL model is only a two-particle model
[35], since the most energetic mode (m = 1) in Eq. (15), a
function of single-particle coordinates, simulates a large-scale
advection acting on the single trajectories. We remark that, in
many applications, the role of large-scale advection is normally
played, for example, by a general circulation model velocity
field, so that there is no need to keep the m = 1 mode as
function of single-particle coordinates any longer. In the next
section, the results obtained from the Lagrangian simulations
performed with the QL model and the E model will show the
differences between the two types of configurations, as far as
relative dispersion is concerned.

IV. RESULTS

A standard parameter setup of the four-decade kinematic
model is reported in Table I. The width of the inertial range,
in all analyzed cases, is determined by the integral length L0,
at fixed Kolmogorov length η. All other parameters are kept
fixed in all numerical simulations.

We first checked the properties of relative dispersion in the
time domain for the QL model. We computed the mean square
pair separation 〈r(t)2〉, for the four-decade configuration, to
assess the existence of the Richardson’s scaling law inside
the inertial range, at given ε, and an empirical relationship
between the Richardson’s constant CR and the Kolmogorov
constant CK of the model. These results are reported in
Fig. 2. We observe that the QL-model reproduces the expected
Richardson’s regime for relative dispersion inside the inertial
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TABLE I. Standard setup for the analyzed four-decade inertial
range configuration. Parameters are expressed in nondimensional
units.

Kolmogorov constant CK = 1
Turbulent dissipation rate ε = 10−3

Number of modes Nm = 29
Mode density a = √

2
Integral length L0 = 214

Wavelengths lm = 2 L0/a
m−1 (l1 = 2 L0)

Wave numbers km = 2π/lm
Square velocities Am

2 = 2CKε2/3km
−5/3�km

(�km = km+1 − km)
Turnover times tm = 2 lm/Am

Oscillation amplitudes εm = 0.2 lm
Oscillation pulsations ωm = 4 π/tm
Kolmogorov length η = lNm

/2 = 1
Integral time T0 = L

2/3
0 (2CK )−1/2ε−1/3

Integration time step �t = 10−3 tNm

range, at various CK values; Richardson’s constant CR can be
measured and reported as function of CK , at given ε; and CR

attains values in the expected range, [0.1 − 1], for CK close
to the theoretical value, CK � 1. Therefore, in all simulations
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FIG. 2. Collapse of the rescaled mean square trajectory sepa-
rations computed in the QL configuration for different values of the
Kolmogorov’s constant CK . Parameters ε, L0, and T0 are (expressed in
nondimensional units) turbulent dissipation rate, maximum eddy size,
and integral time scale, respectively (a). Empirical scaling relation
between Kolmogorov constant (CK ) and Richardson’s constant (CR)
of the model (b). Richardson’s constant CR is computed by fitting
the Richardson’s law, at given CK and ε, to the mean square relative
separation 〈r2(t)〉 inside the inertial range.
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FIG. 3. Normalized FSLE λ(δ)/λL, with fixed rate of energy
dissipation ε, fixed Kolmogorov length η and four different val-
ues of the integral length scale L0: (a) L0/η ∼ 10 (diamonds);
(b) L0/η ∼ 102 (triangles); (c) L0/η ∼ 103 (circles); and (d) L0/η ∼
104 (squares). Statistics over N = 8000 particle pairs with uniform
random initial positions. Left panel: E model; right panel: QL model.

we fixed CK = 1. We remark also that the empirical scaling
relation between the two constants, CR ∼ C

3/2
K , can be justified

on the basis of theoretical arguments by noticing that both
quantities, CR and C

3/2
K , appear as a rescaling factor of

ε in Richardson’s law and in the Kolmogorov spectrum,
respectively.

FSLEs for the E model and QL model are plotted in
Fig. 3, for identical parameter setup, varying the width of
the inertial range over four orders of magnitudes. All curves,
normalized to λL, collapse perfectly in the QL model, fulfilling
the invariance property of the Richardson scaling with respect
to the inertial range. On the other hand, in the E model
such a property does not hold and the scaling deviates
progressively from the Richardson’s law at increasing L0/η

ratio. Outside the inertial range, at scales larger than the
integral length, the scaling approaches a standard diffusive
regime characterized by the same eddy diffusion coefficient,
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FIG. 4. FSLE for an eight-decade inertial range, L0/η ∼ 108:
QL model (squares) and E model (circles). Statistical errors are of the
same order as the size of the symbols. The QL model always satisfies
the Richardson-Obukhov law ∼δ−2/3 inside the inertial range while
the E model displays an anomalous ∼δ−1/3.

of course, L0-dependent, for both models. At small scales, i.e.,
below the Kolmogorov length, exponential separation appears
but with a mean rate that, in the QL model, is constant in all
numerical experiments while, in the E model, it is sensitive to
the integral scale. This picture confirms unequivocally that
the conjecture advanced in Ref. [15] is verified for what
concerns the behavior of kinematic simulations without the
“sweeping effect” correction, and, at the same time, that
the quasi-Lagrangian coordinate technique works perfectly to
restore the right Richardson’s law on arbitrarily long inertial
range.

Further evidence is shown in Fig. 4 where, in order to
best highlight the differences, the FSLEs are computed for an
eight-decade-long inertial range in both models.

The numerical simulations have been performed with
both fixed and adaptive integration time step �t , showing
no difference between the two methods. In the fixed time
step case, �t is set to a value much smaller than the
Kolmogorov time t(η). This choice is very conservative since
it permits a time resolution of the dispersion process that grows
progressively with the scale of motion, but, of course, it is also
very expensive in terms of computation time when the inertial
range attains several decades. On the other hand, the adaptive
time step, defined as �tn = 10−2 ln/A1 for ln+1 < r < ln,
is more efficient in terms of resource consuming and gives
exactly the same results of the former case, regardless of
the width of the inertial range. We remark that ln/A1 is the
advecting time at scale ln, and the condition for dt is to be
sufficiently small as to resolve well the dynamics of dispersion
at the local scale.

Last, we have studied the statistics of the dispersion process
within the inertial range of the model (with the L0/η ∼
104 setup; see Fig. 3) and checked it with the theoretical
predictions. In this regard, let us define the probability
distribution function (pdf) of the distance r between two
particles at time t as pR(r,t), and the pdf of the exit time
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t1 =   4 tη
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r3=86 η

(a)

(b)

FIG. 5. Upper panel: pR(r,t) at three different times t = t1,t2,t3
measured in Kolmogorov time unit (symbols) as function of r

normalized to the standard deviation; the continuous line is the
Richardson pdf p∗

R(r,t); the dotted line is a Gaussian pdf. Lower panel:
Collapse of rescaled pe(τ ) at three different separations δ = r1,r2,r3

within the inertial range (symbols); the line fitting the exponential tail
is p∗

e (τ ).

τ at scale δ as pe(τ ). Following Ref. [24], we recall that, in the
Richardson regime, the expected forms for the two pdf’s are,
respectively,

p∗
R(r,t) � C

CR ε t3
exp

(
−C ′ r2/3

C
1/3
R ε1/3 t

)
, (16)

p∗
e (τ ) � exp

[
−C ′′ τ

〈τ (δ)〉
]
, (17)

where ε is the mean turbulent dissipation rate, CR is Richard-
son’s constant, 〈τ (δ)〉 is the scale-dependent mean exit time,
and C, C ′, and C ′′ are constants whose precise value is not
particularly important in this context.

The results are shown in Fig. 5. The pdf pR(r,t) is computed
at three different times after the release of the particle pairs,
and, except for the core of the distribution around r � 0, the tail
is well fitted by Richardson’s prediction (16) up to four or five
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times the standard deviation. The pdf pe(τ ) is computed for
three different separation thresholds, and, again, except for a
limited range of τ � 0, the exponential tail is in agreement with
the theoretical prediction (17) as confirmed by the collapse
of the renormalized curves [24]. The discrepancy observed at
small r and τ is likely due to the “smoothness” of the kinematic
model at all scale separations with respect to the “roughness”
of a real turbulent field.

V. DISCUSSION AND CONCLUSIONS

In this paper, the problem of modeling two-particle disper-
sion in a turbulent fluid has been addressed by means of a
dynamical system approach. Unlike other types of kinematic
simulations, Lagrangian chaos and deterministic dynamics
are the key elements characterizing the model we have here
introduced and analyzed. The main conclusions at the end of
this work can be summarized as follows:

(1) Multiscale dynamics typical of turbulent flows is
guaranteed by the superposition of a number of self-similar
modes.

(2) The Kolmogorov relationship between space and ve-
locity parameters, scale by scale, defines an inertial range in
the model.

(3) Quasi-Lagrangian coordinates ensure that the statistics
of turbulent relative dispersion turn out to be in very good
agreement with the theoretical expectations.

While the first two points are already established facts in
literature, the third is an original element, fundamental to the
correct behavior of the kinematic model.

We also would like to remark on some other points:
First, the model is conceived to describe two-particle

Lagrangian dispersion. This does not have to be considered
as a limitation since it can be verified (not shown) that one-
particle, or absolute dispersion, statistics as well is reproduced
coherently with the theory of diffusion.

Second, the statistical quantities characterizing the rela-
tive dispersion process are not altered if one considers the
separation between particles that belong to different pairs.
This ensures that the properties of dispersion are common
to a whole set of tracer particles and are not limited to the
single pairs separately.

Third, the kinematic eddies are long-living coherent struc-
tures, i.e., with slowly decaying Eulerian autocorrelations.
It can be verified that letting the velocity amplitude of the
modes evolve in time as a stochastic variable, e.g., via a time-
correlated Langevin equation, does not change the Lagrangian
characteristics of the dispersion process.

Fourth, the kinematic model can be used either as an
independent model of an ideal turbulent flow or as a subgrid or,
more in general, a small-scale model for turbulent dispersion
inside some more complex and realistic large-scale model of,
e.g., atmospheric or oceanic circulation. In this regard, a 2D
version of the model (see Lacorata et al. [21]) can be adapted
to improve the simulation of horizontal mesoscale dispersion
over large domains.

Finally, the scaling properties of the model are not limited
to the Richardson’s regime, but, in principle, any arbitrary
scaling law can be imported in the model, depending on the
available experimental information about a given system. For
modeling dispersion in the ocean upper layer, for example,
the 2D version of the model can be set up according to the
information coming from Lagrangian drifter data.
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