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Damage cluster distributions in numerical concrete at the mesoscale
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We investigate the size distribution of damage clusters in concrete under uniaxial tension loading conditions.
Using the finite-element method, the concrete is modeled at the mesoscale by a random distribution of elastic
spherical aggregates within an elastic mortar paste. The propagation and coalescence of damage zones are then
simulated by means of dynamically inserted cohesive elements. Dynamic failure analysis shows that the size
distribution of damage clusters follows a power law when a system-spanning cluster is first observed, with an
exponent close to that of percolation theory. This is found for a range of selected mesostructural parameters,
material defects, and applied strain rates. In all cases, the system-spanning cluster occurs prior to the onset of
local decohesion, a regime of crack nucleation and propagation, and eventual material failure. The resulting fully
damaged crack surfaces after failure are found to be only weakly correlated with the percolated damage region

structures.
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I. INTRODUCTION

Understanding failure is crucial to the design of optimal
materials and structures. Disorder at different length and time
scales, either preexisting or evolving during deformation,
plays a fundamental role in the physics of material failure.
While microscopic disorders can be vacancies, inclusions,
dislocations, or grain boundaries, at the macroscale, these
spatial inhomogeneities can be viewed as random, spatially
varying, local material parameters [1]. In the statistical physics
community, failure in disordered materials is generally studied
with random models, in which the disorder is treated by
assigning random properties to the elements of the model
material. There are different classes of models depending
on the type and properties of the failure process of interest.
These models include, but are not limited to, random fuse
models [2-4], central force models [5], elastic beam models
[6], fiber bundle models [7-10], molecular dynamics models
[11], and finite-element models with progressive damage [12].
For broader reviews of the models mentioned above, refer to
Refs. [1,13-15].

Concrete is composed of mortar paste and coarse aggregates
at the mesoscale. Hence, its composite structure can be
modeled by discretizing the domain using the geometrical
information of aggregate particles and assigning different
material parameters to the finite elements. The proposed
model is a more realistic description of the material since
the heterogeneity is now represented explicitly by variations
in microstructure at the mesoscopic level. The weakest part of
concrete is the interfacial transition zone (ITZ), the region
surrounding the aggregates. The gradient of water-cement
ratio around the aggregate particles during casting results
in a different microstructure of the surrounding hydrated
cement paste [16]. The weak zones of ITZ are randomly
distributed within the domain following the aggregate size
distribution. Damage within the concrete sample initiate from
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these weak zones and develop following a complex growth
and coalescence mechanism under loading, eventually leading
to internal crack evolution and material failure.

In this paper, we mainly focus on the statistics of these
damage clusters prior to cracking, formed within the dynamic
failure response of concrete at the mesoscale, and propose
analogies with percolation theory [17] at a structural level. In
Sec. II, we describe the geometrical details of the concrete
mesostructure, the size and spatial distribution, and placement
of the aggregates. The mechanical problem and numerical
setup is explained in Sec. III. Section IV presents the cluster
statistics, the evolution of maximum cluster size, the number of
independent clusters, and their size distribution. The clusters
are studied using different mesostructures (characterized by a
particular random distribution of fracture parameters), altering
the aggregate content and for different sample sizes. For the
study of the corresponding mechanical properties several strain
rates are considered. During loading, the spatial evolution of
regions undergoing damage (plastic deformation) and fracture
is studied. It is found that the spatial cluster statistics of these
plastic regions is well described by a power-law distribution
whose exponent suggests percolation physics is at play. It is
further found that percolation of the plastic regions occurs
prior to the peak stress in the corresponding stress-strain
curve. In Sec. V it is found that the geometry of the eventual
fracture surface is only weakly related to the plastic structure
at percolation demonstrating that yield and failure are distinct
mechanical regimes. It is also shown that the crack localization
is lost at higher rates as damage zones are more likely
to become free crack surfaces. Avalanche behavior is also
discussed highlighting the differences between our model and
classical random models.

II. CONCRETE MESOSTRUCTURE

Concrete is modeled by coarse aggregates, mortar paste,
and the interfacial transition zone between them. The shape
of an aggregate depends on its type. Generally, crushed rock
aggregates have an angular shape while gravel aggregates are
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FIG. 1. Computer-generated mesoscale samples with different
simulation box sizes: (a) L = 40 mm, (b) L = 60 mm, (c) L = 80
mm, (d) L = 100 mm, and (e) L = 120 mm. The packing density is
30% for all samples.

of a rounded shape [18]. For simplicity, we use spherical
aggregates in our models. The aggregate particle size distribu-
tion is obtained with a sieving method that uses the Fuller’s
distribution [19]. It is formulated as

d n
P(d) = 1oo(dmax) , (1)

where P(d) is the total percentage of aggregates that pass a
sieve of diameter d, dy.x s the maximum aggregate diameter,
and n is an exponent, which typically takes values between
0.45 and 0.7; n = 0.5 is used for all the models in this
work. To generate a particular mesostrucure, we place the
coarse aggregates into the sample using a random placement
technique named the “take-and-place” method [20]. Here a
minimum distance criterion between aggregates is enforced to
avoid aggregate overlap. For example, the minimum distance
between the centers of the spherical aggregates i and j should
be at least (1 + n)(r; + r;), where 7 is the minimum distance
parameter and r; is the radius of ith aggregate. Analysis
(not given here) shows that the distribution exponent (n) and
minimum distance parameter (1) do not significantly affect the
findings of the present work.

For the present work, different realizations of aggregates
mesostructures are generated using the above stochastic
method. The diameter of the maximum aggregate is 16 mm
while the minimum is taken as 4 mm. A number of different
packing densities (20%, 30%, and 40%) for different systems
sizes will be considered. Here the packing density for concrete
is defined as the volumetric percentage of the aggregates in the
sample. Including sand, realistic packing densities for concrete
can go up to 60%—70%. However, these values are not currently
tractable, and therefore we will consider the regime of coarse
aggregates at lower packing densities. Figure 1 displays arange
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of sample sizes at a packing density of 30%. The samples are
cubic, and the largest has a side length of L = 120 mm. Since
the maximum aggregate size is smaller than one-sixth of the
side length of the reference sample, the computer-generated
mesoscale models with L > 100 mm can be considered as
representative volumes [21], which means that a calculation
using these volumes should yield a value that is representative
of the macroscopic properties. The samples with L = 100 mm
will be investigated in detail and considered as our reference
system.

III. NUMERICAL MODEL

The coarse aggregates and mortar paste are represented
with linear elastic continuum finite elements. Using the finite-
element model, we solve the equation of motion

Mii 4 fim — fext’ (2)

where M is the mass matrix, u is the displacement vector,
and f™ and ! are the internal and external force vectors
respectively. This equation is solved at every time step using
an explicit time integration scheme and the displacement field
is updated. For further details regarding the implementation,
see Ref. [22]. Crack initiation and propagation is modeled
via cohesive elements, which are inserted at the interelement
boundaries when the local stress exceeds a critical stress
threshold. This criterion is a material property and depends on
the material of the elements neighboring the cohesive surface.
Such cohesive elements are also used to model the ITZ.

The samples are loaded in uniaxial tension under displace-
ment control with an imposed strain rate. A constant velocity
of Vo = 0.5¢L is applied to the top and bottom boundaries.
No velocity is applied in the transversal directions, and free
boundary conditions are imposed. Note that the numerical
setup exhibits a Poisson effect, which is natural for the material
response of concrete. To avoid the stress wave propagation and
an early fracture near the boundaries, an initial velocity profile
is applied as a function of the vertical position:

2Vo

Vit =0 = =Ly, 3)

where y = 0 is the midplane of the sample. The finite-element
code used for the study is based on a Newmark explicit time
integration scheme, which is conditionally stable when the
time step is less than a critical value set by the Courant-
Friedrichs-Lewy condition [23]:

e=1...N C

(L
Atyir = o min <—), %)

where c is the pressure wave speed of the associated material
and [, is the size of element e. The smallest value of the
calculated time step over all elements is the chosen time step
for the simulation. A security coefficient, «, is also used (0.1
for this study) to ensure stability.

The used material properties for the elastic and cohesive
elements are given in Table I. Constant material properties are
mainly employed to limit the damage initiation mechanism
to the geometrical details of the mesostructure. Random
distributions, in which the material parameters are drawn from
a chosen distribution, will also be considered.
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TABLEI Material properties of aggregate particles, mortar paste,
and the interfacial transition zone (ITZ) [24].

Aggregate Mortar ITZ
Young’s modulus, E [GPa] 75 25 -
Poisson’s ratio, v 0.2 0.2 -
Density, p [kg/m?] 2700 2200 -
Fracture energy, G, [J/m?] 60 50 30
Tensile strength, f. [MPa] 10 4 2.4

Cohesive element method

The cohesive element method is used to model dynamic
fracture in concrete. The method is based on the cohesive
crack model of Dugdale [25] and Barenblatt [26]. To represent
the decohesion we bury all complex debonding processes in a
phenomenological, simple, cohesive law relating the traction
and opening displacement. This constitutive response is called
traction-separation law:

T =TW), ®)

where T is the traction acting on the separating surfaces and ¥
is the relative opening displacement vector. We use a simple
linear irreversible softening law [27,28]. The existing free
potential energy ¢, is assumed to depend only on one effective
scalar displacement § of the following form:

§=,/W2+ B2, (6)

where W, and W, are the normal and tangential displacement
components while § is the parameter that couples these two
displacements. We choose B = 1. The free potential energy is

8c

where f is the critical stress associated within the cohesive
element and & is the effective relative displacement value
beyond which complete decohesion occurs.

The derivation of the free potential energy with respect to
the opening displacement gives the cohesive tractions:

ip T

R

where n and s are the unit vectors in normal and tangential
directions. The crack opening condition is denoted with § =

Smax and § > 0, and the crack closure and reopening case is
stated as § < Spax. Thus, the traction is

- {fq(l — %) fors =snyandd >0

)
Smax Tinax

1 8
¢(8) = EfcﬂS <2 - —>, (N

(¥,n + B*;s), (8)

€))

for § < Smax

where 8¢ 18 the maximum value of the achieved effective
displacement up to that instant and Ti,.x is the associated
traction value for maximum relative displacement.

Damaging of the cohesive element is an irreversible process
while the traction-separation law allows recovering energy
upon unloading. Damage in a cohesive element is denoted as

D:min<5‘§“,1>. (10)

C
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The total dissipated fracture energy during the separation
process is equal to the total area under the traction-separation
curve: % fetdc. When total decohesion occurs two free surfaces
are formed at the interelement boundaries.

Cohesive-zone modeling introduces another length scale
set by the elastic and fracture properties. This length scale can
be expressed for simple cases (mode I loading, homogeneous
material) as [29,30]

EG,
13
The cohesive length scales for aggregate and mortar are 78.1
mm and 45 mm, respectively. Since the ITZ is not represented
with continuum elements and does not have a defined elastic

modulus, its associated cohesive length scale is ill-defined.

The condition [, < I, between the length scales has to be
satisfied in our simulations where [, is the biggest element
size. Obviously, the simulation-box size is an additional length
scale in our simulations, and the interplay of all length scales
is crucial for the understanding of the obtained results. The
cohesive zone must contain several elements (typically around
four [31]) and should be small compared to the sample size for
mesh independency. The average element size for the analyses,
which is the average side length for a regular tetrahedron
element, is 2.1 mm. The most constraining cohesive zone
length is around 45 mm for our simulations, which clearly
satisfies the requirement. However, the cohesive zone length
is not small compared to our sample size. Unfortunately, bigger
mesostructures cannot be simulated due to the computational
limitations.

I, =

(1)

IV. DAMAGE CLUSTERS

As the reference case, we consider the mesostructure shown
in Fig. 1(d) for a strain rate of ¢ = 1 s~

The macroscopic stress-strain response is plotted in Fig. 2.
Damage zones initiate early at the prepeak phase. The start of
damaging indicates the insertion of the first cohesive element
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FIG. 2. Mechanical response of the concrete model under uniax-
ial tensile loading for a strain rate ¢ = 1 s~! (L = 100 mm, packing
density of 30%, reference case).
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FIG. 3. Maximum cluster size normalized by the cross-sectional
area (left) and number of independent clusters (right) as a function
of strain for a strain rate £ = 1 s~' (L = 100 mm, packing density of
30%, reference case).

into the system. After this, the slope of the stress-strain curve
gradually decreases until the peak stress is achieved. At some
point along the stress-strain evolution we observe a cluster of
damaged elements that spans the entire simulation cell. This is
referred to as a system-spanning cluster and is found to occur
just prior to the peak stress. Fully damaged crack surfaces are
formed only during the postpeak phase causing a sharp drop of
the average stress. The tail in the end of the stress-strain curve
is due to a bridging of material elements between overlapping
crack tips [32].

The evolution of the maximum damage cluster area and
the number of the independent clusters are plotted in Fig. 3.
The cluster spanning and peak stress points are illustrated with
red and blue dots, as in the previous figure. A steep increase
for the maximum cluster size is observed in the region of
span and peak points. We observe a sharp increase in the
number of damage clusters at the onset of damaging. This
is because at every aggregate, ITZs are activated at the top
and bottom spherical segments perpendicular to the loading
direction. Therefore, the maximum number of independent
clusters is around twice the aggregate count in the sample.
Then the clusters extend to mortar elements and merge with
one another thereby decreasing the number of total clusters.
The local increase in cluster number at percolation [Fig. 3(b)]
is due to the average stress reaching 4 MPa, which is the
critical stress at which isolated cohesive elements within
the mortar can be activated. Both the number of clusters and the
maximum cluster area stabilizes after some point as damage
develops within the cohesive elements. Although the models
are of different nature, an analysis using fiber bundle models
showed that the statistics of successive broken fiber patches
signal a similar nonmonotonic behavior [33].

We introduce a parameter to measure how far the process is
from the system-spanning cluster point as a function of strain
and call it the control parameter:

& —¢
Ale) = ; (12)

s

where ¢ is the strain when the system-spanning cluster occurs.
A(e = 0) = 1 denotes the start of the loading. As the system is
loaded, A decreases, eventually becoming zero at the system-
spanning cluster. To investigate the statistics of the cluster
sizes as a function of the control parameter, we determine the
complementary cumulative distribution function, I — C(S,A),
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FIG. 4. Complementary CDFs of cluster size before (left) and
after (right) percolation for strain rate ¢ =1 s™' (L = 100 mm
with the packing density of 30%, reference case). The distribution
converges to an approximate power law as the system approaches
percolation (control parameter A = 0). The obtained exponent is the
maximum likelihood estimate derived from the data. The right panel
demonstrates that the power-law distribution is lost after percolation
(A <0).

where C(S,A) is the cumulative distribution function (CDF),
which gives the probability of observing a cluster size less than
S at the control parameter A. The visual form of the CDF, C(S),
is generally more robust than of the probability distribution
function (PDF) against fluctuations due to the finite sample
sizes, particularly in the tail of the distribution [34]. The com-
plementary CDFs of the cluster size are illustrated for several
A, before, at, and after the occurrence of a system-spanning
cluster (A = 0) in Fig. 4. Inspection of this log-log plot reveals
that as A — 0%, 1 — C(S,A) becomes increasingly power-
law-like. Whereas for negative values of A, after the system-
spanning event is seen, there is an increased tendency for larger
(system-spanning) clusters to exist, thus destroying the dom-
inant power-law behavior around A = 0. The damage level
[Eq. (10)] of the cohesive elements in the regime of system-
spanning clusters is quite low. Hence, at this stage, no macro-
scopic damage is observed in the sample. Free crack surfaces
are formed later along with a drop in the macroscopic stress.
The maximum damage observed at this stage is around 6%.
We observe that a vast majority of cohesive elements present
at percolation contain a little amount of damage (D < 0.01).
The onset of a system spanning cluster suggests percolation
might be at play. Percolation theory indicates that the PDF of
cluster sizes, S, should follow a truncated power law [17]:

P(S,A) ~ STTF(S/Se), (13)

where t is the (critical) power-law exponent, F is a scaling
function, and S is the characteristic cluster size which depends
on the control parameter A. The complementary CDF is then
calculated as

1—C(S,A) = /oo P(S' . NS ~ STTHG(S/Se),  (14)
S

where G is an another scaling function. Thus, 1 — C(S,A) also
asymptotes to a power-law distribution with critical exponent
(r — 1). The scaling functions, F(x) and G(x), both limit to a
constant as x — 00.

For a bulk (infinite) system, S; diverges at A = 0, resulting
in pure power laws for Eqgs. (13) and (14). Percolation theory
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FIG. 5. Scaling collapse of the damage cluster size distributions
for the reference system (data given in Fig. 4 for several A values)
with 7 = 1.75, 0 = 0.62, and A, = 0.01.

has S¢ diverging as a power law in terms of A:
Se oc A7V for A — 0, (15)

where o is another critical exponent. For a finite system,
percolation corresponds to a system-spanning event and an
S¢ which is finite, resulting in a truncated power law even
at percolation. Thus, for a finite system, Eq. (15) must be
modified 0 S o (A + Ax)”'/?, where A, becomes the
control parameter value for the bulk system at A = 0, when the
first system-spanning cluster is observed for a finite system.

The applicability of Eq. (14) to the current problem may
be seen by plotting [1 — C(S,A)]S™! versus SA!/° for
different values of A to obtain the scaling function G(x).
Figure 5 does this, displaying a reasonable collapse for the
values of t = 1.75, 0 = 0.62, and A, = 0.01 over a range
spanning two orders of magnitude. The poorest collapse is
seen for the A = 0 case. This is because the distribution at the
system-spanning event is predominantly a power law. Because
of this, we now consider in detail the measurement of the
exponent at percolation.

The power-law fit to the cluster size data at percolation has a
lower bound, denoted by Spin, meaning that the fit is valid only
for S > Smin- The exponent, t, and S, are estimated using
the method of maximum likelihood. Then, the goodness-of-fit
between the data and the power law is calculated using
synthetic data sets generated using the estimated v and Sy;y.
Each synthetic data set is fitted to its own power law, and
the Kolmogorov-Smirnov (KS) statistic, a common measure
to quantify the distance between two probability distributions,
is calculated [35]. The KS statistic is simply the maximum
distance between the CDFs of the data and the fitted model.
Then the fraction of synthetic realizations for which the
resulting statistic is larger than the value for the empirical
data is counted. This fraction is called the p value. If p is
close to 1, then the difference between the empirical data and
the model can be attributed to statistical fluctuations alone. If
it is small, the model is not a plausible fit for the data. The
rule of thumb used to reject a power-law fit is p < 0.05. The
uncertainties of our estimates T and S,,;, are also calculated
via the synthetic data sets. A nonparametric bootstrap method
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is used, the synthetic data is generated by drawing a new
sequence of points uniformly, at random, from the original
data with replacement. Using the same fitting methodology,
we estimate T and Sy, for this surrogate data set. The standard
deviation of these estimates over a large number of repetitions
gives an estimation of the uncertainty in the original estimated
parameters. We present the uncertainties in parenthesis next
to the estimated variables. For further details regarding to the
fitting and testing processes, see Ref. [34].

For the reference sample, the distribution of cluster size
converges to a power law with an exponent T = 2.06(0.09)
as we reach the point, when a spanning cluster is first
observed (A = 0). The power-law distribution is destroyed
after percolation due to the coalescence of smaller clusters with
the percolated cluster. The size distribution of damage clusters
has previously been studied using quite different models. A
power-law distribution of crack sizes was also observed with
a scalar spring model, and it was reported that the distribution
was exponential for the low-strain loadings and approaches to
a power law as the loading increases [36]. Girard ef al. [12]
saw an identical trend of the damage cluster size distribution
for their finite-element model, applying a random distribution
of disorder. In their case, the size distribution of the damage
clusters follows a power law with an exponential cutoff at
the peak load under compressive loading. The power-law
distribution of cluster sizes found with the models listed above
is not in agreement with the lognormal distributions observed
in the random fuse models [4].

Power-law distributions of rupture events show variability
in terms of the exponent depending on the heterogeneity, stress,
brittle or ductile transition, finite size effects, and proximity
to the failure [37]. The exponent obtained for the fiber bundle
models is 1.86 [38], while scalar spring models yield T =
2 [36]. Progressive damage finite-element models under the
compressive loading give different exponents with different
levels of heterogeneity as the reported values range from 2.6
to 3.6 [12]. Itis known that the percolation theory calculates the
Fisher’s exponent in two dimensions as t,p = 187/91 ~ 2.05
and 73p = 2.18 in three dimensions [17]. The exponent we
calculate for the reference case v = 2.06 & 0.09 is slightly
lower than the prediction of the theory for three dimensions.
This shows that larger damage zones occur more frequently
due to the correlated growth mechanism and coalescence of
clusters as in [38]. However, special attention should be paid
to the difference in 7 values obtained by the scaling collapse
analysis and a power-law fit at A = 0. This disparity shows
the influence of finite size effects in the reference system.

In what follows, we now consider the effect of different
mesostructures and inertial effects by varying the mesostruc-
ture properties and the applied strain rate.

A. Random spatial distribution of aggregates

Ten mesostructures, which have the same mesostructural
properties of the one in Fig. 1(d) are analyzed to examine
the influence of the spatial arrangement of the aggregates.
The samples have the same aggregate size distribution but
differ in terms of the placement as this is a random process.
The macroscopic stress and cluster evolution do not vary
significantly, and the conclusions drawn from the reference
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FIG. 6. Complementary CDFs of cluster size at percolation for
10 different mesostructures with L = 100 mm, packing density of
30%, and ¢ = 1 s™! (a) and the averaged complementary CDF (b).
Fitted exponents are listed in Table II. The combined exponent is
T = 2.03(0.02) with the uncertainty given in parentheses. Combined
damage cluster size distributions for several A is given in (c) and its
data collapse with t = 1.77, ¢ = 0.59, and A, = 0.01 is in (d).

case apply to all of them. Combining several realizations with
the same properties removes some of the fluctuations as shown
in Fig. 6, while exponents similar to the reference case are
found for the data collapse of the combined damage cluster
size distributions. Truncation of clusters that are comparable

TABLEII. Estimated 7 and Sy, for several (10 for ¢ = 1 s~! and
three for & = 10 s™!) realizations of aggregate placement (packing
density of 30%). p value shows the plausibility of the proposed
power-law fit.

E=1s""
T Smin(Mm?) p value
Mesol 2.06(0.09) 80.6(41.4) 0.283
Meso2 2.03(0.09) 77.6(39.9) 0.663
Meso3 2.03(0.09) 75.9(39.5) 0.542
Mesod 2.01(0.07) 46.4(14.2) 0.425
Meso5 2.06(0.09) 76.5(40.6) 0.429
Meso6 2.00(0.07) 74.8(23.4) 0.649
Meso? 1.98(0.07) 64.1(22.5) 0.724
Meso8 2.09(0.13) 129.3(38.9) 0.307
Meso9 2.04(0.07) 58.6(21.6) 0.950
Mesol0 2.00(0.10) 70.7(39.8) 0.800
Combined 2.03(0.02) 79.7(27.0) 0.512
&=10s7"
T Simin(Mm?) p value
Mesol 1.97(0.10) 92.8(33.2) 0.038
Meso2 1.99(0.13) 90.4(48.5) 0.670
Meso3 1.92(0.15) 66.3(83.6) 0.038
Combined 1.97(0.06) 95.7(47.5) 0.135
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TABLE III. Random distribution of the tensile strength of the
ITZ and mortar paste. Levels from 0 to 3 are introduced to account
for different ranges of uniform distribution. Fracture energy is kept
constant for all cases.

Level Jerrrz (MPa) JSet.mor (MPa)
L0 (constant) 2.4 4

L1 1.4-34 4

L2 0.4-4.4 4

L3 0.4-4.4 2-6

to the system size at A = 0 is also observed with the combined
set of data.

Cluster size distributions of the mesostructures are con-
sistent within their range of uncertainty. The exponent of
the combined distribution 7 = 2.03(0.02) was obtained by
summing the clusters of all mesostructures at percolation.
Table II lists the power-law estimates for strain rates of 1
s~! and 10 s~!. The uncertainty for the exponent is reduced
with combining cluster size data. For the 10 s~ ! case, first
and third mesostructure have p values lower than 0.05, but
combined data give a sufficient p value to accept the power-law
distribution hypothesis.

B. Random material parameters

Up to this point, the only heterogeneity present in the model
is from the mesostructure itself and the weak zones of the
ITZ are always the primary damage initiation locations. We
introduce an additional degree of uncertainty by introducing
a uniform distribution to the tensile strength of ITZ and
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FIG. 7. Complementary CDFs of cluster sizes for several material
randomness levels (L = 100 mm, packing density of 30%, ¢ = 157!,
reference case). L1 (a), L2 (b), and L3 (c) plots show that in all
cases cluster distribution converge to a power law at percolation. The
power-law fit is valid for smaller clusters, and the fluctuations reduce
as the material randomness increases, see the estimates of Sy, in

Table IV.
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TABLEIV. Estimated T and S,;, for four distribution levels (L =
100 mm, packing density of 30%, ¢ = 1 s™!, reference case). p value
shows the plausibility of the proposed power-law fit.

PHYSICAL REVIEW E 95, 043002 (2017)

TABLE V. Estimated 7 and S, for several packing densities
(PD) (L = 100 mm, ¢ = 1 s7!). p value shows the plausibility of the
proposed power-law fit. n for each mesostructure is given in brackets.

Level T Smin(mm?) p value PD [7n] T Spmin(Mm?) p value
LO 2.06(0.09) 80.6(41.4) 0.283 20% [0.2] 1.91(0.04) 15.0(12.6) 0.260

L1 1.98(0.06) 173.8(30.0) 0.745 30% [0.1] 2.06(0.09) 80.6(41.4) 0.283

L2 1.91(0.04) 11.2(7.7) 0392 40% [0.04] 2.12(0.11) 84.3(31.4) 0.744

L3 1.94(0.03) 5.9(6.0) 0.063

mortar paste. The standard deviation is gradually increased
(Table II) within a range of material properties observed
experimentally [39].

L0 is the base level (the reference case). Complementary
CDFs for all levels are presented in Fig. 7.

In all cases, the size distribution of the clusters follows
a power law at percolation. A summary of the power-law
exponent estimates is given in Table IV. Sy, values for levels
L2 and L3 show the fitis valid for a larger range of cluster sizes
as we increase material randomness. In addition, fluctuations
in the distribution curve at percolation reduce as the decrease
in the fit uncertainty shows. The exponents for L1, L2, and L3
are all lower than the constant material parameter case, LO.

A fair scaling collapse, including the data set at A =0
is obtained with the addition of random material parameters
in Fig. 8. Furthermore, the Fisher’s exponent derived from the
scaling collapse analysis is very close to the one obtained from
the power-law fit at A = 0 unlike the reference case, in which
we use constant material parameters. Thus, injecting material
randomness to the reference case, tends to give better statistics,
and therefore improved mesostructure self-averaging for this
considered sample size.

It should be noted that under extreme disorder, crack
cluster properties were found to differ from the random
percolation statistics using a random fuse network model [40].
The present work shows that when the disorder is within a
range of experimentally observed material properties, random
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FIG. 8. Scaling collapse of the damage cluster size distributions
of the level L3 (data given in Fig. 7c for several A values) with with
7 =1.90,0 =0.34,and A, = 0.08.

percolation statistics prevails, indicating a weak disorder
regime for the current model.

C. Packing density

To study the effect of packing density, mesostructures
containing 20%, 30%, and 40% of coarse aggregates are con-
structed using the take-and-place method with sufficiently high
n values for each case to obtain a homogeneous distribution of
aggregates; see Table V. A strain rate of ¢ = 1 s~ is applied
to all samples. The mechanical response and the number of
independent clusters are compared in Fig. 9.

Coarse aggregates have larger elastic modulus than mortar
paste, therefore the linear elastic response is stiffer for larger
packing densities. Also, more aggregates mean more weak
regions of ITZ, hence the samples with higher aggregate
content yield more damaged regions during loading. For this
reason lower packing densities attain higher peak stresses. A
spanning cluster is observed just before peak stress in all cases.

There are differences in the evolution of the number of
independent clusters. For all three cases, the number of
clusters increases first around two times the number of the
aggregates as the ITZs are activated at the top and bottom
spherical segments perpendicular to the loading direction.
The local increase we observed before for the sample of
30% aggregate becomes an influential peak for the 20% case.
The reason lies in the constitutive response. Since the tensile
strength of the mortar-mortar interface is 4 MPa, and the 20%
case attains stresses higher than this value before the peak,
there are cohesive elements activated in the mortar paste for
damage initiation. For the same reason, we have no further
increase of independent clusters after the ITZs of the aggre-
gates are activated for the 40% case as the average stress never
exceeds 4 MPa.

5 4000
—PD=20% —PD=20%
4 - ---PD=30% ---PD=30%
— 7w\ T PD=40%1" £ 5000 —-PD=40%
3 \ 2
~ -
= 5 2000
g2 g | N
| Z 1000
(] "~ - 3 ” 1y
0 1 2 3 4 5 0 1 2 3 1 5
Strain %107 Strain x107

FIG. 9. Mechanical response (left) and number of independent
clusters (right) for the mesostructures with packing densities (PD) of
20%, 30%, and 40%. Red circles denote the cluster-spanning point
while blue circles are for the peak stress (L = 100 mm, é = 1s71).
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FIG. 10. Normalized maximum cluster size evolution (left) and
complementary CDFs (right) at percolation for various strain rates
(6 =0.01-500 s~1). All curves are obtained using the reference
mesostructure (L = 100 mm, packing density of 30%).

The complementary CDFs of 20% and 40% cases (not
given in the manuscript) behave in an identical manner as the
30% curves. The size distribution converges to a power law
at percolation, and the power law is lost upon further loading.
Estimated power-law fit variables are listed in Table V. We
observe higher exponents with increased heterogeneity.

D. Strain rate

The strain rate is altered to investigate how inertia affects
the field-induced percolation analogy. We consider a range of
strain rates spanning é = 0.01-500 s~'. The maximum cluster
size evolution and complementary CDFs at percolation are
plotted in Fig. 10.

Larger clusters are achieved with faster rates as they allow
more diffuse damaging in the concrete sample. Diffuse damage
zones coalesce and form larger clusters during loading. The
size distributions are consistent with increasing fluctuation at
higher rates. Estimated power-law fit parameters are given in
Table VI. We see that at high rates ¢ > 10 s~!, there is more
noise in the data. However, we do not observe a systematic
dependence of the T exponent on the strain rate. Accordingly,
low p values are observed in the high rate regime. However,
for all rates considered, the size distribution converges to a
power law at percolation, and afterwards, it is destroyed with
an overgrowing dominant cluster.

TABLE VI. Estimated t and Sy, for several strain rates (L =
100 mm, packing density of 30%). p value shows the plausibility of
the proposed power-law fit.

£(s™h T Spmin(Mm?) p value
0.01 2.11(0.07) 75.9(14.6) 0.603
0.1 2.11(0.09) 79.2(26.0) 0.192
1 2.06(0.09) 80.6(41.4) 0.283
10 1.97(0.10) 92.8(33.2) 0.038
50 1.82(0.10) 8.7(20.9) 0.000
100 2.30(0.22) 86.2(38.8) 0.484
250 2.02(0.05) 42.0(17.8) 0.199
500 1.94(0.10) 357.7(75.1) 0.673
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FIG. 11. Normalized maximum cluster size (Sp,m) evolution
(left) and complementary CDFs (right) at percolation for various
sample sizes (L = 40-120 mm). The mesostructures presented in
Fig. 1 are used for the analyses with strain rate é = 1 57!,

E. Simulation box size

The sample sizes of L = 40, 60, 80, 100, and 120 mm are
considered to examine the size effect; see Fig. 1. The maximum
cluster size evolution and complementary CDFs at percolation
are plotted in Fig. 11 for the strain rate & = 1 s~!. The vertical
axis of Fig. 11(a) is plotted as the normalized maximum cluster
size divided by L%/3 where d is the fractal dimension at
percolation. Here the three-dimensional percolation value of
dr = 2.52 is used. The good collapse of the vertical scale with
respect to this scaling gives further support of an underlying
percolation phenomenon.

The fractal dimensions of the spanning clusters may also
be estimated for different sample sizes using a Hausdorff box-
counting algorithm and are listed in Table VII. The estimation
increases with size but is always lower than the theoretical
value of dy = 2.52, demonstrating the limitation of our finite
sample size.

The distributions again approach a power law as the system
is driven to percolation. Estimated power-law fit parameters
are listed in Table VIII for strain rates 1 s=! and 10 s=!. It
is observed that the exponent for L = 40 mm case is lower
compared to others. It must be noted that this size cannot
be considered as a representative volume as the maximum
aggregate diameter is 16 mm, nearly half the size of the
simulation box size. Hence, the clusters are severely influenced
by the spatial arrangement of comparatively big aggregates.
Additionally, the range of the power law reduces as simulation-
box size decreases.

As in Figs. 4 and 6, Fig. 11(b) demonstrates a distribution
at A = 0 which is predominantly a power law. This appears
not to change with system size, which is somewhat surprising
given that the smaller the system, the further the A = 0O state
is from the true bulk critical point.

TABLE VIIL. Fractal dimension estimations for different
simulation-box sizes with the uncertainties given in parentheses.

L (mm) Fractal dimension, d¢
60 2.06 (0.12)
80 2.17 (0.12)
100 2.18 (0.12)
120 2.27 (0.15)
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TABLE VIII. Estimated t and Sy, for several sample sizes (packing density of 30%). p value shows the plausibility of the proposed

power-law fit.

g=1s""! &=10s""
L (mm) T Simin(Mm?) p value T Spmin(mm?) p value
40 1.70(0.09) 6.2(9.0) 0.136 1.71(0.13) 8.5(14.1) 0.262
60 2.01(0.21) 63.5(31.3) 0.932 1.93(0.13) 50.1(22.0) 0.878
80 1.91(0.09) 57.6(25.1) 0.914 1.80(0.08) 14.7(23.1) 0.025
100 2.06(0.09) 80.6(41.4) 0.283 1.97(0.10) 92.8(33.2) 0.038
120 2.08(0.11) 137.3(49.4) 0.652 2.00(0.07) 70.9(22.8) 0.659

It has been shown that in the limit of large system sizes,
percolation-like behavior vanishes and the failure can be
described by nucleation; see the phase diagram in Ref. [41].
Our samples suffer from a strong finite-size effect and are not
near such a limit. Since we observe neither nucleation nor
scale-free avalanches, it is natural that our simulations should
fall in the percolation regime.

V. PERCOLATED DAMAGE CLUSTER AND
FINAL CRACKING

Figure 12 visualizes the damage clusters obtained at
percolation and the final macroscopic crack surface, for three
realizations of the reference mesostructure [Fig. 1(d)] for the
strain rate ¢ = 1 s~!. At this strain rate, the crack is well
localized.

It was mentioned before that the average damage in cohe-
sive elements prior to yield is low, with the maximum damage
level being around 5%—6% at percolation. Cohesive elements
with comparatively high damage are diffused randomly in the
cluster at this level of the analysis, so the damage map itself
does not give great insight for the final crack profile. For two
samples, Fig. 12 shows that the location of the percolated
cluster is qualitatively close to the final cracking. However,
in one of the mesostructures (central in Fig. 12), a large part
of the final crack is formed far from the percolated damage
cluster.

The percolated cluster and final cracking are now quan-
titatively compared in terms of the cohesive elements they
contain; see Table IX. For the strain rate 1 s~!, it is observed
that only 11% of the spanning cluster becomes fully damaged
in the end, while one-third of the final crack is formed by
the elements belonging to the percolated cluster. It is also
interesting that on average around 44% of the free surface
was intact at percolation. This shows that the cracking of the
sample at the postpeak phase is due to the further initiation and
nucleation of damage zones. The little-damaged percolated
cluster is therefore uncorrelated with the final macroscopic
crack. Random fuse models also show that the largest crack
clusters, at the peak load, do not propagate into a spanning
crack, and the final crack is formed due to the coalescence of
smaller cracks [4].

Since the percolated cluster is mostly constituted of low-
damage elements, one meaningful question is whether the
elements that have comparatively high damage in these clusters
act as weak spots and are responsible for the free surfaces
upon the failure. To investigate this aspect, we set a damage

threshold for all of the elements at percolation and monitor
the percentage of those elements above this threshold, and
belonging to the percolating cluster, becoming free surfaces
later; see Fig. 13.

FIG. 12. Percolated clusters (left) and the free surfaces formed
upon the failure (right) for three different realizations of the
mesostructure in Fig. 1(d) for a strain rate & = 1 s~!. While all
cohesive elements with damage D > O are plotted on the left for
the percolated clusters, only the totally damaged cohesive elements
are shown on the right.
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TABLE IX. Comparison of the percolated cluster (PC) and final
cracking (FC). Mesol to Mesol0 are the 10 different realizations
of the mesostructure illustrated in Fig. 1(d) at strain rate ¢ = 1 s™'.
PC/FC: the amount of PC becoming FC, FC/PC: the amount of FC
present in PC, FC/perc.: the amount of FC present at percolation.
The cases where more than one percolated cluster is observed at
percolation are denoted with an asterisk.

PC/FC FC/PC FC/perc.
Mesol 14.80% 46.18% 57.45%
Meso2 11.74% 20.27% 55.74%
Meso3 17.40% 47.99% 55.72%
Meso4* 7.37% 58.40% 62.05%
Meso5* 9.67% 32.09% 54.24%
Meso6 7.63% 7.47% 53.69%
Meso7 17.77% 34.80% 49.75%
Meso8* 8.51% 50.97% 58.28%
Meso9 0.00% 0.00% 55.84%
Mesol0 13.17% 33.00% 58.13%
Average 10.81% 33.12% 56.09%

Figure 13 demonstrates that comparatively high-damaged
elements at percolation are more likely to become fully
damaged upon failure. Considering all the elements present
at percolation, in six mesostructures out of 10, all of the
elements having the most damage contribute to the free
surfaces. However, in the remaining four, some portion of
the most-damaged zones does not get fully damaged when the
sample fails. When we limit our inspection to the percolated
cluster, its lack of correlation with the final cracking profile
becomes more clear. The effect of the weak spots at percolation
varies depending on the mesostructure, but, overall, the amount
of damage increases the likelihood that the element will be
fully damaged. However, in four out of 10 mesostructures the
weakest elements in the percolated cluster become a part of
the final cracking profile, while in others, they stop carrying
further damage. It is interesting to note that in one case, the
percolated cluster has no common elements with the final
cracking. Hence, the final cracking is not necessarily obtained
by further damaging the spanning cluster. Instead, it is a result
of a more complex growth and coalescence mechanism, which
includes the elements that are inserted after percolation.

Figure 14 displays the percolated cluster and free surfaces
upon failure for the higher strain rate ¢ = 10 s~!. In this higher
rate regime, where we lose the crack localization and the
clusters at percolation give no hint on where the free surfaces
are going to be. As the strain rate increases, the number of
cracked cohesive elements increase and several crack clusters
of various sizes exist at failure. Figure 15 shows the crack
morphologies as a function of strain rate.

Crack localization is clearly lost at higher strain rates with
the cracked region occupying the whole simulation box. At
lower rates the first crack has time to grow creating neighboring
damage zones. In other words the emergence of new cracks
and their growth is slow enough for localization to happen.
However, at higher rates the emergence rate of new cracks
is comparable to the growth rate of existing cracks leading
to homogeneous failure. To verify this, the percentages of
the damage zones at percolation becoming fully damaged

PHYSICAL REVIEW E 95, 043002 (2017)
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FIG. 13. Percentage of the elements having larger damage from
a specified threshold and becoming fully damaged (D = 1) upon
failure: (above) all elements at percolation and (below) only the
elements belonging to the percolated cluster (PC) (L = 100 mm,
&=1 s7'). The captions Mesol to MesolO are the 10 different
realizations of the mesostructure illustrated in Fig. 1(d).

crack surfaces are listed in Table X as a function of strain
rate. The likelihood of an existing damage zone to become
fully damaged crack surface increases with the strain rate.
Furthermore, higher rates activate more damage zones and
cause bigger avalanches upon loading. Here an avalanche event
is defined as the number of further damaged cohesive elements

FIG. 14. Percolated cluster (left) and the free surfaces formed
upon the failure (right) for strain rate é = 10 s~'. While all cohesive
elements with damage D > 0 are plotted on the left for the percolated
cluster, only the totally damaged cohesive elements are shown on the
right.
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FIG. 15. Final cracking (fully damaged cohesive elements,
D=1) at high strain rates: (a) é=10 s~!, (b) é=50 s7!,
()€ =100s"1,(d) & =250s"".

in a time step. For all cases considered in this study, we
observed that avalanches gradually increase as more damage
zones are activated with the applied loading and damage
increases progressively in cohesive elements with a constant
stress threshold. The gradual increase of avalanche size also
shows that our system is very different from the random
models, for which a plastic plateau is artificially created by
continuously reinserting spring elements (or scalar fuses).

VI. CONCLUSIONS

We studied the statistics of damage clusters in concrete
under uniaxial tension at the mesoscale. The size distribution
of clusters converges to a power law as the system approaches
percolation. The power law is destroyed with further loading.
This behavior is insensitive to strain rate, sample size, packing
density, and random distribution of aggregates and material
parameters within the defined ranges, indicating a universal
phenomenon is at play. Distribution exponents are close to the

PHYSICAL REVIEW E 95, 043002 (2017)

TABLE X. The amount of damage zones at percolation that forms
final cracking (FC) as a function of strain rate.

&G % of elements at percolation becoming FC
1 3.65%
10 6.30%
50 11.80%
100 18.31%
250 27.81%
500 29.29%

ones found in the literature using random physical models
suggesting the phenomenon of a field-induced percolation
process [42] as we drive our system to failure by application of
strain. Percolation theory suggests r3p = 2.18 [17] for three
dimensions, and we have smaller exponents, which shows
that larger damage zones occur more frequently due to the
correlated growth mechanism and coalescence of clusters.
More fluctuations are observed for the size distribution as
we increase strain rate. The fluctuations reduce when several
samples are run and averaged. On the other hand, to obtain a
reasonable scaling collapse, a lower cluster size distribution
exponent was needed suggesting interaction between the
cohesive zone elements might be important.

At lower rates, the damage map at the percolation gives
qualitative insights about the emerging free crack surfaces.
However, a quantitative analysis at é = 1 s~! of cohesive
elements show that only a small fraction (*11%) of the
percolated cluster becomes part of the final crack. In addition,
more than 40% of the cohesive elements that will form the
free cracks in the end are not inserted yet at percolation. This
verifies the phenomenon observed in random fuse models,
that the largest crack clusters at the peak load do not propagate
into a spanning crack and the final crack is formed due to
the coalescence of smaller cracks. Further analysis shows
that the likelihood of an element to be a part of the final
cracking increases if the damage level attained at percolation
is higher. We observe that the macroscopic crack upon failure
does not necessarily emerge from the weak spots of the
percolated cluster. Final cracking is a result of a more complex
growth and coalescence process, which includes the elements
that are inserted after percolation. Hence, the transition to
yield (system-spanning damage) is described as a percolation
phenomenon while failure (system-spanning crack) is an
another mechanical regime with different properties.
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