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Compaction of noncohesive and cohesive granular materials under vibrations:
Experiments and stochastic model
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We study the time evolution of the compaction of a noncohesive or cohesive granular material submitted
to shaking through experiments and a stochastic model. Beyond well-known empirical expressions, we show
that the characteristic time scales depend on the number of objects in the assembly. For a noncohesive granular
material, the compaction time scale is governed by the number of individual grains in the system. In the case of
a cohesive granular material, a two-scale model (individual particles and clusters) allows one to mimic the time
evolution of the compaction of an actual cohesive powder driven by horizontal vibrations. In this case, the two
time scales are associated with the numbers of clusters and grains, respectively.
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I. INTRODUCTION

Ubiquitous in many natural and industrial processes, granu-
lar matter provides many challenges when it needs to be stored
or transported. An external mechanical energy is often needed
to allow motion or to compact an initially loose packing.
This is especially true when the grains exhibit some cohesive
properties, however, cohesive powders are very common in
many industries (pharmaceutical powders, flours, cements,
nuclear powders, among other examples).

For at least two decades, numerous studies have focused
on the compaction and the density relaxation of a granular
assembly submitted to shaking. Among them, the works on
density relaxation by vertical tapping lead to empirical laws
based on an inverse logarithmic law [1,2] for the particle
volume fraction

φ(t) = φ∞ − φ∞ − φ0

1 + B ln(1 + t/τ )
, (1)

or on a stretched exponential [3] derived from a Kohlrausch-
Williams-Watts (KWW) model

φ = φ∞ − (φ∞ − φ0)e−(t/τ )β . (2)

Both laws exhibit an initial value φ0, a limit value φ∞, a
characteristic time τ , and some fitting parameters B or β.

These studies considered a set of spherical granular
particles of the same size without surface forces between
them (i.e., noncohesive particles). When the granular system
exhibits cohesive properties, some new difficulties arise during
industrial or natural processes. A cohesive powder usually
exhibits a very large angle of repose and a weak flowability.
The flowability of a powder is often characterized by the
Hausner index (IH ) [4], which is the ratio of the tapped bulk
density of the powder over the freely settled bulk density.
A Hausner ratio of greater than 1.25 is considered to be
an indication of poor flowability. The filling and emptying
of a silo are difficult without an external input of energy,
often mechanical, and the packing of grains may have a very
small bulk density due to the presence of macrocavities, bulk
holes, and vaults. A two-dimensional (2D) numerical system

of cohesive grains has been studied by Gilabert et al. [5,6],
with a focus on static packings and plastic consolidation.
More recently, three-dimensional (3D) numerical simulations
showed the effects of nonconvexity on the packing fraction
[7]. The flow of cohesive powders has also been studied
numerically [8], but the vibration-induced compaction of
cohesive powders is a recent subject [9] and many aspects
still need to be explored.

In this paper we aim to investigate the long-time density
evolution of a bed of noncohesive and cohesive granular
material under vibrations, through experiments on three sets
of particles and also through a stochastic model.

II. EXPERIMENTS

We first benchmarked our experimental setup with a
noncohesive granular material, by performing compaction
experiments on a set of glass beads of d = 130 μm mean
diameter with IH = 1.08. The container was a 15 × 15 mm2

square section tank with a height of 25 cm. This container was
horizontally shaken at 100 Hz with a 3g acceleration by an
electromagnetic shaker. Experiments with various quantities
of beads (hence different initial heights H0) were performed.
Great care was taken during the filling process to ensure that
the initial packing fraction was constant for each experiment.
Through the measurement of the packing height H (t), we have
recorded the particle volume fraction φ(t), where the time t is
the number of vibration cycles from the start.

Figure 1 shows the compaction data φ(t) for five different
initial heights H0 of glass bead packings in a semilog scale.
The packing fraction starts at φ0, shows an increase at
t ≈ 102, and then saturates at a φ∞ value near t ≈ 103. These
experimental data are reasonably well fitted by the stretched
exponential function [Eq. (2)] with β = 1. The dependence of
the final packing on the size of the box and/or the height of
the packing has already been observed in 2D trough numerical
simulations [10] and was not further investigated in our work.

The compaction behavior is quite different when the
granular material exhibits a cohesive property. We measured
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FIG. 1. Experimental compaction on glass beads with various
initial heights (hence masses) of the beads. The data are fitted with
β = 1 in Eq. (2). Inset: Characteristic compaction time τ/H0 vs
φ∞/φ0 for glass bead experiments.

experimentally the compaction process for a cohesive powder.
The powder was a polydisperse UO2 powder with a mean
diameter d = 30 μm, and the grain surfaces were very
rough (Fig. 2) due to the granulation process. The cohesive
property (IH = 1.53) comes from this surface roughness and
we checked that the cohesion was not due to humidity or
triboelectric effects. The powder was held in the same vertical
parallelepiped tank. The tank was vibrated horizontally with an
electromagnetic shaker with a frequency range of 30–100 Hz,
and a normalized acceleration of 3g–9g. The packing of this
assembly of grains obviously presented large-scale voids,
vaults, or macrocavities. This can be observed in Fig. 3 for
a vibrated cohesive powder where large-size voids are present

FIG. 2. Scanned electronic microscope image of the UO2 cohe-
sive powder.

FIG. 3. Observation of macrocavities (highlighted by white ar-
rows) in a vibrated cohesive UO2 powder. t = 936 cycles (left) and
t = 1254 cycles (right).

near the tank wall. Numerous other macrocavities are assumed
to exist in the bulk of the powder.

A representative experimental result of the compaction
process is shown in Fig. 4 for different initial heights of the
powder, vibrated at 100 Hz with a 7g acceleration. The packing
fraction increases at a short time (a few thousands cycles),
reaches a plateau for t ≈ 104, and then a second long-time
increase occurs, much more slowly. A two-stage compaction
is thus observed. Despite the care and the time taken during the
experiments, the saturated packing fraction is hardly reached
even after 106 cycles (2.8 h under 100 Hz vibrations). This
leads to an ill-defined φ∞ value, which seems to vary from

FIG. 4. Examples of experimental results for the compaction of
the cohesive UO2 powder (100 Hz, 7g) in a 15 × 15 mm2 square
section tank. Data are fitted by Eq. (9). Inset: Characteristic times τc

(solid blue circles) and τg (solid red triangles) as a function of the
initial height H0.
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FIG. 5. Experimental results for the compaction of the weakly
cohesive alumina powder (100 Hz, 7g) in a 15 × 15 mm2 square
section tank. Data are fitted by Eq. (9).

one experiment to another. This may be caused by the filling
procedure of a very cohesive powder in a constrained tank,
leading to an inhomogeneous and random initial configuration.
However, it is clear that at least two time scales are involved
in this compaction process. Note that the very low packing
fraction of this powder (in the range 0.1–0.2) is due to the
large internal porosity of the UO2 grains.

Another cohesive powder was tested with the same ex-
perimental setup and method. We used a polydisperse alumina
powder (BA15W powder provided by Baikowsky) with a mean
grain diameter of 90 μm, and a Hausner ratio IH = 1.12. The
results of the compaction are shown in Fig. 5 for a 100 Hz
and 7g vibration. With a weaker cohesion property, the second
stage of compaction seems to be present but is less remarkable
than for the UO2 powder. This is coherent with the low IH

value. In the following, we will then focus on the UO2 powder
results to understand the role of cohesion in the compaction
process.

III. STOCHASTIC MODEL

To understand these results, we propose a stochastic model
based on the following assumptions. When an external me-
chanical pulse (either a vertical tap or a horizontal vibration) is
applied to a packing of granular material, there is a probability
that the contacts surrounding an individual grain are broken.
Hence this grain may move, explore its surroundings, and very
probably move down if a void is available. When cohesion is
taken into account, some grains may stay linked together and
hence present a collective motion as a cluster. If the cohesion is
strong enough, a cluster of grains may behave as an individual
grain of a larger size. We detail below the algorithms and
results obtained for two systems: a noncohesive material, and
a cohesive material.

A. Compaction of a noncohesive granular material

For a noncohesive granular system, the model is a set of N

unit grains shared out on a discretized one-dimensional space
of size H0 bounded with a static grain at the bottom z = 0
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FIG. 6. (a) Sketch of the noncohesive model with individual
grains only. From t = 0 to t1, the dot-labeled grain (green) is allowed
to move downwards whereas the cross-labeled grain (red) cannot
move. (b) Sketch of the cohesive model with six clusters containing
nine grains each. The triangle-labeled cluster (blue) may move down
a distance of its size (from t = 0 to t1) or of the available space (from
t1 to t2).

[see Fig. 6(a)]. The initial linear fraction is φ0g = N/H0 and
we write φ∞g = 1 as the maximum packing fraction. The free
spaces between two consecutive grains model the pore space
between physical grains and are of the same order of magnitude
as the grain volume [11].

At each time step, all the grains are tested in a random
order. For each grain a random number r determines its ability
to move: If r ≤ pg , it may move down a space unit only if
the space below is free. The grain motion probability pg is
governed by the packing fraction as

pg(φg) = φ∞g − φg(t)

φ∞g − φ0g

, (3)

which is the ratio of the free volume [12] at time t by the
free volume at time t = 0. Many other expressions of this
probability (also named mobility) available in the literature
[12,13] are derived from statistical physics principles, but
we prefer an expression which expresses a decrease of this
probability from the initial state (φ0g) to the final state (φg∞)
in the simplest way.

We checked that the order of tests of the N grains had no
influence on the global dynamics. At the end of the loop on the
N grains, the global packing fraction φ(t) = N/H (t) is simply
computed with the height H (t) of the highest grain of the set at
time step t . The computation stops after a predefined number
of time steps. The system obviously no longer evolves when
the packing fraction has reached its maximum limit φ∞g = 1.
To avoid random fluctuations on the results, several runs were
averaged before presenting the results.

A representative evolution of the stochastic model is shown
in Fig. 7, with a monotonous increase of φ from the initial value
φ0g to the limit value φ∞ = 1, the maximum packing fraction.
While the numerical data are well fitted by the exponential
relaxation equation (2), the inverse logarithmic law [Eq. (1)]
fails to represent our data. In this log-linear plot, an inflexion
point at t = T may be characterized from the second derivative
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FIG. 7. A representative evolution of the packing fraction for a
noncohesive granular system. N = 3000, φ0g = 0.5, φ∞g = 1, data
are averaged on five runs. The black star highlights the characteristic
time τ = 4826 used in Eq. (2) with β = 1.2, while the white star
shows the characteristic time T = 4569 defined by Eq. (4). Inset (a):
Derivative dφ/d[log10(t + 1)] and its fitting by a parabola (red line)
to find the characteristic time T (white dot). Inset (b): T vs τ with a
unit slope (dashed line).

of φ relatively to log10(t + 1),(
d2φ

d[log10(t + 1)]2

)
t=T

= 0. (4)

The red star symbol in Fig. 7 thus indicates the characteristic
time T of compaction, analogous to the τ parameter of the
stretched exponential ad hoc function (indicated by a black
star in the figure).

From this stochastic model, the characteristic time T varies
linearly with the number of grains, but also depends on the
initial packing fraction, as shown in Fig. 8 for various initial
densities and grain numbers N . This result is in contradiction
with Hao’s analysis [14,15], where τ is said to be the inverse of
the mass of powder submitted to vibration. The characteristic
time of compaction is well represented by

T = N

(
φ∞g − φ0g

φ0g

+ A

)
, φ0g < φ∞g, (5)

with a fitting parameter A = 0.6.
Since τ and T are very close, in the following, and despite

the stretched exponential function lacking a full physical
meaning for granular compaction, we will only refer to Eq. (2)
to depict the compaction evolution for both the stochastic
model and experiments.

While the experimental data from a 3D experiment are also
well fitted by Eq. (2), a comparison with the one-dimensional
(1D) stochastic model is difficult since the final packing
fraction in the experiment clearly depends on the beads’ mass
in the tank. Indeed, the experimental final packing fraction φ∞
decreases when the beads’ mass increases. However, plotting

FIG. 8. The characteristic time T as a function of φ0 for various
numbers of grains: N = 500 (◦), N = 1000 (�), N = 1500 (�). The
continuous red curve is Eq. (5). The inset shows the linear dependence
of T on N , for various initial packing fractions (see the legend).

τ/H0 vs φ∞/φ0 (inset in Fig. 1) shows a linear trend, and
this seems to validate Eq. (5), with the underlying assumption
that the number of grains N in the experiment is proportional
to H0 or to the quantity of beads (Fig. 1). The compaction
characteristic time is thus proportional to the number of
movable objects. With a large assembly of grains, this time is
often very large, and is then difficult to reach with a short-time
experiment.

B. Compaction of a cohesive granular material

The previous stochastic model may be extended to simulate
the vibration-induced compaction of a cohesive granular
system with the following assumptions: The cohesive granular
system is modeled as a set of N unit grains shared out
between Nc clusters, with each cluster containing n grains.
In the present model, the grains are not allowed to detach or
attach to a cluster, as in the model developed by McCoy and
Madras [16]. The parameter n is thus a fixed parameter of the
stochastic model and represents the magnitude of the cohesion
force between neighboring grains. As previously, the grains
and clusters are located on a discretized one-dimensional
space of size H0 bounded with a static grain at the bottom
z = 0. The initial state is prepared first by randomly placing
clusters of even size n/φ0g without an overlap, with a linear
fraction of clusters φ0c. Then the grains are randomly placed
inside each cluster with a linear fraction φ0g . The initial global
packing fraction is then φ0 = φ0cφ0g . These assumptions are
based on the observations described previously (Fig. 3), which
suggest that at least two scales of porosity exist in the cohesive
material: a small-scale porosity between neighboring grains,
and a large-scale porosity induced by the formation of vaults
and bulk holes.
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FIG. 9. Evolution of the packing fraction for a cohesive granular
system of N = 1250 grains shared out in Nc = 25 clusters for φ0c =
φ0g = 0.5 and φ∞ = 1. Data are averaged on ten runs. The stars
indicate the two characteristic times Tc (blue star) and Tg (red star).
The inset shows the derivative dφ/d[log10(t + 1)] and its fitting by
two parabolas to find the two characteristic times Tc (left blue dot)
and Tg (right red dot).

At each time step, the particles and the clusters may move
according to the motion probability laws

pc(φc) = φ∞c − φc(t)

φ∞c − φ0c

, pg(φg) = φ∞g − φg(t)

φ∞g − φ0g

, (6)

where subscript c is for clusters, g for individual grains, φc(t)
is the cluster linear fraction, and φg(t) is the linear fraction of
grains inside the clusters. These probabilities are also derived
from normalized free volumes (the volume difference between
a packing of maximum density φ∞ and a packing of density φ)
[12]. When a cluster is allowed to move, it moves downwards
with a maximum falling distance of its size. If the available
space is smaller than the cluster height, the moving cluster falls
down to the available space. This represents the fast collapse
of macrocavities involving a large number of individual grains.
The global packing fraction φ(t) is simply computed with the
height H (t) of the highest grain of the set: φ = nNc/H (t).
The system no longer evolves when the packing fraction has
reached its limit φ∞ = φ∞gφ∞c = 1.

A representative result is presented in Fig. 9 where the
circles plot the global particle fraction versus time in a
log-linear space. It clearly shows a two-stage compaction
process. The first stage (1 < t + 1 < 102) is related to the
compaction of clusters. It mimics the collapse of macrocavities
and large voids observed experimentally in a cohesive granular
system. The second stage (102 < t + 1 < 105) is related to the
compaction of individual grains. Since the characteristic time
of compaction is related to the number of objects (either grains
or clusters), a two-stage process occurs in this model. This is
confirmed by the blue and red curves on the figure showing
the evolution of φc and φg , respectively.

By computing the maxima of the dφ/d[log10(t + 1)]
derivative, two characteristic times Tc and Tg are found (see
the inset of Fig. 9). The cluster characteristic time Tc, the

FIG. 10. Characteristic time for the cluster compaction Tc as
a function of the initial cluster fraction φ0c. Inset: Characteristic
time for the grains Tg as a function of the initial intercluster grain
fraction φ0g .

short-time scale, is simply transposed from Eq. (5),

Tc = Nc

(
φ∞c − φ0c

φ0c

+ A

)
. (7)

This time scale does not depend on the intracluster packing
fraction φ0g , as shown in Fig. 10. The long-time scale Tg is
proportional to the number of grains N = nNc and is well
represented by

Tg = N

[
A

2
exp

(
φ∞g − φ0g

A/2

)]
. (8)

Regardless of the model parameters (φ0c, φ0g , N , n), the
numerical results are well fitted by an extension of the stretched
exponential function expression with two exponentials,

φ = φ∞ − (φp − φ0)e−(t/τc)βc − (φ∞ − φp)e−(t/τg )βg

, (9)

with two time scales τc and τg , two exponents βc and βg , and
a plateau packing fraction φp.

As for the numerical results, the experimental data from the
cohesive powders are well fitted by (9), as shown by the red
curves in Figs. 4 and 5. The experiments have been performed
for various initial heights H0 of the cohesive powder, and for
each experiment we calculated the fitting parameters. We show
that both τc and τg increase linearly with H0 (inset in Fig. 4),
which is in agreement with the stochastic model, within the
assumption that nNc ∝ H0. Because of a lower IH number for
the alumina powder, the influence of the powder height on the
characteristic times could not be put in evidence as clearly as
in the UO2 powder. Despite some experimental uncertainties,
these two well-separated time scales may be related by small
and large moving objects in the experiment, grains and clusters,
respectively.

IV. CONCLUSIONS

With this simple stochastic model, the packing evolution of
a cohesive granular material is modeled as a set of clustered
grains with two kinds of time-step motions: a collective motion
linked to clusters, and an individual motion linked to individual

042904-5



MATHONNET, SORNAY, NICOLAS, AND DALLOZ-DUBRUJEAUD PHYSICAL REVIEW E 95, 042904 (2017)

grains. This model allows one to represent the compaction
of noncohesive or cohesive granular materials and leads to a
better understanding of the characteristic time scales of the
compaction. The comparison between our model and some
experimental results is made through stretched exponential
fitting functions (2) and (9). One of the main results of our
study is that the compaction characteristic time is related to the
number of objects (clusters or grains) which have to be moved
during the process. For the two cohesive powders used in the
experiments, a double exponential fitting equation represents
fairly well the time evolution of the packing fraction.

Such a double exponential fit has already been invoked by
Barker and Mehta [17], with a short-time scale associated with

individual grain motion, and a long-time scale associated with
collective grain motion. But in our model, the short-time scale
is linked to a collective motion of clustered particles, whereas
the long-time scale is linked to a slow individual compaction
of single particles.

Our results are also coherent with the recent work of
Kiesgen de Richter et al. [18], where a two-stage compaction
evolution is observed, even with a packing of monodisperse
glass noncohesive beads. In that work, the first stage implies
an upward compaction front with a transition from a loose to
a dense packing state.

This work may be extended for multiscale structures,
leading to a multiscale time evolution of the packing fraction.

[1] J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R.
Nagel, Density relaxation in a vibrated granular material, Phys.
Rev. E 51, 3957 (1995).

[2] E. R. Nowak, J. B. Knight, E. Ben-Naim, H. M. Jaeger, and
S. R. Nagel, Density fluctuations in vibrated granular materials,
Phys. Rev. E 57, 1971 (1998).

[3] P. Philippe and D. Bideau, Compaction dynamics of a granular
medium under vertical tapping, Europhys. Lett. 60, 677 (2002).

[4] R. L. Carr, Evaluating flow properties of solids, Chem. Eng. 72,
163 (1965).

[5] F. A. Gilabert, J.-N. Roux, and A. Castellanos, Computer
simulation of model cohesive powders: Influence of assembling
procedure and contact laws on low consolidation states, Phys.
Rev. E 75, 011303 (2007).

[6] F. A. Gilabert, J.-N. Roux, and A. Castellanos, Computer
simulation of model cohesive powders: Plastic consolidation,
structural changes, and elasticity under isotropic loads, Phys.
Rev. E 78, 031305 (2008).

[7] E. Azéma, F. Radjaï, B. Saint-Cyr, J.-Y. Delenne, and P.
Sornay, Rheology of three-dimensional packings of aggregates:
Microstructure and effects of nonconvexity, Phys. Rev. E 87,
052205 (2013).

[8] P. Rognon, J.-N. Roux, M. Naaim, and F. Chevoir, Dense flows
of cohesive granular materials, J. Fluid Mech. 596, 21 (2008).

[9] J. E. Fiscina, G. Lumay, F. Ludewig, and N. Vandewalle,
Compaction Dynamics of Wet Granular Assemblies, Phys. Rev.
Lett. 105, 048001 (2010).

[10] P. A. Gago, D. Maza, and L. A. Pugnaloni, Relevance of system
size to the steady-state properties of tapped granular systems,
Phys. Rev. E 91, 032207 (2015).

[11] P. Philippe, F. Barbe, S. Bourlès, X. Thibault, and D.
Bideau, Analysis by x-ray microtomography of a granular
packing undergoing compaction, Phys. Rev. E 68, 020301(R)
(2003).

[12] T. Boutreux and P.-G. de Gennes, Compaction of gran-
ular mixtures: a free volume model, Physica A 244, 59
(1997).

[13] J. J. Arenzon, Y. Levin, and M. Sellitto, Slow dynamics under
gravity: a nonlinear diffusion model, Physica A 325, 371
(2003).

[14] T. Hao, Tap density equations of granular powders based on the
rate process theory and the free volume concept, Soft Matter 11,
1554 (2015).

[15] T. Hao, Derivation of stretched exponential tap density equations
of granular powders, Soft Matter 11, 3056 (2015).

[16] B. J. McCoy and G. Madras, Cluster kinetics of density
relaxation in granular materials, Phys. Rev. E 70, 051311
(2004).

[17] G. C. Barker and A. Mehta, Transient phenomena, self-diffusion,
and orientational effects in vibrated powders, Phys. Rev. E 47,
184 (1993).

[18] S. Kiesgen de Richter, C. Hanotin, P. Marchal, S. Leclerc, F.
Demeurie, and N. Louvet, Vibration-induced compaction of
granular suspensions, Eur. Phys. J. E 38, 74 (2015).

042904-6

https://doi.org/10.1103/PhysRevE.51.3957
https://doi.org/10.1103/PhysRevE.51.3957
https://doi.org/10.1103/PhysRevE.51.3957
https://doi.org/10.1103/PhysRevE.51.3957
https://doi.org/10.1103/PhysRevE.57.1971
https://doi.org/10.1103/PhysRevE.57.1971
https://doi.org/10.1103/PhysRevE.57.1971
https://doi.org/10.1103/PhysRevE.57.1971
https://doi.org/10.1209/epl/i2002-00362-7
https://doi.org/10.1209/epl/i2002-00362-7
https://doi.org/10.1209/epl/i2002-00362-7
https://doi.org/10.1209/epl/i2002-00362-7
https://doi.org/10.1103/PhysRevE.75.011303
https://doi.org/10.1103/PhysRevE.75.011303
https://doi.org/10.1103/PhysRevE.75.011303
https://doi.org/10.1103/PhysRevE.75.011303
https://doi.org/10.1103/PhysRevE.78.031305
https://doi.org/10.1103/PhysRevE.78.031305
https://doi.org/10.1103/PhysRevE.78.031305
https://doi.org/10.1103/PhysRevE.78.031305
https://doi.org/10.1103/PhysRevE.87.052205
https://doi.org/10.1103/PhysRevE.87.052205
https://doi.org/10.1103/PhysRevE.87.052205
https://doi.org/10.1103/PhysRevE.87.052205
https://doi.org/10.1017/S0022112007009329
https://doi.org/10.1017/S0022112007009329
https://doi.org/10.1017/S0022112007009329
https://doi.org/10.1017/S0022112007009329
https://doi.org/10.1103/PhysRevLett.105.048001
https://doi.org/10.1103/PhysRevLett.105.048001
https://doi.org/10.1103/PhysRevLett.105.048001
https://doi.org/10.1103/PhysRevLett.105.048001
https://doi.org/10.1103/PhysRevE.91.032207
https://doi.org/10.1103/PhysRevE.91.032207
https://doi.org/10.1103/PhysRevE.91.032207
https://doi.org/10.1103/PhysRevE.91.032207
https://doi.org/10.1103/PhysRevE.68.020301
https://doi.org/10.1103/PhysRevE.68.020301
https://doi.org/10.1103/PhysRevE.68.020301
https://doi.org/10.1103/PhysRevE.68.020301
https://doi.org/10.1016/S0378-4371(97)00236-7
https://doi.org/10.1016/S0378-4371(97)00236-7
https://doi.org/10.1016/S0378-4371(97)00236-7
https://doi.org/10.1016/S0378-4371(97)00236-7
https://doi.org/10.1016/S0378-4371(03)00251-6
https://doi.org/10.1016/S0378-4371(03)00251-6
https://doi.org/10.1016/S0378-4371(03)00251-6
https://doi.org/10.1016/S0378-4371(03)00251-6
https://doi.org/10.1039/C4SM02472A
https://doi.org/10.1039/C4SM02472A
https://doi.org/10.1039/C4SM02472A
https://doi.org/10.1039/C4SM02472A
https://doi.org/10.1039/C4SM02892A
https://doi.org/10.1039/C4SM02892A
https://doi.org/10.1039/C4SM02892A
https://doi.org/10.1039/C4SM02892A
https://doi.org/10.1103/PhysRevE.70.051311
https://doi.org/10.1103/PhysRevE.70.051311
https://doi.org/10.1103/PhysRevE.70.051311
https://doi.org/10.1103/PhysRevE.70.051311
https://doi.org/10.1103/PhysRevE.47.184
https://doi.org/10.1103/PhysRevE.47.184
https://doi.org/10.1103/PhysRevE.47.184
https://doi.org/10.1103/PhysRevE.47.184
https://doi.org/10.1140/epje/i2015-15074-7
https://doi.org/10.1140/epje/i2015-15074-7
https://doi.org/10.1140/epje/i2015-15074-7
https://doi.org/10.1140/epje/i2015-15074-7



