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We numerically examine the dynamic phases and pattern formation of two-dimensional monodisperse repulsive
disks driven over random quenched disorder. We show that there is a series of distinct dynamic regimes as a
function of increasing drive, including a clogged or pile-up phase near depinning, a homogeneous disordered
flow state, and a dynamically phase separated regime consisting of high-density crystalline regions surrounded
by a low density of disordered disks. At the highest drives the disks arrange into one-dimensional moving chains.
The phase separated regime has parallels with the phase separation observed in active matter systems, but arises
from a distinct mechanism consisting of the combination of nonequilibrium fluctuations with density-dependent
mobility. We discuss the pronounced differences between this system and previous studies of driven particles with
longer-range repulsive interactions moving over random substrates, such as superconducting vortices or electron
crystals, where dynamical phase separation and distinct one-dimensional moving chains are not observed. Our
results should be generic to a broad class of systems in which the particle-particle interactions are short ranged,
such as sterically interacting colloids or Yukawa particles with strong screening driven over random pinning
arrays, superconducting vortices in the limit of small penetration depths, or quasi-two-dimensional granular
matter flowing over rough landscapes.
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I. INTRODUCTION

A wide range of systems can be effectively modeled as a
collection of repulsively interacting particles that are coupled
to a substrate that serves as quenched disorder, and these
systems typically exhibit a transition from a pinned to a
sliding state under an applied external driving force [1].
Examples of such systems include vortices in type-II super-
conductors [2–6], driven electron or Wigner crystals [7–9],
skyrmions in chiral magnets [10,11], charge stabilized colloids
[12–14], and magnetically interacting colloidal systems
[15,16]. The depinning transition can either be elastic, where
the particles keep their same neighbors, or plastic, where the
particles exchange neighbors and break apart [1,3]. In systems
with intermediate or long-range repulsive particle-particle
interactions, the ground state is usually a defect-free triangular
lattice. When plastic depinning occurs, pinned and mobile
particles coexist, leading to a proliferation of topological
defects in the lattice and producing highly disordered particle
configurations during plastic flow [1–3]. At higher drives there
can be a transition from the plastic flow state to a moving
anisotropic crystal [3,17,18] or moving smectic state [19–22].
This transition is associated with an increase in the ordering
of the system and produces a distinct change in the structure
factor [20–22] and the density of topological defects [20,22] as
well as cusps or dips in the transport curves and changes in the
fluctuation spectra [22–24]. Depending on the dimensionality
and anisotropy of the system, these dynamical transitions can
have continuous or first order characteristics [1,3,25].

In most of the systems where depinning and sliding
dynamics have been studied, the repulsive particle-particle in-
teractions are modeled as a smooth potential that is either long
range, as in the case of Coulomb or logarithmic interactions, or
screened long range, such as a Bessel function interaction for
superconducting vortices or a Yukawa interaction for colloidal

systems. There are many systems where the repulsive particle-
particle interactions are short range with sharp cutoffs, such as
sterically interacting colloids [26,27], emulsions [28], micelles
[29], binary fluids [30], bubble rafts [31–33], granular matter
[34,35], charged colloids under strong screening [36,37], and
solid state systems under certain conditions. For most of these
systems it should be possible to flow the particles over some
type of rough surface or landscape.

Systems with sharp repulsive interaction cutoffs, such as
hard disks, can exhibit very different behavior from systems
with long-range repulsion, such as a strong density dependence
of the response near a crystallization or jamming transition
[35,38]. Two-dimensional (2D) systems with long-range re-
pulsive interactions form an ordered solid down to very low
densities since the particles are always within interaction range
of each other, whereas hard-disk systems form a crystalline
solid only for the density at which the particles can just touch
each other, which corresponds to a packing density or area
coverage of φ = 0.9 for 2D monodisperse nonfrictional disk
packings [35]. For densities below the crystallization density,
the hard-disk system forms a disordered or liquidlike state. It
is not clear whether a hard-disk assembly driven over random
disorder would exhibit the same types of dynamical transitions
observed in systems with longer-range interactions such as
superconducting vortices, Wigner crystals, skyrmions, and
charged colloids, or whether it would simply form a moving
disordered state at high drives. Previous studies addressed how
pinning and obstacles affect the onset of the jamming transition
in bidisperse disk packs [39,40]; however, the driven dynamics
for nonzero loading above the jammed state have not been
studied. Although it may seem that hard disks driven over
quenched disorder would simply exhibit the same general
dynamics, such as dynamical reordering at high drives, as
repulsive particle systems with longer-range interactions, the
question has surprisingly not previously been addressed.
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Here we examine an assembly of monodisperse harmon-
ically interacting repulsive disks driven over a random array
of pinning sites. We focus on disk densities φ < 0.9, below
jamming or crystallization. Despite the apparent simplicity
of the model, we find that this system exhibits dynamical
phases distinct from those observed in studies of longer-range
repulsive particles driven over random disorder. When the
number of pinning sites is smaller than the number of disks,
the pinned phase is associated with a pile up or clogging
phenomenon in which the system breaks up into clumps
or clusters, with unpinned disks prevented from moving by
interactions with disks trapped at pinning sites. As the drive
is increased beyond depinning, the system enters either a
fluctuating uniform disordered state or a phase separated
cluster state consisting of a low-density gas of disks coexisting
with high-density clusters. Within the clusters, the disks form
a predominantly triangular lattice. The phase separated states
generally appear when the driving force is close to the value
of the maximum pinning force. For even higher drives, the
system can transition into a collection of one-dimensional
(1D) moving chains, and the structure factor exhibits a strong
smectic ordering signature. We characterize the different
phases and the transitions between them using velocity-force
curves, the transverse root mean square displacements, the
structure factor, and the density of non-sixfold coordinated
particles.

Dynamical phase separation does not normally occur in
systems with longer-range interactions since the coexistence
of a high-density and a low-density phase would have a
prohibitively large energy cost due to the close spacing of the
particles in the dense phase. For the disk system, the energy
cost of the particle-particle interactions is zero until the disks
come into contact, which occurs only at the highest densities.
Similarly, strong 1D chain formation occurs when the disks
can approach each other very closely in the direction of the
applied drive without overlapping. It is known that 2D granular
systems that undergo inelastic collisions can exhibit cluster
instabilities [41,42]; however, in our system there are no fric-
tional contacts between the disks. The density phase separated
regime has parallels with an active matter clustering effect,
and arises when the combination of disk-disk collisions and
pinning produce nonequilibrium transverse fluctuations of the
disks as well as a density-dependent mobility. Studies of active
matter systems with short-range particle-particle repulsion and
density-dependent mobility show similar clustering behavior
[43–46]. At higher drives for the disk system, we find that
a uniform moving state forms when the transverse diffusion
is lost. We also find that at the higher drives, the disks align
in nearly 1D chains in which the disk spacing is nearly zero
in the longitudinal direction but is larger in the transverse
direction. Such strong chaining does not occur in systems
with longer-range repulsive interactions since the high particle
density along the 1D chains would impose a prohibitively high
energy cost. Due to the short-range interactions in the disk
system, the disks incur no energy penalty when they form 1D
chains.

Our work suggests that dynamical phase separation and
chain formation are general features of driven systems with
short-range or hard-disk particle-particle interactions moving
over random disorder. A specific system of this type that

could be realized experimentally is sterically interacting
colloidal assemblies moving over random disorder. There
are already several experiments examining colloidal particles
interacting with random pinning [13,14] and periodic pinning
[36,37,47,48], and similar studies could be performed for steri-
cally interacting colloids. Other realizations could be achieved
using flowing bubble rafts [31–33], where steric interactions
come into play, or flowing microemulsions [28,29], where
again only short-range interactions arise. Further examples
include magnetic bubble systems with weak dipolar interac-
tions or skyrmion systems [11], where at high densities the
short-range repulsive core interactions could dominate over the
longer-range repulsive interactions. In bulk superconducting
vortex systems, the vortex-vortex interactions have a Bessel
function form [1,4,6], which decays exponentially for length
scales longer than the London penetration depth, so that
in certain limits such as at low magnetic fields in samples
with very small penetration depths, the vortices could exhibit
dynamics similar to those we observe, including the phase
separated states. Additionally, there are numerous multiband
superconductors in which the vortex interactions are modified
and the vortex dynamics is dominated by only short-range
repulsive forces [49–51]. There are a wealth of studies of
particle-like soft matter systems such as micelles, binary fluids,
soft solids, and active matter systems which can be described
as having short-range steric interactions. Another class of such
systems is assemblies of quasi-2D granular matter flowing over
random disorder; however, in these systems additional effects
such as friction or inertia can also play a role.

The paper is organized as follows. We provide a description
of the model and the numerical simulations in Sec. II. In
Sec. III, we describe the different dynamic phases that arise
for a fixed amount of quenched disorder when the disk density
is varied. At intermediate disk densities, Sec. III A shows that
there are three dynamic phases with distinct structure factor
signatures that appear as the applied driving force increases:
pinned disordered flow, phase separated flow, and a moving
chain state. In Sec. III B we discuss the low disk density limit
where quasi-1D chaining effects are particularly pronounced.
We show in Sec. III C how to categorize the dynamic phases
based on the amount of transverse diffusion and topological
order. A dynamic phase diagram as a function of driving force
and disk density appears in Sec. III D, and we explain how
the basic features of the phase diagram can be understood in
terms of a drive-dependent dynamic shaking temperature that
induces clustering reminiscent of that observed in active matter
systems. In Sec. IV we show the evolution of the dynamic
phases as a function of increasing disorder strength by first
fixing the number of pinning sites while increasing the pinning
force, and then fixing the pinning force while increasing the
number of pinning sites. In Sec. V we discuss our results in
the context of other systems that exhibit depinning phenomena,
and in Sec. VI we summarize our work.

II. SIMULATION

We consider a 2D system with an area of L2 with periodic
boundary conditions in the x and y directions. The sample
contains Nd harmonically repulsive disks of radius Rd as
well as Np pinning sites that are modeled as nonoverlapping
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parabolic potential traps, which can exert a maximum pinning
force of Fp on a disk. The disk dynamics are governed by the
following overdamped equation of motion:

η
dRi

dt
= Fdd + Fp + FD. (1)

Here η is the damping constant and Ri is the location of
disk i. The disk-disk interaction force is Fdd = ∑

i �=j k(2Rd −
|rij |)�(2Rd − |rij |)r̂ij , where rij = Ri − Rj , r̂ij = rij /|rij |,
the disk radius Rd = 0.5, and the spring constant k = 50.
Distances are measured in simulation units l0 and forces are
measured in simulation units f0 so that k is in units of f0/l0
and the unit of simulation time is τ = ηl0/f0. The pinning
force Fp is modeled as arising from randomly placed parabolic
attractive wells with a pinning radius of rp = 0.5, such that
only a single disk can be trapped in a given pinning site
at a time. Fp is the maximum force exerted by the pinning
site at the edge of the well. The driving force FD = FD x̂
is applied along the x direction, and for each driving force
we allow at least 1 × 106 simulation time steps to elapse
before taking measurements to ensure that the flow has
reached a steady state. At each value of FD we measure the
average disk velocity 〈Vx〉 = N−1

d

∑Nd

i=1 vi · x̂, where vi is the
instantaneous velocity of disk i. The density φ of the system
is characterized by the packing fraction or the area covered by
the disks, φ = NdπR2

d/L
2, where L = 60 in dimensionless

simulation length units. In the absence of disorder, the disks
form a polycrystalline state near φ ≈ 0.85 and a triangular
solid at φ ≈ 0.9. A variation of this model was previously
used to study the depinning and jamming of bidisperse disks
driven over random pinning; in that work, with a disk radii
ratio of 1:1.4, the jamming density in a pin free sample
was φj ≈ 0.845 [39].

The main scale determining our choice of parameters is
the ratio FD/Fp of the driving force to the pinning force.
When FD/Fp � 1.0, all the disks are moving. All of the
general features of the dynamic phases we observe are robust
for varied parameters, and changing Fp simply introduces a
linear shift of the phase boundaries. The disk-disk repulsion
in our model is harmonic in form, and we choose a large
spring constant k = 50. For larger values of k, the results
are unchanged; however, we must use smaller simulation
time steps in order to maintain the numerical stability of
our algorithm. The harmonic disk interaction we consider has
been used in numerous previous studies to mimic hard disks,
particularly for jamming systems [35,38–40]. We note that
the model we use is for strictly overdamped systems, whereas
in granular matter the role of inertial effects and frictional
contacts between grains can be important. We have tested
various system sizes and find that our general results are robust.

One example of a soft matter system with a controllable
substrate is colloids interacting with optical traps, so a possible
experimental realization of our system consists of sterically
interacting colloids in the presence of an optical trap array
subjected to an external drive. Sterically stabilized colloids
with a hard-disk radius in the range of 2 to 5 μm can be
captured by optical traps of radius 2 to 5 μm with an optical
trapping force of 2.5 to 5.0 pN per trap, and experimentally
arrays of up to 700 such traps can be produced with an intertrap
spacing of 5 to 10 μm. Such a system can be mapped to our

simulation by taking l0 = 10 μm and f0 = 5 pN. This gives
k = 0.5 μN, a value consistent with what has been measured
experimentally [52]. The driving force can be produced by
a fluid flow, but this could induce additional hydrodynamic
effects that are not included in our model. The sample can
be tilted in order to produce a gravitational driving force;
alternatively, in many optical trap systems the traps themselves
can be moved, so an effective driving can be produced by
translating the traps in order to induce different dynamical
phases. Charged colloids with strong screening can be driven
by an electric field.

III. VARIED DISK DENSITY

We first consider a fixed number of pinning sites Np = 1440
with Fp = 1.0 as we vary the disk density from φ = 0.05 to
φ = 0.85, giving a ratio of pinning sites to disks ranging from
Np/Nd = 6.159 to Np/Nd = 0.37. With these parameters, a
disk density of φ = 0.31 corresponds to a ratio of Np/Nd =
1.0. Figure 1(a) shows 〈Vx〉 versus FD/Fp for different values
of φ and Fig. 1(b) shows the corresponding d〈Vx〉/dFD curves.
In the inset of Fig. 1(b) we plot the depinning force Fc versus
φ, indicating that Fc has a constant value of Fc ≈ Fp at low
disk densities Np/Nd > 5.0. Here Fc is the value of FD at
which disk motion first begins to occur. In this density range,
almost every disk can be pinned directly by a pinning site,
so collective interactions between the disks do not play an
important role in the depinning process; instead, depinning

FIG. 1. (a) The average disk velocity 〈Vx〉 vs. driving force
FD/Fp for a system of harmonically interacting repulsive disks in
a sample with Fp = 1.0 and Np = 1440 at disk densities of φ = 0.85
(red circles), 0.71 (orange squares), 0.61 (yellow diamonds), 0.55
(light green up triangles), 0.43 (medium green left triangles), 0.3
(dark green down triangles), 0.25 (blue right triangles), and 0.15
(purple stars). (b) The corresponding d〈Vx〉/dFD vs. FD/Fp curves
showing a peak near FD/Fp = 1.0. Inset: The depinning threshold
Fc vs. φ, where φ ≈ 0.3 corresponds to a 1:1 ratio of disks to pinning
sites. (c) The corresponding cluster size CL vs. FD/Fp .
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occurs in the single particle limit and the depinning threshold
is determined only by the value of Fp. For Np/Nd < 1.0,
some of the disks are not trapped by pinning sites, and these
untrapped disks exert a force on the pinned disks, which lowers
the depinning threshold, as shown in the inset of Fig. 1(a).

In Fig. 1(b), for φ � 0.55 there is a pronounced peak
in d〈Vx〉/dFD near FD/Fp = 1.0. This corresponds to the
maximum pinning force from the substrate, so that for
FD/Fp > 1.0 all the disks are moving. For Np/Nd > 0.8 or
φ < 0.4, a large fraction of the disks are located at pinning
sites and the collision rate is low, so that most of the disks do
not become mobile until FD/Fp > 1.0, producing the jump
in 〈Vx〉 at depinning at the lower fillings. For Np/Nd < 1.0,
there are excess disks that cannot be trapped directly by the
pinning sites, and in principle these disks would be mobile
for arbitrarily low FD; however, they can still be indirectly
pinned or blocked by disks that are located at the pinning sites,
creating a local pile up or clogging configuration [39]. Since
these interstitial disks exert forces on the disks located at the
pinning sites, their presence reduces the depinning threshold
by more than a factor of 2. For fillings Np/Nd = 1.0 to 0.571,
corresponding to 0.3 � φ � 0.55, some disks remain pinned
until FD � Fp, producing a weak peak in the d〈Vx〉/dFD

curves at FD/Fp = 1.0. When φ is large enough, most of
the disks are already moving for FD/Fp < 1.0, and the peak
feature is lost.

In Fig. 1(c) we plot the average value Cl of the size of
the largest cluster normalized by the number of disks in the
system as a function of FD/Fp. To determine Cl , we use the
cluster counting algorithm of Luding and Herrmann [53]. For
φ < 0.43, Cl is low and the largest clusters contain 10 or fewer
disks. For φ � 0.43, there is an increase in the cluster size at
low drives due to a pile up effect in which unpinned disks
accumulate behind pinned disks. For φ = 0.85, the system
forms a large cluster and Cl = 1.0 for all FD . At φ = 0.55,
0.61, and 0.71, there is a drop off in Cl for FD/Fp > 1.05,
1.33, and 1.4, respectively, indicating a decrease in the cluster
size. There is also a local maximum in Cl near FD/Fp = 1.0
at φ = 0.61.

A. Intermediate disk densities

In Fig. 1(c), for φ = 0.61 there is an initial increase in
Cl up to Cl = 0.95 at small but finite FD/Fp due to the
pile up effect. This is followed by a decrease in Cl to a
local minimum near FD/Fp = 0.85, and then by another
increase to a local maximum in the range 0.85 < FD/Fp <

1.4, indicating a growth in the size of the largest cluster near
FD/Fp = 1.0. In Fig. 2(a) we plot the disk configurations
for the φ = 0.61 system at FD/Fp = 0.3 where Cl = 0.95
showing large-scale clustering. An illustration of disk motion
in the cluster state appears in Ref. [54]. Similar configurations
appear at FD/Fp = 0.3 for 0.43 < φ < 0.85. In Fig. 2(b), the
corresponding structure factor S(k) = N−1

d | ∑Nd

i exp(−ik ·
ri)|2 of the disk configuration has a ringlike feature indicative
of a disordered system. As the drive is increased beyond the
depinning transition, the clusters break apart and the disk
density becomes homogeneous, as shown in Fig. 2(c) for
FD/Fp = 0.7, where a reduction in Cl has occurred. The
corresponding structure factor in Fig. 2(d) still contains a

FIG. 2. (a) The disk positions (circles) for the system in Fig. 1 at
φ = 0.61 for FD/Fp = 0.3, showing a clustering or pile up effect. (b)
The corresponding structure factor S(k) has a ringlike signature. (c)
The driven homogeneous phase in the same system at FD/Fp = 0.7.
(d) The corresponding S(k) plot from (c).

ringlike feature but has excess weight in two peaks along
kx = 0, indicating the formation of some chainlike structures
due to the x-direction driving.

For 0.7 < FD/Fp < 1.4, the system forms a density phase
separated state, as illustrated in Fig. 3(a) for FD/Fp = 1.05.
The motion of the disks in this state appears in [54]. Here there
is a high-density region with φ ≈ 0.85 in which the disks have
triangular ordering coexisting with a low-density region where
the disks are disordered. The corresponding structure factor in
Fig. 3(b) shows six peaks due to the triangular ordering within
the dense phase. There is some smearing of the peaks along
ky due to the tendency of the crystallites in the dense phase
to align with the driving direction. For FD/Fp > 1.4, where
Cl drops, the disks become more spread out and form 1D
moving chains of the type shown in Fig. 3(c) at FD/Fp = 2.0
and illustrated in a movie in [54]. The corresponding S(k) in
Fig. 3(d) has strong smectic ordering. In general, for φ � 0.43
we find a phase separation in the vicinity of FD/Fp ≈ 1 similar
to that shown in Fig. 3(a), where the extent of the dense region
grows with increasing φ while the low-density regions become
smaller.

B. Low disk density

For φ < 0.43, the clumps that form near depinning are
small, as illustrated in Fig. 4(a) at φ = 0.3 and FD/Fp =
0.15. The clumps are anisotropic and show some alignment
along the y-direction, while the corresponding structure factor
in Fig. 4(b) has a ringlike signature. At higher drives above
depinning when some of the disks are moving, the disk density
is more homogeneous, as shown in Fig. 4(c) at FD/Fp = 0.6.
The corresponding S(k) plot in Fig. 4(d) has a more diffuse
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FIG. 3. (a) The disk positions (circles) for the system in Fig. 1
at φ = 0.61 for FD/Fp = 1.05, corresponding to the local maximum
in Cl in Fig. 1(c). Here the system forms a density phase separated
state. (b) The corresponding S(k) plot contains sixfold peaks due
to the triangular ordering in the dense phase. (c) The same system
at FD/Fp = 2.0 where a moving chainlike state forms. (d) The
corresponding S(k) shows smectic ordering.

FIG. 4. (a) The disk positions (circles) for the system in Fig. 1 at
φ = 0.3 for FD/Fp = 0.15, showing the formation of small clusters.
(b) The corresponding S(k) plot. (c) The same system at FD/Fp = 0.6
in the moving phase where the disk density becomes homogeneous.
(d) The corresponding S(k) shows a diffuse or liquidlike pattern.

FIG. 5. (a) The disk positions (circles) for the system in Fig. 1 at
φ = 0.3 for FD/Fp = 1.05, where the disks form chainlike patterns.
(b) The corresponding S(k) plot. (c) The same system at FD/Fp = 2.0
in the moving phase where the disks form a series of chains or stripes.
(d) The corresponding S(k) has smectic ordering. (e) Blow up of disk
positions from panel (c) showing formation of 1D chains.

structure. Near FD/Fp = 1.0, most of the disks are in motion
and form chainlike structures, as illustrated in Figs. 5(a) and
5(b) and in [54] for FD/Fp = 1.05. The disk density is not
uniform, with some chains closer together and others further
apart; however, the denser regions are still too sparse to form
sections of triangular lattice of the type that appear at φ = 0.61
in Fig. 3(a). As FD increases for the φ = 0.3 sample, the
moving chains of disks become better defined, as shown in
Fig. 5(c) and in [54] at FD/Fp = 2.0. The interchain spacing
becomes small enough that the disks in neighboring chains
are almost touching, and the corresponding structure factor in
Fig. 5(d) shows strong smearing along the ky direction.

These results indicate that even though φ is below the close-
packed density of φ = 0.9, different dynamic phases can arise
and there can be transitions into states with smectic ordering,
similar to the smectic states observed for driven superconduct-
ing vortices [9,20–22,24]. In general, the 1D channeling effect
illustrated in Fig. 5(c) is much more pronounced in the disk
system than in systems with longer-range interactions. The
moving disks are unstable against the formation of chainlike
structures due to a velocity collapse phenomenon. If one
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moving disk slows down, the disk immediately behind it can
run into it and cause it to speed up again, but once the two
disks move beyond their steric interaction range, there are no
particle-particle interactions to push them further apart, so the
disks tend to pile up behind each other in the longitudinal
direction. For φ = 0.85, the system forms a dense cluster with
polycrystalline triangular ordering, and for FD/Fp > 1.0 the
disks form a single triangular domain that is aligned with the
driving direction.

We find two specific phenomena that differ from what
is observed in systems of externally driven particles with
longer-range interactions. These are: (1) a density phase
separation, where high and low-density phases coexist as
shown in Fig. 3(a), and (2) the formation of 1D chains as
illustrated in Figs. 3(c) and 5(c). The density phase separation
generally occurs in the range 0.9 < FD/Fp < 1.2, just above
the drive at which all the disks become mobile, while the
1D chains appear for FD/Fp > 1.2 when all the disks are
rapidly flowing. In Fig. 5(e) we show a blow up of moving 1D
chains from the system in Figs. 5(c) and 5(d), indicating that
the chains form in the longitudinal direction, and that in this
direction the disks are almost touching to give a density along
the length of the chain close to φ = 0.9. Although clustering
has been observed in active matter systems [44–46], such 1D
chaining does not occur for active disk systems, and results
from a combination of the x direction driving force and the
highly anisotropic fluctuations of the moving disks.

C. Transverse diffusion and topological order

We can characterize the different phases by measuring
the particle displacements in the direction transverse to the
applied drive, 〈δy2〉 = N−1

d

∑Nd

i=1(yi(t) − yi(t0))2, for varied
FD/Fp. In general we find 〈δy2〉 ∝ tα at long times. In the
disordered homogeneous density regimes, α = 1.0, indicative
of diffusive behavior, while α < 1.0 just above depinning and
in the moving chain state. In Fig. 6 we plot the value of 〈δy2〉

FIG. 6. The transverse displacements 〈δy2〉 obtained after 4 ×
106 simulation time steps (red squares) and the diffusive exponent α

(blue circles) vs. FD/Fp for the system in Fig. 1 at φ = (a) 0.25, (b)
0.3, (c) 0.43, (d) 0.55, (e) 0.61, and (f) 0.71.

obtained at a fixed time of 5 × 106 simulation time steps versus
FD/Fp along with the corresponding value of α for the system
in Fig. 1 at φ = 0.25, 0.3, 0.43, 0.55, 0.61, and 0.71. For
φ = 0.25 and φ = 0.3 in Figs. 6(a) and 6(b), there is a peak in
〈δy2〉 near FD/Fp = 1.0, where α ≈ 1.0, indicating diffusive
behavior. The maximum amount of transverse diffusion falls
at the same value of FD/Fp as the peak in d〈Vx〉/dFD shown
in Fig. 1(b). At low drives where the system forms a clogged
state, the transverse diffusion is suppressed. At higher drives
where the disks form 1D channels, the diffusion in the direction
transverse to the drive is strongly suppressed and α → 0,
indicating that the 1D channels are frozen in the transverse
direction.

For φ = 0.43, 0.55, and 0.61 in Figs. 6(c)–6(e), 〈δy2〉 has a
double peak feature. The first peak corresponds to the onset of
the homogeneous moving phase, while the second peak occurs
when the system starts to undergo phase separation. For φ =
0.61, where the strongest phase separation is observed, there is
even a region of drive for which 〈δy2〉 exhibits superdiffusive
behavior with α > 1.0. At longer times the behavior transitions
to regular diffusion. For higher drives, both 〈δy2〉 and α

decrease with increasing drive as the system forms a moving
chain state. For φ = 0.71 in Fig. 6(f), the double peak feature
begins to disappear. Numerical studies of vortices in type-II
superconductors [24,55] show that the vortices exhibit strong
transverse diffusion above the depinning transition, while
at higher drives where a moving smectic state appears, the
transverse diffusion is strongly suppressed and the system
freezes in the transverse direction. The vortex system typically
has only a single peak in 〈δy2〉 rather than the double peaks
we observe here. The regime of superdiffusive behavior for
φ = 0.61 arises due to collective transverse motion of the
disks in the dense phase.

Another measure often used to characterize interacting
particles driven over disorder is the fraction P6 of sixfold
coordinated particles. Here P6 = N−1

d

∑Nd

i δ(zi − 6), where zi

is the coordination number of disk i obtained from a Voronoi
tessellation. In the case of superconducting vortices in the
absence of pinning, the ground state is a triangular lattice with
P6 = 1.0, while when strong disorder is present, the pinned
state is disordered and contains numerous topological defects
so that P6 < 1.0. At high drives, where the effect of pinning is
reduced, the system can dynamically reorder into a moving
triangular lattice with P6 = 1.0 or into a moving smectic
where some topological defects persist that are aligned with
the direction of drive, giving P6 � 1 [3,4,17,20–22,24].

In Fig. 7 we plot P6 versus FD/Fp for the system in
Fig. 1 at φ = 0.25, 0.3, 0.43, 0.61, 0.71, and 0.85. Although
there are several similarities to the behavior of P6 observed
for superconducting vortices, there are a number of notable
differences. For φ = 0.25 and φ = 0.3 in Figs. 7(a) and
7(b), there is an increase in P6 above FD/Fp = 1.0 which
corresponds to the formation of the moving chain state
illustrated in Fig. 5(a), followed by a saturation of P6 at
higher drives to P6 = 0.55. This is in marked contrast to the
behavior observed in the vortex system, where P6 saturates
to a value much closer to P6 = 1.0 due to the longer-range
particle-particle repulsion which favors the formation of a
triangular vortex lattice down to quite low vortex densities.
At φ = 0.43 in Fig. 7(c), P6 shows a similar trend as in the

042902-6



DYNAMIC PHASES, CLUSTERING, AND CHAIN . . . PHYSICAL REVIEW E 95, 042902 (2017)

FIG. 7. The fraction P6 of sixfold coordinated disks vs. FD/Fp

for the system in Fig. 1 for φ = (a) 0.25, (b) 0.3, (c) 0.43, (d) 0.61,
(e) 0.71, and (f) 0.85. For φ = 0.61 in panel (d), the local maximum
in P6 near FD = 1.0 is correlated with the formation of the phase
separated state shown in Fig. 3(a).

systems with lower disk densities; however, P6 saturates to a
higher value of P6 = 0.68. In Fig. 7(d) at φ = 0.61, there is a
local maximum in P6 for 0.9 < FD/Fp < 1.4 that coincides
with the density phase separated regime. The disks in the dense
phase have mostly triangular ordering, as shown in Figs. 3(a)
and 3(b). For higher drives of FD/Fp > 1.4, where the disks
become more spread out, P6 drops again. At φ = 0.71 in
Fig. 7(e), for low drives P6 ≈ 0.55, and then P6 gradually
increases with increasing drive up to a value of P6 = 0.9,
indicating that most of the sample has developed triangular
ordering. Finally, for φ = 0.85 in Fig. 7(f), at the lowest drives
the system forms a polycrystalline solid containing a small
number of defects, so that the initial value of P6 ≈ 0.81, while
as FD increases, the polycrystal anneals into a single domain
crystal that is aligned in the direction of drive, with P6 = 0.99,
indicating almost complete triangular ordering.

For 0.3 < φ < 0.85, the P6 curves in Fig. 7 show a small
peak near FD/Fp = 0.2 due to the pile up or clustering
effect. Within the clusters the local density φloc is φloc ≈ 0.85,
producing increased sixfold ordering and a corresponding
increase in P6. Once the drive is large enough to break apart
these clusters, there is a drop in P6 as the system enters the
homogeneous moving phase.

D. Dynamic phase diagram

From the features in the velocity-force curves, P6, 〈δy2〉,
and the disk configurations, we can construct a schematic phase
diagram of the evolution of the different phases, as shown in
Fig. 8. Phase I corresponds to the pinned or clogged state,
phase II is homogeneous disordered plastic flow, phase III is the
density phase separated state, phase IV is the moving smectic
or moving chain state, phase V is the moving polycrystalline
state, and phase VI is the moving single domain crystal state.

Many of the features in the phase diagram can be understood
with force balance arguments. The depinning line separating
phase I from phase IV for φ < 0.2 falls at the constant value of

FIG. 8. Schematic phase diagram as a function of FD/Fp vs. φ

for the system in Fig. 1. I: Pinned or clogged state. II: Homogeneous
plastic flow. III: Density phase separated state. IV: Moving smectic
or moving chain state. V: Moving polycrystalline state. VI: Moving
crystal state.

FD/Fp = 1. At these low disk densities the disks are pinned
individually, so the depinning threshold is determined only by
the value of Fp. For φ > 0.2, not all of the disks are directly
captured by pinning sites; instead, some disks are unable to
find an empty pinning site and move through the system as
interstitials, pinned only through their interaction with directly
pinned disks. The interstitials can flow plastically, so phase II
exists only when interstitials are present. Interstitials emerge
once a percolating fraction pf ∼ 0.67 of the pinning sites are
filled, so if we write φequiv = 0.314 as the density of disks
that we would have if every pinning site were filled with
exactly one disk, we expect the onset of phase II flow to occur
for φ � pf φequiv = 0.21. For φ > 0.2, due to the pairwise
disk interactions the depinning threshold gradually becomes
dominated by the driving force at which an unpinned disk
can depin a pinned disk with which it is in contact, reducing
the depinning threshold from Fc = Fp to Fc = Fp/2. In
Fig. 8, the depinning line separating phases I and II gradually
decreases from FD/Fp = 1 at φ = 0.2 to FD/Fp = 0.5 at
φ = 0.3. As φ increases further, three or more disks can
come into contact and the depinning force falls off as Fc =
Fp/(Navg + 1) where Navg is the average number of unpinned
disks in force contact with a pinned disk. Since Navg increases
with disk density we expect Fc ∼ Fp/φ, consistent with the
decrease in the depinning line marking the end of phase I for
φ > 0.3 in Fig. 8.

Phase II in Fig. 8 consists of a combination of pinned and
moving disks. Since all of the disks depin for FD/Fp � 1.0,
the upper boundary of phase II should be close to FD/Fp =
1, as we observe. Similarly to the depinning line, the upper
boundary of phase II gradually decreases with increasing φ

as multiple disk interactions, which tend to depin the pinned
disks, become more important. For φ � 0.77 the system is
so dense that the depinning becomes elastic, as observed in
earlier studies of depinning for binary disk systems, so that
phase II disappears and is replaced by phase V, which again
extends up to a maximum drive of FD/Fp = 1. The φ ≈ 0.77
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line separating the high-density phases V and VI from the
lower-density phases is a type of random close packing (RCP),
but it falls below the clean system RCP value of φ = 0.82
[56,57] due to the presence of the quenched disorder.

Phase III, the phase separated state, in Fig. 8 occurs when
two conditions are met: (1) all the disks are moving, and (2) the
dynamical fluctuations are strong enough that the moving disks
have a component of their root-mean square (RMS) motion in
the direction transverse to the drive that is ballistic over a
sufficiently long time interval to permit noticeable transverse
grain motion to occur. Phase III only occurs for φ > 0.2, in
agreement with previous work [19], and consistent with the
observation in active matter that cluster formation occurs only
for sufficiently high density and activity. For FD/Fp < 1.0
there are still pinned disks present that can interfere with
the phase separation and make the density more uniform, so
the lower boundary of phase III falls near FD/Fp ≈ 1.0. The
transverse RMS motion of the disks decreases with increasing
FD since the magnitude of the fluctuations δy induced by the
pinning sites diminishes as the disks travel faster, δy ∝ 1/FD ,
similar to the effective temperature found in superconducting
vortex systems. Once these transverse fluctuations become
small enough, the clustering is lost. This has similarities to the
loss of clustering in active matter systems as the run length is
reduced [45,46] or the active diffusion is reduced [58,59], but
the origin of the fluctuations in the disk and the active matter
systems is quite different.

When the drive is high enough and the transverse displace-
ments 〈δy2〉 are smaller than the longitudinal fluctuations, the
system enters the moving chain state marked phase IV in Fig. 8.
This phase is analogous to the moving smectic state found for
vortices driven over random disorder [19–22,24]; however,
unlike the vortices, the disks can form chains that have an
almost close-packed density of φ = 0.9 along their length
while still experiencing zero overlap energy as long as the disks
are not touching. In contrast, for a system with longer-range
interactions of 1/r , e−κr/r , or Bessel function form, due to
the energy divergence at small r such extreme chaining would
be very energetically costly and hence would be unstable.
As FD further increases, the longitudinal fluctuations δx also
decrease in magnitude; however, once the system has entered
the chain state, the chains can persist up to arbitrarily high
drives. At densities φ > 0.77, above the RCP transition to
elastic pinning, Fig. 8 indicates that for high drives the system
forms the moving solid state marked phase VI.

To highlight the role of the effective shaking temperature
or activity in inducing dynamic phase changes, in Fig. 9 we
plot a schematic of A, the amplitude of the effective shaking
temperature or the effective activity, versus FD/Fp at φ = 0.3.
The I-II transition occurs when the force F net

D acting on all n

interstitial disks in contact with a pinned disk as well as on the
pinned disk itself exceeds the pinning force Fp. At φ = 0.3, as
shown in Fig. 9, there is an average of n = 1 interstitial disk
in contact with each pinned disk, so F net

D = (n + 1)FD = 2FD

and depinning occurs at FD/Fp = 0.5; in contrast, for φ < 0.2,
n = 0 and depinning occurs at FD/Fp = 1.0. The activity A

in the pinned phase I is A = 0. For 0.5 < FD/Fp < 1.0, the
system is in phase II and contains both pinned and moving
disks. In this case the shaking activity is bimodal and the
fluctuations are strongly non-Gaussian, so A is not well defined

FIG. 9. Schematic plot of the effective shaking temperature or
activity A vs. FD/Fp for a sample with φ = 0.3. The vertical dashed
black line at FD/Fp = 0.5 separates the pinned phase (I) from
homogeneous plastic flow (II). At FD/Fp = 1.0 all the particles
begin to move, producing an effective shaking temperature or activity
with an amplitude A that decreases as 1/FD . There is a critical
shaking activity, Ac (horizontal red line), above which clustering
can begin to occur, so that a phase separated state (III) appears above
FD/Fp = 1.0. Phase III disappears above the value of FD/Fp marked
by a vertical solid green line, which is determined by the point at
which A drops below Ac. At high drives where A < Ac, Phase IV,
the moving smectic state, appears as the externally applied driving
force begins to dominate the behavior of the system and the effective
shaking temperature becomes unimportant.

and we indicate its value as A = 0. For Fd/Fp > 1.0 all the
particles are moving, so A is well defined and has its highest
value at FD/Fp = 1.0 before decreasing according to A ∼
1/FD . We can define a disk density-dependent critical activity
level, Ac, needed for clustering to occur. As long as A > Ac,
the system remains in phase III, but when A drops below Ac,
clustering is lost and the system transitions into phase IV.

IV. VARIED PINNING DENSITY

We next consider the case of a fixed disk density of φ =
0.55, corresponding to Nd = 2500, and vary the number of
pinning sites to give a ratio of Np/Nd ranging from Np/Nd = 0
to Np/Nd = 0.576. In Figs. 10(a) and 10(b) we show 〈Vx〉
and d〈Vx〉/dFD versus FD/Fp for a sample with Fp = 1.0.
There is one peak in d〈Vx〉/dFD near FD/Fp = 1.0, the drive
above which all of the disks are moving, and a second peak
near FD/Fp = 0.5, the drive at which the clogged state breaks
apart. We observe a similar set of dynamical phases as those
described in Sec. III, but find that the density phase separated
state is more prominent at lower pinning density, as shown in
the plots of Cl versus FD/Fp in Fig. 11 for Np/Nd = 0.072,
0.216, 0.288, and 0.432. In particular, Np/Nd = 0.216 in
Fig. 11(b) and Np/Nd = 0.288 in Fig. 11(c) exhibit strong
peak features associated with the density phase separated
state. The double peak feature in the d〈Vx〉/dFD curves is
generally absent for 2D studies of particles with longer-range
repulsion driven over disorder, where typically only one peak is
observed, and is thus a unique feature of the 2D disk system. In
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FIG. 10. (a) 〈Vx〉 vs. FD/Fp at φ = 0.55 and Fp = 1.0 for
Np/Nd = 0.0, 0.072, 0.144, 0.216, 0.288, 0.36, 0.432, 0.504, and
0.576, from top to bottom. (b) The corresponding d〈Vx〉/dFD vs.
FD/Fp curves showing peaks near FD/Fp = 0.5 and FD/Fp = 1.0.

addition, for particles with longer-range interactions, measures
of P6 and hence Cl generally show only monotonic behavior
above depinning, in contrast to the disk system, which shows
a clear nonmonotonic behavior with a second peak near
FD/Fp = 1.0.

To show more clearly the evolution of the cluster state,
in Fig. 12 we illustrate the disk positions for the system at
Np/Nd = 0.288 for increasing FD . The letters a through f
in Fig. 11(c) indicate the values of FD/Fp that match these
images. In Fig. 12(a) at FD/Fp = 0.05, where Cl = 0.85, the
system forms a clogged state. Within the cluster regions, which
are colored red, the disk density is close to φ = 0.85, and these
clusters are separated by low-density regions of disks. As the
drive increases, the large cluster becomes more spread out,
as shown in Fig. 12(b) for FD/Fp = 0.3, where Cl drops to

FIG. 11. Cluster size Cl vs. FD/Fp for the system in Fig. 10 at
Np/Nd = (a) 0.072, (b) 0.216, (c) 0.288, and (d) 0.432. The local
peaks in (b) and (c) correspond to the formation of a density phase
separated state. In panel (c) the lettering indicates the FD/Fp values
represented in the real space images in Fig. 12.

FIG. 12. The disk positions for the system in Figs. 10 and 11 at
Np/Nd = 0.288 for drive values marked with letters in Fig. 11(c). In
panels (a) and (d), red disks are part of clusters containing three or
more disks, while blue disks are isolated or in a cluster containing
only two disks. (a) The pinned cluster state at FD/Fp = 0.05. (b)
At FD/Fp = 0.3 the moving disks form more spread out clusters.
(c) At FD/Fp = 0.6, corresponding to the local minimum of Cl in
Fig. 11(c), a homogeneous disordered state forms. (d) At FD/Fp =
1.05, corresponding to the peak in Cl in Fig. 11(c), a density phase
separated state forms. At (e) FD/Fp = 1.5 and (f) FD/Fp = 2.0, the
disks are in a moving chain state.

Cl = 0.78. At FD/Fp = 0.6 in Fig. 12(c), which corresponds
to a local minimum in Cl in Fig. 11(c), the disks are completely
spread out and form a homogeneous disordered phase. In
Fig. 12(d) at FD/Fp = 1.05, which corresponds to a local
maximum in Cl in Fig. 11(c), a density phase separated state
appears. Disks that are in a cluster containing at least three
disks are colored red in order to more clearly highlight the
dense region, within which the disks have developed triangular
ordering. As the drive is further increased, the disks spread
apart in the direction transverse to the drive to form the moving
chain state illustrated in Figs. 12(e) and 12(f) at FD/Fp = 1.5
and FD/Fp = 2.0, respectively, which also coincides with a
reduction of Cl in Fig. 11(c). For Np/Nd = 0.55 and above,
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FIG. 13. The disk positions for a system with φ = 0.55 at
Np/Nd = 0.072, where there is no peak in Cl in Fig. 11(a). Red
disks are part of clusters containing three or more disks, while blue
disks are isolated or in a cluster containing only two disks. (a) A
density phase separated state at FD/Fp = 0.3. (b) A moving chain
state forms at higher drives, shown here at FD/Fp = 1.5.

the density phase separated state becomes less well defined, as
indicated in Fig. 11(d) at Np/Nd = 0.432.

In Fig. 11(a) at Np/Nd = 0.072, although Cl does not show
a peak near FD/Fp = 1.0, there is still a pronounced density
phase separated state; however, this phase has shifted to lower
FD/Fp. Since the low-density clogged state transitions directly
into the flowing density phase separated state, there is no dip
in Cl . The density phase separated state breaks apart at lower
values of FD/Fp compared to samples with higher values
of Np/Nd . In Fig. 13(a) we show the disk configurations
at Np/Nd = 0.072 and FD/Fp = 0.3 where a density phase
separated state appears, while in Fig. 13(b) we illustrate the
moving chain phase that forms at FD/Fp = 1.5 in the same
system. From the images we can construct a schematic phase
diagram for the φ = 0.55 sample as a function of FD/Fp versus
Np/Nd , as shown in Fig. 14(a), which highlights the extents of
regions I through IV. Here, the widths of regions I and II grow
with increasing Np/Nd , while region III reaches its largest
extent near Np/Nd = 0.3. We note that for Np/Nd = 0, the
system forms a moving disordered state for all FD > 0.

FIG. 14. (a) Schematic phase diagram as a function of FD/Fp

vs. Np/Nd for the system in Fig. 10 at fixed φ = 0.55. I: Pinned
or clogged state. II: Homogeneous plastic flow. III: Density phase
separated state. IV: Moving smectic or moving chain state. (b) Phase
diagram for the same system at φ = 0.55 and Np/Nd = 0.288 as a
function of FD vs. Fp .

FIG. 15. (a) The cluster size Cl vs. FD for samples with φ = 0.55
and Np/Nd = 0.288 at Fp = 0.0 (blue circles), 0.2 (blue squares), 0.4
(green diamonds), 0.6 (orange triangles), and 1.0 (red circles). (b) 〈Vx〉
vs. FD − Fc for the velocity-force curve obtained at φ = 0.55 and
Np/ND = 0.576. The solid line is a power law fit with an exponent
of β = 1.6.

In the dynamic phase diagram of Fig. 14(a), the depinning
transition marking the upper bound of phase I increases
linearly with increasing Np, a behavior similar to that observed
in other systems, such as superconducting vortices, that
exhibit plastic depinning [1]. The upper boundary of phase III
varies nonmonotonically with Np due to the behavior of the
fluctuations. Phase III arises due to the transverse fluctuations
produced by a combination of interactions with the pinning
sites and disk-disk collisions. When Np is small, there are not
enough pinning sites to create strong nonequilibrium fluctua-
tions, so the extent of phase III decreases with decreasing Np.
At high Np, the situation is similar to that in the phase diagram
of Fig. 8 at high φ, where fluctuations in the disk motion are
larger in the longitudinal or x direction than in the transverse or
y direction, and as a result chain-like structures are destabilized
and the width of phase III decreases with increasing Np.

We have considered varying Fp while holding φ and
Np/Nd fixed, and find that the same general phases appear.
In Fig. 14(b), the upper boundary of phase I increases linearly
with increasing Fp, as expected for a depinning transition. The
line separating phases II and III marks the point at which all of
the disks are moving, and this line also increases linearly with
Fp. The line separating phases III and IV appears at the point
when the transverse fluctuations become too small to permit
density phase separation to occur, and since the fluctuations
are affected by the pinning strength, this line also increases
linearly with Fp. In Fig. 15(a) we plot Cl versus FD in a
sample with φ = 0.55 and Np/Nd = 0.288 for Fp = 0.0, 0.2,
0.4, 0.6, and 1.0 to show the evolution of the second peak,
which both increases in width and shifts to higher values of
FD as Fp increases.

For depinning in systems with longer-range interactions,
such as superconducting vortices, colloidal particles, and
electron crystals, scaling near the depinning threshold is ob-
served in the velocity-force curves, which have the form V ∝
(FD − Fc)−β . In plastic depinning, where particles exchange
neighbors as they move, β > 1.0, while for elastic depinning,
in which the particles maintain the same neighbors as they
move, β < 1.0 [1]. In systems with long-range Coulomb
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interactions [8] and screened Coulomb interactions [12,60],
plastic depinning is associated with exponents of β ≈ 1.65 and
β ≈ 2.0, respectively. More recently, simulations of depinning
of superconducting vortices with a Bessel function vortex-
vortex interaction give β = 1.3 [61]. Due to the observed
variations in these exponents, it is not clear that existing
simulations of plastic depinning are large enough to accurately
obtain the true scaling since it is expected that a critical
phenomenon would be associated with a unique exponent.

It is interesting to ask whether similar scaling of the
velocity-force curves occurs in the disk system. In Fig. 15(b)
we plot 〈Vx〉 versus FD − Fc on a log-log scale for a sample
with φ = 0.55 at Np/ND = 0.576. The solid line indicates
a scaling fit with β = 1.6. At higher drives, well above
depinning, the slope of the velocity-force curve becomes
linear, as expected since the effectiveness of the pinning is lost
in this regime. In general, we find that for Np/Nd > 0.288,
the velocity-force curves can be fit to a power law with
1.4 < β < 1.7. The variation in the exponents we obtain is
a result of the limited size of our simulation, but our values
are within the range of those reported for plastic depinning of
systems with longer-range interactions [8,12,60]. It remains
an open question whether plastic depinning for systems with
short-range interactions falls in the same universality class
as plastic depinning for systems with long-range interactions.
For Np/Nd < 0.288, the depinning threshold Fc = 0 since
there are few enough pinning sites that some disks can pass
completely through the system without being trapped directly
by pinning or indirectly by becoming lodged behind pinned
disks.

V. DISCUSSION

The dynamic density phase separation we find has not been
observed in studies of superconducting vortices or colloids
driven over random disorder. As noted previously, under
certain conditions such as low flux density or very small
penetration length, superconducting vortices could behave like
a hard-disk system and exhibit density phase separation or the
formation of 1D flowing chains. Observation of such effects
would require the use of weak pinning samples that provide
access to the flux flow regime at low fields. There have been
examples of clump-like vortex states observed at low fields
in certain materials; however, these clumps may be the result
of competing attractive and repulsive interactions between the
vortices [51], rather than from reaching an effective hard-disk
interaction limit. There have been some numerical studies of
vortex avalanches in which the vortex-vortex repulsion was
modeled as as harmonic repulsion [62]; however, these studies
were performed in a 1D system, which is a very different limit
from the system we consider. Numerical studies of vortices
moving through periodic substrate arrays showed that under
certain conditions the system can form vortex density or
soliton waves [63]; however, these studies are again in a very
different regime from that which we consider. There has also
been work showing that phase separation into high-density
regions as well as stripe ordering occurs for particles driven
over random disorder when the pairwise interactions between
particles include both a repulsive and an attractive term

[64,65]; however, in the disk system we consider here, the
disk-disk interaction is purely repulsive.

The phase separation we observe has similarities to the
active matter clustering found in simulations of hard disks
undergoing active Brownian motion or run-and-tumble-type
dynamics. In the active matter systems, when the activity
is high enough, the particles phase separate into a dense
solidlike region and a low-density fluid [43–46] due to a
combination of the nonequilibrium nature of the fluctuations
and the fact that the mobility of the particles is dependent
on the local particle density [44]. In the driven disk system,
velocity fluctuations transverse to the driving direction are
generally largest when there is a coexistence of disks being
pinned or slowed down by the pinning along with faster moving
unpinned disks. When the disks collide with each other, they
generate velocity fluctuations that have a ballistic component
in the transverse direction, similar to the motion of active
particles. This also produces time intervals in the transverse
diffusion that exhibit superdiffusive behavior similar to that
found in active matter systems [46]. Additionally, the disks
have a reduced mobility when the disk density increases.
When the drive is large enough, both the speed differential
of the disks and the velocity fluctuations transverse to the
drive are lost, and since these effects are necessary to produce
the clustering and the density phase separation, the clustering
and density phase separation also disappear. The same effects
could arise in systems with longer-range interactions; however,
the large energy cost of high-density regions would suppress
the density phase separation we observe for the short-range
repulsive disks. Experimentally, the dynamic phase separation
could be observed using colloids, emulsions, or micelles that
have only steric interactions moving over random substrates.
Experiments with quasi-2D granular systems could include
grains flowing over a rough landscape under the influence of
gravity or shaking; however, in this case, inertial and intergrain
frictional effects would also need to be taken into account. In
our work we focus on the case of monodisperse disks, so
that the system forms triangular ordering in the dense phase;
however, we have also considered a case for bidisperse disks
with a radius ratio of 1 : 1.4 and find the same features, where
the phase separated state is shifted to a somewhat lower density,
suggesting that the dense phase separated regions are in fact
jammed since it is well known that jamming occurs for lower
densities in bidisperse disks than for monodisperse disks [38].

VI. SUMMARY

We have numerically examined the dynamical phases for
monodisperse repulsive disks driven over random disorder.
Despite the simplicity of this system, we observe a rich
variety of distinct dynamics, many of which have significant
differences from the dynamic phases observed for other
systems of collectively interacting particles with longer-range
repulsion, such as vortices in type-II superconductors and
colloids with Yukawa interactions. The phases we find include
a heterogeneous clogged state where the disks form local
immobile clumps, a homogeneous disordered plastic flow
state, a moving density phase separated state where the
system forms a dense region with mostly triangular ordering
coexisting with a low-density disordered phase, and a stripe or
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chainlike state at higher drives. The density phase separation
occurs due to the density dependent mobility of the disks and
the short-range nature of their interaction with each other,
which permits the disks to pack closely together with little
overlap energy. In contrast, in systems with longer-range
repulsion, density phase separated states are prevented from
forming since more homogeneous states have a much lower
particle-particle interaction energy. The chain formation can
occur in the disk system since the disks can approach almost
within a radius of each other without paying an overlap energy
cost, whereas in systems with longer-range interactions, such
strongly anisotropic structures would have a very high energy
cost. From the features in the transverse diffusion, structure
factor, and velocity-force curves, we map the evolution of

the different phases as a function of disk density, pinning site
density, and pinning force. Our results suggest that the dynamic
density phase separation and the chainlike state should be
general features in systems with short-range steric interactions
driven over random disorder. These effects could be observed
experimentally using sterically interacting colloids, emulsions,
micelles, and even superconducting vortices at low fields
moving over random disorder.
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