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Effects of film growth kinetics on grain coarsening and grain shape
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We study models of grain nucleation and coarsening during the deposition of a thin film using numerical
simulations and scaling approaches. The incorporation of new particles in the film is determined by lattice
growth models in three different universality classes, with no effect of the grain structure. The first model of grain
coarsening is similar to that proposed by Saito and Omura [Phys. Rev. E 84, 021601 (2011)], in which nucleation
occurs only at the substrate, and the grain boundary evolution at the film surface is determined by a probabilistic
competition of neighboring grains. The surface grain density has a power-law decay, with an exponent related
to the dynamical exponent of the underlying growth kinetics, and the average radius of gyration scales with the
film thickness with the same exponent. This model is extended by allowing nucleation of new grains during
the deposition, with constant but small rates. The surface grain density crosses over from the initial power law
decay to a saturation; at the crossover, the time, grain mass, and surface grain density are estimated as a function
of the nucleation rate. The distributions of grain mass, height, and radius of gyration show remarkable power
law decays, similar to other systems with coarsening and particle injection, with exponents also related to the
dynamical exponent. The scaling of the radius of gyration with the height h relative to the base of the grain show
clearly different exponents in growth dominated by surface tension and growth dominated by surface diffusion;
thus it may be interesting for investigating the effects of kinetic roughening on grain morphology. In growth
dominated by surface diffusion, the increase of grain size with temperature is observed.

DOI: 10.1103/PhysRevE.95.042805

I. INTRODUCTION

The polycrystalline structure of a thin film controls its
physical properties and consequently determines the possible
technological applications [1]. This motivated the develop-
ment of several models in the last three decades. Some of
them are stochastic models on lattices, which may provide
a realistic description of atomistic processes with much less
computational effort than molecular dynamics and other ab
initio methods. Reference [2] proposed one of the first models
of this type: a finite number of labels was assigned to the atoms
in a flat film surface, with a grain boundary dynamics that
resembling the Potts model. Reference [3] adopted the same
representation of crystalline grains in a kinetic Monte Carlo
algorithm which was an extension of the Clarke-Vvedensky
(CV) model for thin film deposition [4,5]. Subsequent works
considered CV-type models but labeled the crystalline grain
by a continuously varying angle that represents the orientation
as it nucleates at the substrate [6–11]. These models couple
the film growth with the grain boundary evolution. Recent
approaches consider similar rules for labeling grains but
simplify the bulk dynamics in comparison with the outer
surface dynamics [12–16]. This allows the simulation of thick
films (104 monolayers or more) and improves the model by
accounting for the presence of defects and voids. There are
also several models of grain boundary evolution that do not
describe the growth dynamics of the films or bulk samples
[17–20]. The study of grain boundaries in thermal equilibrium
predicts relevant physical and chemical properties and may
also give information for the nonequilibrium growth dynamics,
such as diffusion coefficients [18].
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An important step of the recent work by Saito and Omura
[15] was to relate the decay of the density of surface grains
to the scaling of height fluctuations of the film surface in the
ballistic deposition model [21,22]. That relation was recently
extended to other ballistic-type models in two-dimensional
substrates [16]. The density decay depends on the basic
symmetries of the growth kinetics but does not depend on
microscopic details of the aggregation mechanism. In that
case, the growth was described by the Kardar-Parisi-Zhang
(KPZ) equation [23]. An earlier study of TiN films showed
that grain sizes followed the substrate patterns and might be
much larger than (and independent of) intragrain column sizes
and void sizes [24]. Thus, those observations also suggest that
the mechanisms of grain coarsening are independent of such
short wavelength surface features.

In this work, we advance along these lines by modeling the
formation and coarsening of crystalline grains during thin film
deposition and studying the relations with kinetic roughening.
We consider different growth mechanisms, which include
cases dominated by surface tension [Edwards-Wilkinson (EW)
[25] and KPZ] and cases dominated by adatom surface
diffusion [Villain-Lai-Das Sarma growth [26,27]]. The latter
allows the investigation of temperature effects. The grain
boundaries evolve at the film surface according to a compe-
tition for capturing mobile atoms. We adopt the Saito-Omura
approximation that neglects the effect of grain structure on
the adatom surface mobility, with the advantage of allowing
a clear demonstration of the effect of kinetic roughening on
grain density scaling and grain shape.

Our first step is to extend the Saito-Omura work by
considering nucleation of grains only at the substrate [15].
A scaling approach for predicting the decay of the grain
density is generalized and confirmed by numerical simulations.
Subsequently, we introduce a model in which new grains can
be nucleated during the growth. The scaling of average grain
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size, the size distribution, and other morphological features
are explained along the same lines of other stochastic models
with coarsening and particle injection [28,29]. The power-law
decays of grain size distributions and the scaling of the grain
shape (relation between average radius and height) are shown
to depend on the dynamical exponent of the underlying kinetic
roughening process. In all cases of diffusive surface dynamics,
temperature increase favors formation of larger grains, in
agreement with experimental observations.

The rest of this paper is organized as follows. In Sec. II
we briefly review the models of film deposition and the
universality classes of kinetic roughening. In Sec. III we
present the model of grain coarsening with nucleation only
at the substrate and study the properties of the polycrystalline
samples for different processes of film deposition. In Sec. IV
we present the model in which grain nucleation is possible at
any film height and study the properties of samples produced
with the same deposition processes. In Sec. VI we summarize
our results and present our conclusions.

II. MODELS OF FILM DEPOSITION

The models are defined in a simple cubic lattice with a
two-dimensional flat substrate of lateral size L at z = 0. The
edge of a lattice site is taken as the unit length. Each deposited
particle occupies one site at z > 0 and represents one atom or
molecule, depending on the application. The term “column” is
used to denote the set of particles of the deposit with position
(x,y).

In all deposition models, the column of incidence of each
particle is randomly chosen, the particle is released above
the deposit and moves vertically towards the substrate (−z

direction), and the position of aggregation is chosen according
to a set of stochastic or deterministic rules (in one of the
models, the rules allow rejection of the aggregation attempt).
A new particle is released only after the previous one is at its
final position; these are called limited mobility (LM) models.
The unit time is defined as the time necessary for aggregation
(or attempt of aggregation) of L2 particles, i.e., one monolayer.

The first deposition model is that of Family [30], which
is also called random deposition with surface relaxation [22].
The incident particle aggregates at the column of incidence if
no nearest neighbor (NN) column has smaller height. If only
one NN has a smaller height, the particle moves to that column
and aggregates there. If two or more NN columns have smaller
heights, one of them is randomly chosen for the aggregation.
These rules are illustrated in Fig. 1(a).

The second deposition model is the restricted solid-on-solid
(RSOS) model [31]. The particle aggregates at the column
of incidence if the differences of heights between nearest
neighbor (NN) columns do not exceed 1. Otherwise, the
aggregation attempt is rejected (i.e., rejection occurs only if
the column of incidence is higher than some NN before the
attempt). These rules are illustrated in Fig. 1(b).

The third deposition model is called lateral aggregation
of diffusing particles (LADP). The incident particle reaches
the film surface at the column of incidence and aggregates
there if it has a lateral neighbor. Otherwise, it executes
random steps to the top of NN columns and permanently
aggregates when it encounters a lateral neighbor (during the

(a)

(b)

(c)

FIG. 1. Illustration of the rules of the deposition models, with
black vertical arrows indicating the incidence point: (a) Family: red
arrows indicate possible steps to lower columns; (b) RSOS: accepted
and rejected aggregation attempts are shown; (c) LADP: possible first
steps of the incident particle are indicated; red arrows show steps that
lead to permanent aggregation, and blue arrows show steps to points
in which diffusion may continue (up to a maximum of G steps).

surface diffusion) or when it has already executed G steps.
This model was introduced in Ref. [32] to represent surface
diffusion of adsorbed atoms or molecules in low-temperature
film deposition. The possible first steps (immediately after
incidence) of some particles in the LADP model are illustrated
in Fig. 1(c).

Despite the relatively simple features of the LADP model,
it can reproduce surface features of a model with collective
surface diffusion of adatoms, namely, the CV model in
conditions of irreversible adatom aggregation to lateral NN.
The ratio R between diffusion coefficient and particle flux of
this restricted CV model is related to G as [32]

R ∼ 8G1.67. (1)

Thus, the increase of temperature, which leads to the increase
of the adatom diffusion coefficient, corresponds to an increase
in the value of the parameter G.

Now we recall the hydrodynamic theories that represent the
coarse-grained features of these deposition models.

The height fluctuations of the RSOS model are described
by the KPZ equation [23]

∂h

∂t
= ν2∇2h + λ2(∇h)2 + η(�x,t), (2)
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where h(�r,t) is a height variable, ν2 > 0, λ2 �= 0, and η is a
Gaussian white noise. The parameter ν2 represents a surface
tension. The nonlinear term appears when local growth occurs
in the direction normal to the inclined interface and λ2 is
proportional to the velocity in that direction, as discussed
in Ref. [22]. In the case of the RSOS model, restrictions
to growth in inclined regions imply λ2 < 0. KPZ scaling is
observed in many electrodeposited films [33,34] and there are
also observations in films deposited by vapor techniques [35].

The Family model is described in the hydrodynamic limit
by the EW equation [25], which is Eq. (2) with λ2 = 0.

The roughening in the LADP model is described by the
Villain-Lai-Das Sarma (VLDS) [26,27] equation,

∂h(�r,t)
∂t

= −ν4∇4h + λ4∇2(∇h)2 + η(�r,t), (3)

where ν4 < 0 and λ4 �= 0 are constants. The VLDS equation
was proposed to represent roughening dominated by surface
diffusion of the adsorbed species, which is expected in
molecular beam epitaxy. In the case of λ4 = 0, we obtain the
Mullins-Herring equation [36].

Note that, in Eqs. (2) and (3), the constant external flux
(expected in the deposition of a film) was omitted.

The average film height at time t is 〈h〉 ≈ vt , where v is
the growth velocity: v = 1 for Family and LADP models; v ≈
0.3217 for the RSOS model [37]. As a film grows, the height
fluctuations propagate in the directions parallel to the substrate
and have increasing amplitude, as characterized by the time
scaling of the surface roughness and of the autocorrelation
function.

The surface roughness is the root-mean square height

fluctuation, W (t) ≡ 〈(h − h)
2〉

1/2

, where the overbars denote
spatial average and the angular brackets denote configurational
average. The roughness scales as W ∼ tβ , with β < 1 for all
models studied here. For KPZ, β ≈ 0.24 [38,39]; for the other
classes, smaller values of β are obtained [22]. This means that
the amplitude of height fluctuations is much smaller than the
average height at time t .

The autocorrelation function is defined as �(s,t) ≡
〈[h̃(�r0 + �s,t)h̃(�r0,t)]

2〉, where s ≡ |�s| with �s in x and y

directions, h̃ ≡ h − h, and �r0 spans the substrate columns.
The characteristic length of decay of �(s,t) is the correlation
length ξ , which increases in time as a power law:

ξ ∼ tν . (4)

Here ν is the inverse of the dynamical exponent of the
growth process (we do not use z to denote that exponent
for avoiding confusion with the position z, which frequently
appears in the text). In the EW class, ν = 0.5 in any spatial
dimension, which is expected for a diffusive correlation. In the
KPZ class, lateral correlations lead to faster propagation; in
two-dimensional substrates, ν ≈ 0.620 [38,39]. In diffusion-
dominated roughening, correlations propagate slowly; in the
VLDS class, ν ≈ 0.30 [27,40,41].

Simulations of all deposition models were performed on
lattices with lateral size L = 1024. The number of deposited
monolayers varied between 5 × 103 and 104. The LADP
model was simulated with G = 20 and G = 50. Computer
memory allocation restricts these maximal times, particularly

A
B

C

D

E

FIG. 2. Application of the rules for selecting the grain label at
five aggregation positions. Colors indicate the labels of previously
aggregated particles. The new particle label is (A) red or blue
with equal probability; (B) new label; (C) brown; (D) green with
probability 2/3 and yellow with probability 1/3; and (E) green.

because we store data for calculating the radius of gyration
of each grain at each level z. The number of configurations
produced with each deposition model varied between 5 × 102

and 103; different deposits were produced for the simulations
of each model of grain nucleation and coarsening (Secs. III A
and IV A), which improves the statistics.

III. GRAIN COARSENING WITH NUCLEATION
AT THE SUBSTRATE

A. Model of nucleation and coarsening

A grain label is assigned to each deposited particle
immediately after it reaches the final aggregation position.
This position is determined by one of the deposition models of
Sec. II and do not depend on grain labels. The grain boundary
evolution is restricted to the outer surface of the film.

First, consider that the particle aggregates at z = 1, i.e., on
the substrate. If this particle has no lateral neighbor, then a new
label is assigned to it, different from the labels of all previously
deposited particles. This means that it has a crystalline
orientation different from the closest (but not neighboring)
grains. On the other hand, if the particle aggregates at z = 1 and
has one or more lateral neighbors, then one of these neighbors
is randomly chosen and the particle receives its label. This
represents island growth at the substrate by the incorporation
of mobile atoms or molecules.

Now consider the case of a particle aggregated at z > 1.
One of the NN-occupied sites (i.e., NN sites with previously
aggregated particles) is randomly chosen and the new particle
receives its label. The set of NN includes the neighbor below
and the lateral neighbors. This model rule represents the
competition of neighboring grains for the incorporation of
new atoms or molecules.

These processes are illustrated in Fig. 2.
For comparison with the Saito-Omura model [15] and

a related model in 2 + 1 dimensions [16], note that they
considered two different rules for grain label assignment.

In their first rule, if a particle aggregates at z > 1 and has a
neighbor below, then the label of that neighbor is assigned to
the particle, independently of the lateral neighbors. However,
in the solid-on-solid deposition models studied here, a particle
always has an occupied neighbor below it, thus the grain label
of a column propagates only vertically, not laterally, i.e., there
is no coarsening.

The second rule of grain assignment in Ref. [15] is the same
as the one proposed here. For ballistic deposition, it showed
deviations in the expected scaling of grain density. However,
we believe that such rule is a more reasonable assumption
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FIG. 3. (a)–(c) Cross sections of lateral size 32 of initial deposits;
(d)–(f) cross sections of lateral size 64 of the upper layers of deposits
with height ≈400, for the indicated deposition models and with grain
nucleation only at the substrate.

for the grain competition because it allows coarsening in the
absence of film voids.

B. Grain morphology

Figures 3(a)–3(c) show cross sections of initial deposits
formed with the RSOS, the LADP G = 20, and the LADP G =
50 models, respectively. The sections were extracted from the
films grown in much larger substrates (L = 1024).

Grains with very small sizes are formed on the substrate
(z = 1) in RSOS deposition; the same feature is observed
in deposition with the Family model. In deposition with the
LADP model, the surface diffusion facilitates aggregation
of mobile particles to the existing islands at z = 1, thus
larger grains are formed, with size increasing with G; this
is qualitatively observed in Figs. 3(b) and 3(c).

Figures 3(d)–3(f) show cross sections of the top part of
deposits after deposition of ≈400 monolayers; again, they
were extracted from the films grown in L = 1024.

The number of grains in the RSOS deposit is still large;
the split of some grains in Fig. 3(d) shows that they may
have significant branching. In the LADP deposits, grains are
more compact and apparently larger. The sections in Figs. 3(e)
and 3(f) also illustrate the coarsening process: as z increases,
some grains increase their lateral sizes [e.g., the green one in
Fig. 3(e) and the light brown one in Fig. 3(f)] while the lateral
sizes of neighboring grains decrease.

Figure 4 shows 64 × 64 images of grain configurations at
the surfaces of the films after deposition of ≈400 monolayers.
The images for the RSOS and Family models confirm the large
density of surviving grains and the branching of many of them
(e.g., the red one in the RSOS and the dark violet one in the

FIG. 4. Top views with lateral size 64 of deposits with ≈400
layers for the indicated models and with grain nucleation only at the
substrate.

Family model). Grains formed with the LADP model are larger
but may also have an irregular shape.

C. Scaling of grain density

Height fluctuations are correlated in a length ξ [Eq. (4)]
and these flucutations are responsible for the lateral spread
of the grain labels. The surviving grains at a given film
height are those which could propagate laterally and cover
the neighboring grains. Thus, their average lateral size l

is expected to be of the same order of magnitude of ξ .
This argument rephrases that of Saito and Omura for grain
coarsening in the BD model [15].

Although the grains have irregular shapes, rough borders,
and may form branches, the top images of Fig. 4 do not
suggest fractal morphology. For instance, their shapes contrast
with the highly branched fractal structure of diffusion-limited
aggregates [42] or of the initial islands of the deposition-
diffusion-aggregation model with critical island size i = 1
[5,43]. Thus, the average lateral area (parallel to the xy

plane) of the grains is expected to scale as that of compact
two-dimensional structures, which is of order l2 ∼ ξ 2 ∼ t2ν .
The density ρ0 of surviving grains, defined as the number of
grains per surface site, scales as

ρ0 ∼ t−γ , γ = 2ν. (5)

The estimates of γ for the deposition models studied here are
≈1.24 for RSOS; 1 (exact) for Family; and ≈0.60 for LADP.

Let M0(t) be the average number of particles of surviving
grains at time t (particles at the film surface of below this
surface). The scaling M0 can be obtained from the scaling of
l2 as

M0 ∼
∫ t

0
l2 dt ∼ tγ+1. (6)
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FIG. 5. Density of surface grains as a function of time in the
model of grain nucleation only at the substrate and deposition with
Family (red squares), RSOS (green crosses), LADP G = 20 (blue
triangles), and LADP G = 50 (magenta stars) models. The solid lines
have the slopes predicted for each growth class.

Figure 5 shows the time evolution of the grain density in
four deposition models. The expected slopes (values of γ ) are
indicated for comparison with the trends of the data at the
longest simulated times.

Films grown with the Family model have a grain density
very close to the expected decay for thicknesses ∼500 layers
and more. Films grown with the RSOS model show similar
scaling until thicknesses ∼5000 layers (corresponding to
t ≈ 1.5 × 104), which means that the KPZ nonlinearity has
little effect on the grain density. This result is surprising
because RSOS is well known as a model with small corrections
in the KPZ roughness; on the other hand, we recall that
deviations from the asymptotic scaling were also observed
in grain coarsening in ballistic deposition with the present rule
for label assignment [15].

The grain density in the LADP films have clear crossovers
for thicknesses between ∼500 and ∼1000 layers. For smaller
thicknesses, the slopes of the plots in Fig. 5 suggest γ > 1,
which is much larger than the asymptotic value ≈0.60. The
films grown with G = 20 show slope close to that value for the
largest thicknesses (∼104 layers), but the slope for G = 50 is
still near 0.70. Despite these deviations, the temperature effect
is clear after deposition of approximately 500 layers: the grain
density decreases as G increases, which means that the higher
the temperature the larger the grains.

D. Scaling of grain shape

Here we characterize the grain shape for each position z

above the substrate, i.e., in each horizontal slice of the film,
by an average square radius of gyration 〈R2(z)〉. For each
grain, the radius of gyration at a given height z is defined

as R2 = (x − x)2 + (y − y)2, with the average taken over all
particles of the grain at that height. Then 〈R2(z)〉 is obtained
by averaging over all grains at that height (the film slice).

FIG. 6. Square radius of gyration as a function of the height z in
the model of grain nucleation only at the substrate: (a) Family (red
squares) and RSOS (green crosses) deposition; dashed lines are linear
fits, with slopes 1.03 and 1.10, respectively (expected values: 1 and
1.24); (b) LADP deposition with G = 20 (blue triangles) and G = 50
(magenta stars); dashed lines are linear fits for z � 103, with slopes
0.68 and 0.73, respectively (expected value 0.60).

The height fluctuations among the surviving grains or in a
single grain surface are expected to be of the same order of
(or smaller than) the surface roughness W of the whole film
surface, which in turn is much smaller than the average film
height 〈h〉 ≈ vt , as discussed in Sec. II. Thus, although each
point of the grain attains a given height z at a slightly different
time (due to those fluctuations), 〈R2(z)〉 is representative of
the surviving grains at a coarse-grained time t ≈ z/v.

We expect that 〈R2(z)〉 scales as the average area of exposed
grains, i.e., as the inverse of the grain density, while z increases
linearly in time. Using Eq. (5), we obtain

〈R2〉 ∼ zγ . (7)

In Fig. 6(a) we show 〈R2〉 as a function of z for the
RSOS and Family models, and in Fig. 6(b) we show the same
quantities for the LADP models with G = 20 and G = 50.

For the Family model, the slope of the plot is actually very
close to the expected γ . For the RSOS model, a deviation of
≈10% is again observed, with an apparently weak effect of the
nonlinearity up to z ≈ 5 × 103. In the LADP model with G =
20 or G = 50, the typical radii of gyration are larger than those
of the other growth models up to t ∼ 104. The slopes are near
0.7 in the thickness range 103 � z � 9 × 103, differing from
the expected γ by ≈17%. However, they are much smaller than
the slopes of the models with relaxation dominated by surface
tension. This suggests that the average grain shape may be
a suitable quantity for distinguishing the kinetics dominated
by surface diffusion, possibly complementary to the study
of surface roughening. Also note that the average radius of
gyration increases as G increases in Fig. 6(b), corresponding
to a temperature increase.

E. Comparison with other models

The polycrystalline structures illustrated in Figs. 3 and 4 for
the LADP model resemble those presented in some previous
works on film growth models in which nucleation is possible
only at the substrate.

Reference [7] analyzed the island growth in the sub-
monolayer regime and shows monolayer films with shapes
similar to those of Fig. 4. Reference [6] proposed a model
for polycrystalline Al film growth which included grain
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boundary diffusion and also showed grain coarsening. A
similar approach was considered in Ref. [8], and effects
of temperature and adhesion to the substrate were studied.
The models for pulsed-laser deposition in Ref. [12] and of
electrodeposition in Ref. [11] also show grain shapes similar to
those of Figs. 3 and 4. Those works show increase of grain size
with the temperature, but scaling relations for characteristic
sizes as a function of temperature or time were not analyzed.

The grain shapes obtained in some two-dimensional models
[9,10,13] are also similar to those of the cross sections of Fig. 3.

IV. GRAIN COARSENING WITH NUCLEATION
AT ALL LAYERS

A. Model of nucleation and coarsening

In this model, the aggregation of a new particle at a final
position is also determined by one of the models of Sec. II. The
grain label is also assigned to the particle immediately after
its aggregation, thus restricting the grain boundary evolution
to the outer surface of the deposit.

When the new particle aggregates, a new label is assigned
to it with probability p, independently of its neighborhood.
This label is different from all previous labels, in order to
represent a crystalline orientation different from all the closest
grains (which may eventually compete for growth). Otherwise,
with probability 1 − p, the same rules of Sec. III A for label
assignment are applied to the new aggregated particle.

The model of Sec. III A is consequently the case p = 0.
Here we always consider p 
 1, thus the probability that the
aggregated particle has a label different from its neighbors
is very small. Despite this condition, the continuous creation
of new grains leads to remarkable changes in the coarsening
process at long times.

Our simulations for all deposition models were performed
for 10−5 � p � 10−3. The number of deposited layers varied
between 5 × 103 and 5 × 104, depending on the model and on
the value of p.

B. Grain morphology

Figures 7(a)–7(c) shows cross sections of films deposited
with the same models of Figs. 3(d)–3(f), but now with
nucleation at all heights. The presence of elongated large grains
is also observed. However, many small grains appear as spots
in the middle of the large grains; this is particularly clear when
the sections of the LADP model are compared.

The same features are observed in the images of grain
configurations at the film surfaces, shown in Figs. 7(d)–7(f).
There are large grains with rough boundaries and possible
branching, similarly to those of Fig. 4. However, the number
of small grains is clearly larger as a consequence of recent
nucleations. The images have lateral size 64 and the probability
of new nucleation is p = 10−3, thus approximately four new
grains are expected to nucleate for each deposited layer.

C. Crossover scaling

Figure 8 shows the evolution of the surface grain density
for four deposition models and three values of p. At short
times, ρ decays as a power law, similarly to the case with

FIG. 7. (a)–(c) Cross sections of lateral size 64 of the upper layers
of deposits with height ≈400; (d)–(f) show top views of the same size,
for the indicated deposition models and grain nucleation at all heights
with p = 10−3.

nucleation only at the substrate. At long times, it saturates due
to the creation of new grains while other grains are buried as a
consequence of coarsening.

The crossover between these two regimes is expected
when the rate of creation of new grains, rP , matches the
rate of annihilation of the existing grains, rA. These rates

FIG. 8. Density of surface grains as a function of time for
grain nucleation at all heights, with p = 10−3 (squares), p = 10−4

(triangles), and p = 10−5 (crosses) and the deposition models:
(a) Family; (b) RSOS; (c) LADP with G = 20; and (d) LADP with
G = 50.
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are measured in number of grains per substrate column per
unit time. Since one layer is deposited in a time τ = 1/v, we
have rP = p/τ = pv. From Eq. (5), the annihilation rate is
rA = dρ0/dt ∼ t−γ−1. Considering that v ∼ 1 for all models,
the crossover time estimated when rP ∼ rA is

tc ∼ p−1/(γ+1) = p−1/(2ν+1). (8)

The scaling relation for rA may include a model-dependent
amplitude, but this amplitude is difficult to estimate due to the
slow convergence to the scaling of Eq. (5). For this reason, no
such amplitude was considered in the above derivation.

Equation (8) gives decays as p−0.5 for Family, p−0.45 for
RSOS, and p−0.63 for LADP models. In Fig. 8, tc may be
estimated as a point in which a deviation from the initial power-
law begins; this confirms that tc increases as p decreases (with
the same deposition model).

The saturation grain density is of the order of the density at
t = tc:

ρc ∼ t−γ
c ∼ pγ/(γ+1) = pν/(ν+1/2). (9)

This result gives decays as p0.5 for Family, p0.55 for RSOS,
and p0.38 for LADP models. The results in Fig. 8 are also
qualitatively consistent with the decrease of ρc as p decreases.

Inspection of Figs. 8(c) and 8(d) also shows that the surface
grain density saturates at smaller values for larger G in LADP
models (the difference looks small in the logarithmic scale of
those plots). This is again consistent with the increase of grain
size with the temperature.

Estimates of rhoc for each model and each p can be
obtained at the longest simulated times. The crossover time
tc can be quantitatively estimated as the time in which the
density ρ is 1% larger than ρc. Plots of tc as a function of p

(not shown here) are consistent with the power law scaling
predicted in Eq. (8), but the exponents for p � 10−4 differ
≈10% from the predicted values for all models. The plots of
rhoc as a function of p are also consistent with a power law,
as predicted in Eq. (9), but in this case the exponents are very
different from the estimates presented above. We believe this
is a consequence of the small values of tc analyzed here (in the
range [102,104]) because the model with nucleation only at
the substrate (Sec. III C) has already shown huge corrections
in the density scaling, as illustrated, i.e., in Fig. 5. Thus, it is
expected that such corrections also affect the crossover scaling
of the present model.

At tc, the average grain mass is given by Eq. (6), even
considering that a large number of small grains (of order ptc)
have been added to the deposit; this crossover mass is

Mc ∼ tγ+1
c ∼ p−1. (10)

A crossover scaling in the form ρ = ρ0f (t/tc) may be
proposed for the surface grain density, but this relation is
also affected by large scaling corrections, as discussed above.
Figure 5 shows that the asymptotic scaling of the models with
nucleation only at the substrate is reached only at t ∼ 104 or
longer. Thus, we expect that the quantitative predictions of the
crossover scaling can be observed only if tc is of this order or
larger. However, the corresponding thicknesses will be much
larger than the ones suitable to model real thin films (�10 μm).

M−δM

δT

M

FIG. 9. Scheme of a film section with two grains formed in a time
difference δt .

D. Mass and size distributions

The model with grain nucleation at all heights has the
same basic mechanisms of other models that combine cluster
agglomeration (coarsening) and particle injection. Takayasu
and coworkers [28,44] introduced this type of model consid-
ering diffusion of clusters in a one-dimensional lattice with
continuous particle flux. When mass is conserved, the clusters
increase in size and their density decreases as a power law;
with particle injection, the density fluctuates around an average
value at long times.

An interesting feature of Takayasu models is the power
law decay of the cluster size distribution in the case of
particle injection, with an exponent related to the coarsening
exponent of the mass-conserved system [28,44]. Swift et al.
[29] proposed a scaling approach to connect a variety of related
coarsening processes with and without mass conservation in
any spatial dimension. Here we extend their approach to our
model and obtain the scaling of distributions of grain mass,
height, and radius of gyration.

Let P (M,t,p) be the probability that a grain has mass M at
time t in the model with new grain formation rate p. Consid-
ering the coarsening at long times, i.e., t � tc, we expect that
the system reaches a time-independent grain size distribution.
Thus we focus on P (M,p), which is the probability that a
grain has mass M after the saturation of grain density.

The leading term of the distribution P (M,p) is assumed to
have the decay M−τ , with the exponent τ to be determined.
This form is valid for large grains, i.e., it excludes grains with
M ∼ 1. A cutoff of the power law is expected for M � Mc

because very large masses are highly improbable when new
grains are formed. A scaling assumption is thus proposed as

P (M,p) = M−τF

(
M

Mc

)
= M−τF (Mp), (11)

where F is a scaling function and Eq. (10) was used. For u � 1,
F (u) is approximately constant and the power law is expected
(note that u � p−1 is required to exclude the grains with
M ∼ 1). The cutoff is expected at some u � 1, after which
F (u) becomes a rapidly decreasing function of its variable.

In order to calculate the exponent τ , we consider the scheme
of Fig. 9 with two grains at the same height, with masses M

and M − δM and ages T and T − δT , respectively. The age
T is the time interval since the nucleation of the grain. Both
masses are of an order of magnitude near that of Mc. The mass
of these large surviving grains obeys Eq. (6) with t replaced
by the age T . This can be used to relate the difference of mass
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between those grains and the time interval of their nucleation:

M ∼ T γ+1 ⇒ δM ∼ T γ δT . (12)

The probability of finding grains with mass in the interval
[M − δM,M] is P (M,p)δM . It is proportional to the total
number of grains that reached the same height as the two
grains in Fig. 9 and that were nucleated in the time interval

T , i.e., the total number of exposed grains with ages
intermediate between the ages of those two grains. This
number is proportional to pδT , which is the total number
of grains nucleated in the time interval 
T . Thus

P (M,p)δM ∼ pδT ⇒ P (M,p) ∼ pT −γ , (13)

where Eq. (12) was used. Using this result, Eqs. (8) and (10)
with t replaced by the age T , we obtain the probability density
for a mass of order Mc as

P (Mc,p) ∼ M−1
c M−γ /(γ+1)

c . (14)

Consequently, the exponent in Eq. (11) is

τ = 2γ + 1

γ + 1
= 4ν + 1

2ν + 1
. (15)

This gives τ = 1.5 for Family, τ ≈ 1.55 for RSOS, and τ ≈
1.38 for LADP models.

An alternative form of the scaled mass distribution is

P (M,p) = pτG(Mp). (16)

In this case, the scaling function G has a power-law decay with
M , with exponent τ . Such decay may fail for M ∼ 1 (Mp � p)
and crosses over to a faster decay for some M much larger than
Mc (Mp � 1).

Figure 10 shows p−τP (M,p) as a function of Mp for the
four growth models and several values of p, considering the
exponents τ given in Eq. (15). The good data collapse of each
plot confirms the scaling ansatz. The power law decay of the
mass distribution is clear in more than five decades of M

and more than seven decades of P for all models. Also note
that this decay is always observed for pM ∼ 1, i.e., M ∼ Mc;
this is consistent with the arguments used to justify Eqs. (11)
and (15). The deviations from the power law to faster decays
occur for M/Mc ∼ 103 or larger, which is also consistent with
that reasoning.

The slopes of the plots of the Family and of the RSOS
models [Figs. 10(a) and 10(b)], obtained from linear fits, differ
less than 3% from the predicted values of τ . Linear fits of the
plots of the LADP model [Figs. 10(c) and 10(d)] have slopes
near 1.45, which is 5% larger than the theoretical prediction
shown in those plots.

Analogous scaling arguments show that the distributions of
aggregate height h and of square radius of gyration R2 also
have power law decays:

P (h,p) = h−
F1

[
h

hc(p)

]
, 
 = γ + 1, (17)

where F1 is a scaling function and

hc ∼ tc ∼ p−1/(γ+1), (18)

P (R2,p) = R−σ
2 F2

[
R2

R2c(p)

]
, σ = 2, (19)

FIG. 10. Scaled distributions of grain mass for grain nucleation at
all heights, with p = 10−3 (red squares), p = 10−4 (green triangles),
and p = 10−5 (blue crosses), and the deposition models indicated in
the plots. The solid lines have the theoretically predicted slopes for
the power law decays. For LADP models with p = 10−5, the bumps
of the plots at pM ∼ 103 are consequences of the limited simulation
time, which interrupted the growth of the largest grains.

where F2 is a scaling function and

R2c ∼ p−γ /(γ+1). (20)

Note that the exponents of the above power-law distribu-
tions are not very different among the different classes of
deposition models. Indeed, if the distributions of Figs. 10(a)–
10(d) (for different classes) were shown in the same plot, the
slopes would be approximately the same (≈1.5). For the grain
height distribution, all slopes are near 0.5, and the exponent
σ of the distribution of R2 is the same for all models. Our
numerical results are also consistent with these values.

E. Grain shape

For t � tc, we measured the square radius of gyration R2

of each grain at each height h measured from the bottom layer
of the grain (i.e., h = 0 at the layer in which the grain is
nucleated). Averaging over all grains at t > tc, we obtain the
average radius of gyration 〈R2〉 as a function of the height h,
which characterizes the typical shape of the grains.

These quantities have definitions similar to 〈R2〉 and z of
the model with nucleation limited to the substrate. However, in
the present model, 〈R2〉 and h have effective upper bounds that
depend on p, since finding very large grains (M/Mc > 103) is
highly improbable; see Figs. 10(c) and 10(d).

The typical heights and typical radii of gyration of the grains
are of the order of hc and R2c, respectively, which are related
as R2c ∼ h

γ
c . Thus, we expect

〈R2〉 ∼ hγ . (21)
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FIG. 11. Square radius of gyration as a function of grain height
for the model with nucleation at all heights, with the same symbols
of Fig. 10. The solid lines have the theoretically predicted slopes.

In Fig. 11 we show 〈R2〉 as a function of h for four
deposition models and three values of p. For h ∼ 100 or
larger, power law scaling is observed in all cases. The values
of exponents are clearly different when results for roughening
controlled by surface tension (Family, RSOS) and controlled
by surface diffusion (LADP) are compared: the plots of the
former give exponents 1.04 (Family) and 1.10 (RSOS), and
the plots of the latter give exponents 0.70 (LADP G = 20) and
0.77 (LADP G = 50); the theoretical predictions are shown in
the corresponding plots. Thus, in this model, the average grain
shape is also a suitable quantity for distinguishing surface
tension or surface diffusion as the dominant mechanism of
roughening.

In Ref. [14], a two-dimensional model of polycrystalline
film growth was studied considering the possibility of nucle-
ation at all heights and effects of grain switching and vacancies.
It was shown that the grain structure reached a steady state,
which corresponds to the crossover to a saturation in the
surface density discussed here. An increase in the grain aspect
ratio with the grain diameter was also shown in that work. This
is consistent with the results obtained here, meaning that the
average diameter increases slower than the average height of
the grains; indeed, Eq. (21) shows that the diameter increases
as ∼hν and ν < 1 for any film growth dynamics.

V. POSSIBLE APPLICATIONS

The comparison of our results with available experimental
data on polycrystalline films may be a first step for the
application of our model or for its improvement to describe
grain sizes and shapes quantitatively.

A particularly interesting application is the electrodepo-
sition of Cu2O in different substrates (Si and a Ni layer on
Si), in which some grains formed at the substrates grow up

to heights ∼1 μm with time increasing diameter [45]. The
position of the minimum of the auto-correlation function is
in good agreement with the typical grain size observed in
AFM images and scales with an exponent ν near that of the
MH equation. The presence of MH roughening in various
length scales was confirmed by comparison of distributions
of heights, roughness, and extremal heights. Thus, the main
control of the grain coarsening is the surface roughening, as
proposed in our model.

Using electron backscatter diffraction, recent works ana-
lyzed the orientations of grains of electrodeposited Zn films
on steel [46,47]. Some images suggest coarsening of grains
similar to our model of nucleation only at the substrate, with
some grains increasing in lateral size and burying neighboring
grains. The focus of those works was the grain misorientation
relatively to the substrate and the nucleation process, but an
investigation of grain sizes and shapes would certainly be
interesting for comparison with available models.

In the pulsed-laser deposition (PLD) of ZnO films of
Ref. [48], the grain size was shown to increase linearly in
time, which corresponds to ν = 1 in our model and gives
γ ≈ 2. These exponents indicate that the lateral propagation
of fluctuations is much faster than in the deposition models
studied here. This may be useful for the development of PLD
models.

VI. CONCLUSION

We proposed a lattice model to represent coarsening of crys-
talline grains during thin film deposition. The incorporation of
new atoms or molecules is determined by deposition models
in different universality classes, with no effect of the grain
structure. The grain boundary evolution at the film surface is
then determined by a probabilistic competition of neighboring
grains. These assumptions allow an initial investigation of the
effects of kinetic roughening on grain structure.

First we extended a previous model that considered nu-
cleation of grains only at the substrate. Simulations show a
decay of the grain density with the film thickness in reasonable
agreement with a scaling approach that relates the typical lat-
eral size of a grain and the correlation length of the deposition
kinetics (involving the dynamical exponent). The scaling of the
average radius of gyration with the film thickness has the same
exponent of that relation. Simulations in thicknesses above
∼500 monolayers show significant difference between the
exponent estimates for growth dominated by surface tension
and growth dominated by surface diffusion.

Subsequently, we extended that model by considering
nucleation of new grains during the deposition, with grain
labels representing orientations different from all previous
grains. The surface grain density crosses over from the initial
power law decay to a saturation regime; the time, grain
mass, and surface grain density at the crossover are estimated
as a function of the rate of nucleation of new grains. The
long time distributions of grain mass, height and radius of
gyration have power law decays which are explained by a
scaling approach that predicts the exponents in terms of the
dynamical exponent of kinetic roughening. These results are
confirmed by simulations that span several orders of magnitude
of those quantities and of their probability densities. The
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characterization of the grain shape is done by measuring the
radius of gyration at each height h relative to the base of
the grain. Simulations show a scaling of the average radius
with h, for h ≈ 100 and larger, with exponents consistent
with theoretical predictions and whose values are also clearly
distinct for roughening dominated by surface tension and by
surface diffusion.

In the deposition of real films, grain coarsening leads to the
elimination of many small grains whose atoms or molecules
migrate to larger grains; this implies surface and subsurface
movement of grain boundaries. Instead, the present model
considers immobile grain boundaries, so that small grains
remain at the film even after they are covered and cannot
grow. However, we believe that the dynamics of these small
grains do not change the main results of this work. The
morphological properties of large grains (average sizes, size
distribution, etc.) are related to the long wavelength scaling of
surface fluctuations via the dynamical exponent (or the related
exponent γ ). This exponent is universal for each growth class,
i.e., it depends only on basic symmetries of the deposition
process. Details of short scale fluctuations do not affect those

properties, and one of such details seems to be the presence or
absence of very small grains.

On the other hand, our assumption that the surface growth
dynamics is independent of local crystalline structure is not
realistic in many cases. For instance, different adsorption rates
at the surface of different grains may develop surface fluctua-
tions with other relevant length scales. Different mechanisms
of atom or molecule aggregation near the grain boundaries
is another important ingredient that should be considered for
an accurate description of real polycrystalline films. However,
despite the limitations of the models presented here, they may
be a reasonable approximation for some systems and their
study is a first step to understand how the film growth kinetics
affects the polycrystalline structure. This study may also mo-
tivate the search for nontrivial features such as the power law
mass distribution and the radius-height scaling in experiments.
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